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Amyotrophic lateral sclerosis as a synaptopathy

Synapses and Amyotrophic Lateral Sclerosis
The synapse is an incredibly specialised structure that allows 
for the coordinated communication of information from one 
neuron to another. When assembled into circuits, the steady 
streams of synaptic excitatory, synaptic inhibitory and mod-
ulatory inputs shape neural outputs. At the organismal level, 
ensembles of various neural networks underlie behaviour, 
emotion and memory. Synapses consist of discrete pre- and 
postsynaptic domains that are under tight homeostatic regu-
lation, yet remain responsive to changes in activity. Increas-
ingly, evidence suggests that perturbations of synaptic struc-
ture and function, a synaptopathy, may underlie a host of 
neurological diseases, from developmental conditions such 
as autism and schizophrenia to neurodegenerative diseases 
including Alzheimer’s and Huntington’s diseases. There is a 
possibility that amyotrophic lateral sclerosis (ALS) may be a 
result of synaptopathy within the neuromotor system. To this 
end, a particular attention has been trained on the excitatory 
glutamatergic synapses and their morphological proxy, the 
dendritic spine. Within the last two years, extensive detailing 
of these dysfunctions in vulnerable neuronal populations 
has been a subject of original research in rodents (Fogarty 
et al., 2016a, b, 2017; Handley et al., 2017; Jiang et al., 2017), 
and humans (Genc et al., 2017) and the focus of a recent 
exhaustive review (Fogarty, 2018). Here in this review, we 
focus on the timeline of these observations in both cortical 
and spinal neurons from different rodent models, and pro-
vide a conceptual framework for assessing the synaptopathy 
hypothesis in ALS. Literature searches were performed on 

public databases (Pubmed) using the term ‘synapses in ALS’, 
with emphasis on presymptomatic studies.

In ALS, a clinically heterogeneous condition afflicting the 
neuromotor system; corticospinal motor neurons (CSMNs), 
motor neurons (MNs), neuromuscular junctions (NMJs), 
and the corticospinal tract degenerate inexorably (Vucic et 
al., 2014). The loss of CSMNs, MNs and NMJs leads to pro-
gressive muscle weakness followed by death, usually from 
respiratory muscle insufficiency (Vucic et al., 2014). In ALS, 
not all MNs are vulnerable, with slow and fast fatigue-resis-
tant (type S and FR) MNs resilient and fast intermediate and 
fast fatigueable (FInt and FF) MNs more susceptible (Fogarty, 
2018). Furthermore, MN populations that do not have exten-
sive corticospinal inputs, such as the MNs within the troch-
lear and Onuf ’s nuclei are resilient to demise, underscoring 
the importance of the motor cortex to the disease. Contem-
poraneous pathology of CSMNs and MNs is pathognomic 
for ALS, with cases being divided into known genetic forms 
(~10%, based on family trees) and sporadic forms (~90%, 
apparently random incidence). Gross cortical post mortem 
pathology and subcellular dendritic and synaptic degener-
ations of CSMNs are highly conserved across sporadic and 
familial variants of ALS (Genc et al., 2017). Frustratingly, 
clinical presentation and progression is remarkably varied, 
with upper and lower limb weakness (~75%), bulbar signs 
(speech and swallowing difficulties ~25%) and a proportion 
of patients with frontotemporal dementia (20–50%) com-
plicating diagnosis and prognosis (Vucic et al., 2014). This 
heterogeneity of disease has necessitated the development of 
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animal models based on the genetic forms of ALS in order to 
probe specific pathophysiological pathways. The suspected 
culprits in the aetiology of ALS include glutamate excitotox-
icity, reactive oxygen species generation, protein misfolding 
and aggregation, mitochondrial dysfunction, endoplasmic 
reticulum stress, abnormal axon transport, neuroinflamma-
tion and metabolic stress (Vucic et al., 2014; Fogarty, 2018). 
The spread of degeneration in ALS is also unknown, with 
multiple myogenic and neurogenic factors flaming the con-
troversy surrounding the ‘die-forward’ and ‘die-backward’ 
hypotheses (Vucic et al., 2014; Fogarty, 2018). Recently, 
Braak et al. (2013) classified ALS as a disease of neurons with 
large axons with discrete stages of trans-synaptic spread, 
starting with CSMNs, followed by MNs and progressing to 
extramotor areas (Braak et al., 2013; Brettschneider et al., 
2013). This pathological insight is consistent with cortical 
hyperexcitability being an early clinical feature of ALS (Vucic 
et al., 2014). This concept also provides for a mechanism of 
transferring misfolded protein aggregates to distant popula-
tions of neurons, prion-like transmission (Braak et al., 2013), 
and is consistent with the idea of ALS being a synaptopathy 
spreading from the motor cortex. Indeed, in rats with super-
oxide dismutase (SOD)1 mutations corrected only in corti-
cal neurons, ALS symptom onset was delayed and survival 
extended (Thomsen et al., 2014). These and the aforemen-
tioned early motor cortex synaptic abnormalities reinforce 
the concept of trans-synaptic spread and die-forward aetiol-
ogy. If ALS is a synaptopathy, it has the advantages of being 
entirely compatible with glutamate excitotoxicity, the accu-
mulation of misfolded proteins and mitochondrial dysfunc-
tion at distal axons (CSMN to MN and MN to NMJ). It does 
not however, explain the contribution of neuroinflammation 
to the disease process, explain the initial protein misfolding, 
account for non-cell-autonomous influences or some of the 
muscle-specific modifiers of disease progression.

Almost invariably, the earliest detected abnormalities of 
various rodent models involve synaptic dysfunctions (van 
Zundert et al., 2008; Fogarty et al., 2015, 2016a, b, 2017; Foga-
rty, 2018). These dysfunctions uniformly favour increased ex-
citation compared to inhibition ratios in CSMNs and MNs, a 
phenomenon entirely consistent with observations of reduced 
inhibition and cortical hyperexcitability in clinical cohorts 
(Fogarty, 2018). The mechanisms underlying disordered syn-
aptic structure and function of CSMNs and MNs centre on 
excitotoxicity and Ca2+ overloading paradigms, though some 
suggest that these phenomena merely prime vulnerable neu-
rons towards susceptibility to future stressors (Fogarty, 2018).

Early Synaptic Dysfunction of CSMNs within 
the Motor Cortex 
The morphology and function of synapses are abnormal in 
ALS, with the nature of changes dependent on where along 
the disease timeline observations are made. These changes 
include the altered density and morphology of dendritic 
spines, often sites of excitatory neurotransmission within the 
central nervous system, particularly in pyramidal cells such 

as CSMNs (Genc et al., 2017; Fogarty, 2018). Post mortem 
analysis of human Betz cells (putative CSMNs) in ALS suf-
ferers clearly shows dendritic spine degeneration (Genc et 
al., 2017; Fogarty, 2018), a phenotype mirrored in a variety 
of rodent models at disease endpoints (Jara et al., 2012; Fog-
arty et al., 2017). Of more utility in understanding patho-
genesis is the assessment of synaptic activity and synapse 
morphology (dendritic spine density and shape) at earlier 
disease stages. The increased frequency of spontaneous ex-
citatory synaptic inputs and/or a reduction in the frequency 
of inhibitory synaptic inputs onto putative CSMNs from the 
layer V motor cortex has been observed in wobbler, SOD1 
and transactive response DNA-binding protein 43 (TDP-
43) models of ALS (Nieto-Gonzalez et al., 2011; Fogarty et 
al., 2015, 2016). Importantly, these observations were made 
during or immediately after postnatal development, but be-
fore motor symptom onset and CSMN loss (Jara et al., 2012; 
Fogarty, 2018). In SOD1G93A rodents, these electrophysiolog-
ical alterations occur in concert with dendritic spine loss and 
precede the degenerative retraction of the apical dendritic 
arbor (Fogarty et al., 2015).

Decreased dendritic spine densities are observed in CSMNs 
(Jara et al., 2012; Fogarty et al., 2015, 2016a, b; Genc et al., 
2017; Handley et al., 2017) and a variety of other cortical 
neurons (Fogarty et al., 2016a; Handley et al., 2017), and are 
a hallmark of synaptic dysfunction, and excitotoxicity. In the 
SOD1G93A high-expressor line, with a remarkably more ag-
gressive development of symptoms and neuronal (CSMN and 
MN) loss compared to other models, there appears to be no 
period of increased spine density (Fogarty et al., 2015, 2016a). 
By contrast, in the TDP-43Q331K model, the course of disease 
is slower, and at the time points assessed, increased excitatory 
synaptic neurotransmission coincides with increased spine 
density (Fogarty et al., 2016b). In MNs of SOD1G93A mice, 
increased functional synaptic excitation and increased den-
dritic spine density is followed by a period of spine loss (van 
Zundert et al., 2008; Fogarty et al., 2017; Fogarty, 2018). Nota-
bly, MNs death in this strain occurs before observable CSMN 
loss. The timeline of the structural and functional synaptic ab-
normalities of CSMNs and MNs in relation to neuronal death 
in SOD1G93A mice is summarised in Figure 1.

Early Synaptic Dysfunction of MNs within the 
Brainstem and Spinal Cord 
The earliest synaptic changes in MNs of SOD1G93A mice have 
been observed in hypoglossal MNs, with increased glutama-
tergic synaptic transmission during the first week of age (van 
Zundert et al., 2008). In both hypoglossal and spinal MNs, 
dendritic spine density increases are evident between from 
~8–15 days postnatally (Fogarty et al., 2017). In adult spinal 
cord, the functional synaptic abnormalities seem to persist 
(Jiang et al., 2017), yet the lumbar MN dendritic spine densi-
ty is similar between control and SOD1 mice (Fogarty et al., 
2017) at similar ages (Figure 1). In lumbar MNs, by the time 
substantial MN loss has occurred, there are less dendritic 
spines and those that remain display a degenerative pheno-
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Figure 1 Timeline of synaptic dysfunction and 
neuronal death in the SOD1G93A ALS model. 
The top portion depicts the earliest CSMN changes, 
starting from ~21 days postnatally, with increased 
excitatory synaptic neurotransmission concomitant 
with spine loss. Following this, dendritic regression 
commences ~28 days postnatally. Importantly, these ab-
normalities precede CSMN loss at ~60 days postnatally. 
Currently, very little is known about embryologically 
abnormalities in the CSMNs of these mice. The bottom 
portion depicts the earliest changes in MNs starting 
from ~17 days in utero, with dendritic restriction. From 
~4 days postnatally, synaptic dysfunctions, such as 
increased dendritic spine densities and increased excit-
atory neurotransmission increased excitatory synaptic 
neurotransmission are evident. These changes precede 
spinal MN loss at ~40 days postnatally. In some MN 
populations, such as hypoglossal MNs, spine density and 
dendritic arbors are increased throughout the duration 
of disease. Current knowledge of synaptic activity and 
dendritic spines on MNs during embryological develop-
ment in SOD1G93A mice is minimal. SOD: Superoxide 
dismutase; ALS: amyotrophic lateral sclerosis; CSMN: 
corticospinal motor neuron; MN: motor neuron.

type (Fogarty et al., 2017). By contrast, the spine density of 
hypoglossal MNs remains elevated across the entire lifespan 
of the SOD1G93A mice (Fogarty et al., 2017). Sadly, in these 
morphological assessments, no stratification of MNs into the 
vulnerable FInt an FF type and resilient S and FR types (Fog-
arty, 2018) was made. 

Changes in NMJs at the presynaptic axon terminal and 
postsynaptic receptor domain are also perturbed in ALS, with 
NMJ dysfunction preceding gross motor deficits in SOD1 
(Rocha et al., 2013; Arbour et al., 2015) and TDP-43 mod-
els (Chand et al., 2018). These synaptic alterations include 
neurotransmitter release (quantal content and frequency) 
abnormalities, decreased facilitation of neuromuscular trans-
mission, impaired maintenance by Schwann cells and altered 
relationship of pre- and postsynaptic anchoring structures. 
The effects are not limited to synaptic transmission and in-
clude impaired axonal transport (Vilmont et al., 2016) and 
impaired trophic signalling (Williams et al., 2009; Taetzsch et 
al., 2017). The lack of axonal transport and muscle trophic in-
teraction accelerates progression of ALS (Williams et al., 2009; 
Taetzsch et al., 2017). Additionally, these changes appear ear-
lier and more strikingly in NMJs of the vulnerable type FInt 
and FF motor units (Frey et al., 2000). Although important, 
anatomical changes at the NMJ usually occur subsequent to 
MN loss (Steyn et al., 2013) and NMJ synaptopathy does not 
appear as early as CSMN or MN phenotypes.

Compensation for various maladaptations may be more 
likely to occur in the resilient populations. An important 
advancement on previous work would be to assess these 
synaptic changes with respect to motor unit types. The ratio 
of excitatory to inhibitory synapses is greater in type FInt 
and FF MNs compared to S and FR (Fogarty, 2018), and may 
provide the link between underlying excitotoxicity and dif-
ferential vulnerability.

Future Perspectives
The main driver of both CSMN and MN pathology at 
pre-symptomatic stages is SOD1G93A mice seems to be exces-
sive glutamatergic synaptic transmission (van Zundert et al., 
2008; Fogarty et al., 2015; Jiang et al., 2017; Fogarty, 2018), 
with other models showing similar results (Nieto-Gonzalez 
et al., 2011; Fogarty et al., 2016b; Fogarty, 2018). The func-
tional abnormalities of CSMNs and MNs are mirrored by 
changes in the dendritic spine densities of these neurons in 
multiple ALS models (Jara et al., 2012; Fogarty et al., 2015, 
2016a, b, 2017; Handley et al., 2017; Fogarty, 2018). Taken 
together, these functional and structural pathologies fit the 
criteria of a synaptopathy. 

Of course, many of the observations presented here are 
phenomenological and are complicated by an extended 
timeline of degeneration – even in the aggressive ALS mod-
els. A major limitation of many of the electrophysiological 
studies presented here (van Zundert et al., 2008; Nieto-Gon-
zalez et al., 2011; Fogarty et al., 2016b; Jiang et al., 2017) and 
elsewhere (Fogarty, 2018), is the lack of multiple time-points 
being assessed. With one notable exception using two ages, 
albeit both pre-symptomatic (Fogarty et al., 2015), single 
window observations have been the norm, precluding deter-
mination of cause and effect. The idea that some of the early 
changes observed in ALS models are compensatory, as op-
posed to pathogenic has recently gained traction (Leroy and 
Zytnicki, 2015; Fogarty, 2018). Accordingly, a major limita-
tion of the synaptopathy hypothesis is the fact that the neu-
rons assessed, or for post mortem studies, those that remain, 
may exhibit helpful compensatory abnormalities. In this 
interpretation, synaptic changes are not pathological, with 
the neurons unable to compensate being vulnerable to loss 
(Leroy and Zytnicki, 2015). One way to test these competing 
scenarios would be to undertake a classical gain or loss of 
function experiment, at the time when the synaptic pertur-
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bation is being established, i.e., from the first week of birth 
until ~P30. This could be achieved pharmacologically by 
using riluzole, effectively reducing excitatory neurotransmis-
sion (Bellingham, 2011) or kainite, a known neuroexcitant 
(Choi et al., 1987). Dosing of riluzole or kainate at therapeu-
tic (Bellingham, 2011) or toxic doses (Blizzard et al., 2016) 
respectively, for the first month postnatal would be one strat-
egy to untangle causality and correlation. One would suspect 
that increased synaptic excitation (kainite treatment) during 
the critical period would worsen deleterious effects and lead 
to earlier onset, shorter disease durations and greater loss of 
vulnerable CSMNs and MNs. Accordingly, if the excitatory 
synaptic imbalance was ameliorated during the critical pe-
riod by riluzole, longer delays until symptom onset, longer 
disease duration and preservation of vulnerable CSMNs and 
MNs would be expected.

Clearly, there is much still to discover about the patho-
genesis and aetiology of ALS. With a focus on the neuronal 
types that are pathognomic for ALS, namely CSMNs and 
MNs, there is a rational and compelling case for the disease 
being a synaptopathy. A clear passage from observable syn-
aptic phenomena to underlying mechanism remains tanta-
lisingly within reach.
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