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Abstract: (1) Background: Portable NIR spectrometers gain more and more ground in the field of
Process Analytical Technology due to the easy on-site flexibility and interfacing versatility. These
advantages that originate from the instrument miniaturization, also come with a downside with
respect to performance compared to benchtop devices. The objective of this work was to evaluate
the performance of MicroNIR in a pharmaceutical powder blend application, having three active
ingredients and 5 excipients. (2) Methods: Spectral data was recorded in reflectance mode using static
and dynamic acquisition, on calibration set samples developed using an experimental design. (3) Re-
sults: The developed method accurately predicted the content uniformity of these complex mixtures,
moreover it was validated in the entire calibration range using ±10% acceptance limits. With respect
to at-line prediction, the method presented lower performance compared to a previously studied
benchtop spectrometer. Regarding the in-line monitoring of the blending process, it was shown that
the spectral variability-induced by dynamic acquisition could be efficiently managed using spectral
pre-processing. (4) Conclusions: The in-line process monitoring resulted in accurate concentration
profiles, highlighting differences in the mixing behaviour of the investigated ingredients. For the low
dose component homogeneity was not reached due to an inefficient dispersive mixing.

Keywords: portable NIR; PAT; blending; validation; multivariate calibration

1. Introduction

Blending can be considered as a critical processing step in pharmaceutical manufac-
turing as it directly influences the end product’s content uniformity [1]. This unit operation
is applied for particulate systems such as powders, granules, capsules and tablets. From an
economical perspective, avoiding out-of-specification batches and optimization of process-
ing time are beneficial for the manufacturer [2]. Having a Process Analytical Technology
(PAT) tool available for rapid product characterization, can guide the formulation and
process development, scale up and detect process offsets during long term production, as a
result of input variability.

Content uniformity characterization is possible through off-line, at-line, on-line or in-
line methods, the difference between measurements being resumed to the sample analysis
location. For off-line and at-line measurements samples are removed from the process
stream and are analysed at a remote location or in the near proximity of the process. On-
line measurements involve the use of samples that are diverted from the main process in

Molecules 2021, 26, 1129. https://doi.org/10.3390/molecules26041129 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-6722-4808
https://orcid.org/0000-0001-8322-1180
https://orcid.org/0000-0001-6769-1545
https://orcid.org/0000-0002-5094-008X
https://doi.org/10.3390/molecules26041129
https://doi.org/10.3390/molecules26041129
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26041129
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/26/4/1129?type=check_update&version=2


Molecules 2021, 26, 1129 2 of 13

order to be analysed, whereas in-line measurements use invasive or noninvasive methods
for direct analysis of samples without any rerouting from the process stream [3]. At-
line prediction of product composition can be achieved using multivariate calibration
procedure, whereas for real time process monitoring, there are several strategies which can
be divided into qualitative (calibration free) and quantitative (calibration) methods [4,5].

Qualitative monitoring methods rely on assessing the similarity of recorded data with
a target values through several methods: k-nearest neighbours (kNN), principal component
analysis (PCA), soft independent modelling of class analogy (SIMCA), Euclidean distance,
Discriminant Analysis; being frequently applied in early development [6]. PCA can be
efficient in evaluating content uniformity, in this case relying on the score vs. concentration
relationship and accurate loading estimation [7,8].

Calibration free, moving-block based methods, rely on estimating the standard devia-
tion in spectra and assuming homogeneity under certain values. The main disadvantage of
this approach is that deviations from declared content may not be detected. Additionally,
they have a limited applicability in case of mixtures having components of interest with
a reduced contribution to the spectral variability. The moving block standard deviation
(MBSD) method can be customized to track peak height, area, or regions from spectral
data which contain the desired features [1]. Its implementation for low dose constituents is
accepted in the presence of strong and characteristic spectral features and if the spectral
similarity of other constituents is increased [6].

Quantitative methods enable blend homogeneity evaluation and also confirm the
presence of declared active pharmaceutical ingredient (API) content, reducing the risk of
false predictions compared to qualitative methods. Such methods offer results expressed
in the form of concentration profiles, and require extensive calibration to offer slightly
biased predictions.

There are numerous examples in literature demonstrating the implementation of PAT
tools for the blending process, considering both batch and continuous manufacturing.
Jarvinen et al. applied near Infrared spectroscopy (NIR) to monitor a continuous blending
and tableting line. Calibration was done by recording spectra of various mixtures under
dynamic acquisition mode through a sapphire window under the discharge chute of the
continuous blender [9]. Li et al. used a calibration free semi quantitative NIR method to
evaluate blend and content uniformity [8]. Some studies suggest the need for multipoint
measurement systems for accurate estimation of blend homogeneity [6]. Vanarase et al.
implemented a multipoint NIR system for continuous blending process. By measuring the
velocity of the material it was possible to evaluate the number of scans representing the
mass of one unit dose [10].

Blend uniformity tracking can also be successfully implemented during the tableting
process by integrating a NIR probe into the feed frame [11]. This approach is useful for
detecting segregation phenomenon [12].

One factor influencing accuracy of predictions during in-line measurements is offered
by the moving dynamics of the particles, being influenced by powder speed and filling
level. Within a continuous blending case study, Martinez et al. highlighted the sensitivity
of partial least squares (PLS) models to flow dynamics, rotation speed, feeding rate of
the material, making necessary the inclusion of such variability into the model if accurate
predictions are desired. A qualitative monitoring approach was found appropriate in this
case [2].

The vast majority of quantitative NIR applications rely on the use of benchtop devices,
the performance of such equipment being well documented in the scientific literature. In
the case of portable systems, the top applications seem to be associated with raw material
and product identification. Their lower performance in quantitative analysis can be linked
to the limited spectral range, lower resolution, worse signal to noise ratio and to the
available recording configuration [13,14].

Using the MicroNIR spectrometer, process analytical solution could be implemented in
a diverse range of applications. In our previous work, we accurately predicted the moisture
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evolution during fluid bed granulation process, having a robust prediction to changes
in processing conditions and raw material characteristics [15,16]. Lee et al. successfully
monitored the particle size distribution variation of lactose from three component mixtures
during the blending experiment [17]. Sierra-Vega et al. used MicroNIR to predict the
API concentration from a three component mixture at the discharge chute of a blender,
respectively at the tablet feed frame. Specific absorption bands of the API had a major
contribution to the accurate predictions [18]. Using MicroNIR, Tanimura et al. investigated
the residence time distribution of an API in the tablet press feed frame in the case of a five
component formulation. Predictive performance of the method was slightly affected only
by paddle speed [19].

The major benefits associated with portable instruments come from the portability
and their interfacing versatility, although the miniaturization comes with a price in terms
of performance. Although it is considered that portable devices will play a key role in the
implementation of PAT framework and pharmaceutical development, more performance
evaluation studies are needed in this field [13].

To this respect there are several more recent studies oriented on the comparison of such
instruments. Mayr et al. compared the performance of handheld and benchtop NIR devices,
highlighting the importance of the recorded wavelength regions, sample presentation and
analyte concentration [14]. Moreover, it was shown that the applied modelling approach
can also have a great contribution to predictive power. In the prediction of moisture from
plant matrices, handheld spectrometers could obtain comparable performance to benchtop
devices only with non-linear modelling [20]. Ciza et al. developed similar NIR methods
for the characterization of antimalarial medicine using both type of instruments [21].

The objective of this study was to evaluate the performance of a portable NIR spec-
trometer (MicroNIR PAT-U, Viavi Solutions, Wichita, KS, USA) by considering a complex
powder mixture with three APIs and five excipients. In the case of this specific powder
mixture, we previously demonstrated that the successful implementation of a NIR method
strongly depended on the calibration set construction and on the orthogonality transfer
form concentration space (powder composition) to spectral space. Using a bench-top NIR
spectrometer in transmission configuration, the method presented an excellent performance
and could be validated using ±5% and ±10% acceptability limits for the APIs found in
higher, respectively lower concentration [22]. This work comes to extend previous results,
by applying the previously prepared calibration set to train models using spectra recorded
on a portable NIR spectrometer in reflectance mode. Additionally, the performance of this
process-suited NIR instrument was evaluated in terms of process monitoring and tracking
ability of both high and low-dose constituents during the pharmaceutical development of
a drug product.

2. Results and Discussions
2.1. Calibration Model Development and Validation for At-Line Content Uniformity Prediction

Two pre-processing methods worked better for data recorded with MicroNIR, namely
the standard normal variate (SNV) and the second derivative (SD). The increased concen-
tration of paracetamol and ibuprofen was reflected in the performance parameters of PLS
models, showing good predictive capacity (Q2>0.9) with reduced cross-validation errors,
achieved through a reduced number of components. The lower content in caffeine, slightly
impacted the prediction ability, however, a good performance was still achieved for at-line
characterization (Table 1).

The at-line NIR method was validated using the strategy proposed by Hubert et al. [23].
According to the results, the method is capable of predicting the API content with an
acceptable recovery and precision (Table 2). The calculated relative tolerance limits were
included in the ±10% acceptability interval for all three APIs (Figure 1). The differences
between real and predicted concentrations of future samples will be included in the
computed tolerance limits with a 95% probability.
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Table 1. PLS model characteristics for active ingredient quantification by MicroNIR.

Acquisition API Pre-Processing Spectral
Region nm

PLS
Components R2X Q2 RMSEC RMSECV

at-line
Ibuprofen SNV 908.1–1676.2 4 0.911 0.957 1.108 1.118

Paracetamol SD 951.46–1632.84 5 0.992 0.984 0.554 0.558
Caffeine SNV 908.1–1676.2 6 0.996 0.911 0.315 0.319

in-line
Ibuprofen SD

951.46–1632.84
4 0.976 0.929 1.434 1.439

Paracetamol SD 6 0.993 0.968 0.745 0.756
Caffeine SD 11 0.998 0.899 0.337 0.344

at-line + in-line
Ibuprofen SD

951.46–1632.84
3 0.916 0.913 1.566 1.589

Paracetamol SD 5 0.963 0.945 0.984 1.004
Caffeine SD 9 0.997 0.870 0.387 0.390

Abbreviations: PLS—partial least squares, API—active pharmaceutical ingredient, RMSEC—root mean square error of calibration,
RMSECV—root mean square error of cross-validation.

Table 2. Validation results for the NIR method developed for at-line quantification.

Concentration
Level (g%)

Trueness Precision Accuracy

Relative Bias(%) Recovery (%) Repeatability
(RSD %)

Intermediate
Precision
(RSD %)

Relative
Tolerance
Limits (%)

Tolerance
Limits

(mg/tablet)

Ibuprofen

27.814 −0.045 99.955 1.190 1.821 [−5.644, 5.544] [26.256, 29.371]
33.898 −2.540 97.460 0.844 1.597 [−8.252, 3.172] [31.962, 35.835]
43.182 3.458 103.458 1.412 1.237 [0.649, 6.268] [41.969, 44.396]

Paracetamol

22.843 1.035 101.035 0.810 1.223 [−2.720, 4.791] [21.985, 23.702]
28.131 −0.459 99.540 0.709 0.768 [−2.298, 1.379] [27.613, 28.648]
34.668 2.228 102.228 0.739 1.198 [−1.475, 5.931] [33.384, 35.952]

Caffeine

5.672 1.932 101.932 1.510 2.303 [−5.147, 9.012] [5.270, 6.074]
7.003 0.682 100.682 1.520 1.784 [−3.846, 5.211] [6.686, 7.320]
8.573 2.695 102.695 0.992 1.442 [−1.390, 6.782] [8.222, 8.923]

Results published in our previous study, highlighted improved validation results
when a bench top device on the identical calibration/validation sets. The relative tolerance
limits for ibuprofen and paracetamol were included in ±5%, whereas for caffeine in ±10%
limits. The technical characteristics of the used spectrometers are presented in Table 3.

The similar performance for caffeine can be explained considering that the most
characteristic absorption bands in the NIR spectra are recorded by both benchtop and
portable devices. A similar result was obtained for this active ingredient by Mayr et al. [14].

In comparison with the benchtop device, unexpectedly, the lower performance was
obtained for the large dose active ingredients. Although the most important absorption
bands were included in the acquisition domain of MicroNIR, most certainly the spectral
resolution and recording configuration had an impact on prediction performance. Trans-
mission spectra recorded by the benchtop device is more representative compared to the
reflectance spectra recorded with MicroNIR. Overall, for all the APIs the accuracy lim-
its were included in the ±10%, thus making the portable instrument suitable for at-line
characterization.

In another study, Ciza et al. obtained similar relative tolerance limits after validating
two NIR methods, using spectra recorded with benchtop and handheld instruments. In
this case, both methods were implemented in transmission configuration [21].
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Table 2. Validation results for the NIR method developed for at-line quantification. 

Trueness Precision Accuracy 

Spectral region 908–1676 nm (11,013–5966 cm−1) 12,497.2–4000 cm−1

Resolution 6.2 nm for 950–1650 nm 4 cm−1

Light source Two integrated vacuum tungsten lamps Tungsten-halogen lamp
Wavelength selection linear variable filter interferometer

Detector 128-pixel InGaAs photodiode array InGaAs
Recording configuration reflectance transmission with rotating sample

Size 45 mm diameter × 69 mm tall; 368 g 570 mm length × 465 mm width 260 mm tall;
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Dotted black line: acceptability limits; Dashed blue line: upper and lower relative 95%-
β-expectation tolerance limits; Continuous red line: relative bias; X: relative back-calculated
concentrations of validation samples.

2.2. Impact of Acquisition Mode on Spectral Variability

MicroNIR is a fiber-optic free device based on linear variable filter technology as the
dispersing element [16]. The absence of moving parts makes it robust for in-line monitoring,
by being less sensitive to process-induced shocks.

Dynamic acquisition produced a higher baseline shift compared to static spectral
recording, however spectral pre-processing methods efficiently reduced the differences
(Figure 2). For an easier visualization and numerical interpretation of spectral variability,
PCA models were computed for each type of data (raw, SNV, SD). The score and loading
plots of the computed PCA models are shown in Figure 3.
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In the case of raw data, the first principal component separates the two acquisition
modes, representing the major variability in spectral data (R2X[1] = 1). The corresponding
loading of these first principal components, shows a positive value throughout the entire
domain, suggesting that the acquisition mode-related baseline-shift strongly dominates
over the concentration-related variability. Thus, raw data is not efficient for predicting
API content.

Salub et al. compared offline with inline spectra, showing that the baseline shift
differences could be minimized through appropriate pre-processing methods. Highly
predictive PLS models could be developed, also showing robustness to bin size and
revolution speed changes [24].
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Spectral pre-processing efficiently reduced sample presentation-related spectral vari-
ability, for both SNV and derivative data the separation of the groups occurs along the
t[2] axis, representing the second principal component. The acquisition mode-related
variability dropped in case of SNV data to R2X[2] = 0.117 and SD data to R2X[2] = 0.182,
whereas the major variability captured by t[1] reflects composition differences. The p[1]
loading vectors of SNV and SD data highlight characteristic peaks.

t[1]–first principal component; t[2]–second principal component; R2X–explained vari-
ability; p[1]–loading vector of the first principal component; Ellipse: Hotelling’s T2 (95%).

2.3. Monitoring Model Development

Considering the applicability of qualitative and moving-block monitoring strategies
are not suitable due to the low concentration of caffeine, only quantitative modelling
approaches were tested.

Calibration model development has to include the expected range of variability that
could occur during a real blending process. To this respect, three different approaches
were tested for quantitative model development, using either at-line or in-line collected
spectra and the combination of both. Model performance parameters of the best models
are presented in Table 1.

Both in-line recorded and combined spectra lead to a good predictive capacity (Q2 > 0.9)
with reduced cross-validation errors, achieved through a reduced number of components.
For all the tested modelling approaches, the prediction of paracetamol content outper-
formed ibuprofen results.

For caffeine, higher number of PLS components were fitted to the model, especially
under dynamic conditions, as the reduced spectral contribution of this formulation con-
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stituent is more prone to be affected by the undesired spectral variability-induced by
sample dynamics. Static spectral acquisition exceeded dynamic mode in terms of Q2,
having above 0.9 value.

The resolution used to record spectral data is an important parameter as it influences
both noise and acquisition time. A fast acquisition time and good signal to noise ratio is
essential for process monitoring and can be obtained through low resolution measurements.
However, using a too low resolution may pose robustness issues considering the amount
of spectral information. This can also affect the quality of predictions where multiple
constituents are varied in the blends (i.e., three APIs) [25]. MicroNIR is a process compatible
instrument, thus working with such a complex mixture presenting multiple APIs certainly
influenced the quality of predictions.

2.4. Application of the Models for In-Line Monitoring of a Blending Experiment

As the root mean square cross-validation error (RMSECV) relates to left out data
during model building procedure, the in-line testing of the developed models is mandatory
for a true performance evaluation. The spectral data acquired during the blending experi-
ment was transformed into concentration profiles using models developed with at-line;
in-line and combined calibration data (Figure 4). Building individual mixing profiles of
formulation constituents is beneficial for in depth understanding of blending, segregation
and process endpoint identification [26]. The target concentrations reflecting the reach of
homogeneity was confirmed through the reference method.

The concentration profiles show a highly spiked profile in the initial part of the
blending process, with highly variable concentrations which decrease in amplitude and
stabilize as homogeneity is reached. In the case of ibuprofen, the at-line model shows
an under-prediction from the initial points of the blending run, whereas the in-line and
combined model offers good predictions, close to reference method results.

For paracetamol the combined model has the best predictive performance, the at-line
shows a positive bias, whereas in-line data under-predicts the concentration. In terms of
paracetamol and ibuprofen content, blend homogeneity was reached under 300 rotations of
the blender, whereas for caffeine the highly spiked profile suggested the lack of an efficient
dispersive mixing.

In the case of caffeine, the at-line model had the best predictive performance, however
the highly spiked profile was maintained up to 1000 revolutions. The recovery against
reference method results was found acceptable for all APIs (Table 4). For caffeine the
same concentration variability was observed by high performance liquid chromatography
(HPLC) (6.077 ± 1.078), confirming the reduced efficiency of the blending process itself. In
this case, convective blenders could lead to a more efficient distribution of caffeine in the
mixture [27].

The difference in prediction quality of the models built using static and dynamic
acquisition modes of calibration sets seems to be API-related. The spectral contribution of
the target component in relation to other excipients and its robustness to process-induced
variability can be a determining factor. According to the literature data, good models could
be obtained using both recording conditions [28].

Blend homogeneity is dependent on the amount of API in the formulation and blend-
ing time. Discrete Element Modelling simulations identified the combination of high API
amounts and low blending time in order to achieve optimal homogeneity [27]. Martinez
et al. also highlighted the dependency of time needed to reach steady state concentration
and API concentration. APIs with high mass fraction in the formulation reach in shorter
time homogeneity [28]. These observations are confirmed by the experimental results of
the current study.
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Table 4. Recovery of predicted API content against reference method.

Acquisition API Predicted C% HPLC Recovery

at-line
Ibuprofen 31.680 ± 6.101 38.412 ± 1.013 82.475

Paracetamol 31.147 ± 0.478 29.644 ± 0.757 105.070
Caffeine 6.256 ± 0.921 6.072 ± 1.078 103.045

in-line
Ibuprofen 38.951 ± 0.558 38.412 ± 1.013 101.400

Paracetamol 25.816 ± 0.280 29.644 ± 0.757 87.085
Caffeine 5.358 ± 2.031 6.072 ± 1.078 88.249

at-line + in-line
Ibuprofen 38.995 ± 0.361 38.412 ± 1.013 101.520

Paracetamol 29.369 ± 0.399 29.644 ± 0.757 99.074
Caffeine 5.315 ± 2.410 6.072 ± 1.078 87.534
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3. Materials and Methods
3.1. Materials

The powder mixtures used for calibration and validation purposes contained: ibupro-
fen (IOL, Barnala, India), paracetamol (Hebei Jiheng, Hengshui, China), caffeine (Siegfried,
Zofingen, Switzerland), microcrystalline cellulose (Sigachi, Hyderabad, India) as a dilu-
ent, sodium starch glycolate (Blanver, Sao Paulo, Brazil) as disintegrant, hydroxypropyl-
methylcellulose (Colorcon, Stoughton, WI, USA) as binder, colloidal silicium dioxide
(RhomPharma Polymers, Darmstadt, Germany) as glidant, magnesium stearate (Union
Derivan, Barcelona, Spain) as lubricant.

3.2. Calibration Set Development

The calibration set composition was constructed using an experimental design based
methodology, with a D-optimal design, resulting in a number of 31 different formu-
lations. The concentration of the three active ingredients was varied in the range of
80-90-100-110-120%, having as center points 34.78% ibuprofen, 28.26% paracetamol and
6.95% caffeine. The amount of diluent was calculated for each formulation to ensure
identical tablet mass. The concentration of all other excipients was not varied. More
information on the calibration set development and composition can be consulted in the
previously published work [22]. The quantitative composition of the formulation could
not be divulged.

3.3. Spectral Acquisition

Diffuse reflectance spectra were recorded with a MicroNIR PAT-U spectrometer (Viavi
Solution, San Jose, CA, USA) in the 950-1650 nm region and a resolution of 6.2 nm. Before
starting the measurements, an external white reference (Spectralon) and a black reference
were scanned and repeated every 15 min. Spectral data was recorded in static conditions
(at-line) under controlled illumination conditions respecting a 3 mm distance from the
probe to the sample.

The reduced size and weight of the instrument simplified the interfacing procedure.
The handheld spectrometer was attached to the filling port of the Y blender through a
3D printed interfacing accessory, thus the recording of spectra was done noninvasively
without interrupting the process (Figure 5). This setup was used for both in-line acquisition
of calibration spectra and real time monitoring of a blending experiment.
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Dynamic spectral acquisition was done with the in-line setup by placing a sample
holder in the region of the interfacing port, to reduce the need for excessive powder material.
For both acquisition modes the same powder blends were used. The distance from the
sample holder to the NIR instrument enabled continuous flowing of the material, thus
ensuring the recording of spectra from different parts with each revolution. Spectral data
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were recorded when the sensor was covered in powder, with the NIR facing a downward
position. For in-line monitoring of the blending experiment the same conditions were
used, one spectrum was recorded at each full rotation. For in-line experiments, a 7 msec
acquisition time and integration of 200 spectra were selected.

For both static and dynamic acquisition modes, a number of 21 spectra were recorded
for each of the 31 calibration set formulations, resulting in a total of 651 spectra.

3.4. Modelling Approaches

For the at-line prediction of powder content uniformity, PLS calibration models were
developed using as input the spectra recorded under static condition and having as output
the API concentration. To enable in-line monitoring of the blending process, three calibra-
tion models were developed by considering for the training: spectral data recorded under
static condition, dynamic condition and their combination.

Spectral pre-processing methods were tested for scattering and baseline shift reduction
purposes. Derivatives were calculated using a quadratic order polynomial having 15 points
in each model and a distance between each point equal to one. Moreover, in order to
compensate for the edge effects, the first and last window size of 7 variables are left out
empty by default.

Before fitting the model, X variables were centered and Y variables were scaled to
unit variance. Model performance was evaluated in terms of the explained variability (R2),
predictive ability (Q2) and the root mean square cross-validation error (RMSECV). The
number of components was selected considering the variation of RMSECV, in order to
avoid over fitting [29,30].

3.5. Reference Method

The reference method used for content uniformity testing was a HPLC method
combined with UV detection (Agilent, Santa Clara, CA, USA). A mobile phase com-
prised of Phosporic acid (0.01N) and Acetonitrile was pumped through a C18 Gemini µm
100 × 3 mm 110 A stationary phase, thermostated at 40 ◦C, using a 1mL/min flow rate.
Analyte detection was carried out at 225 nm for ibuprofen, respectively at 275 nm for
caffeine and paracetamol.

3.6. Validation

The validation protocol was carried out using accuracy profiles, on three concentration
levels, having 18 external prediction set batches prepared and analysed in three different
days. A number of 2 batches (10 samples/batch) were analysed daily for each concentration
level, resulting a total of 180 spectra. Validation results, namely trueness, accuracy, precision
and linearity were calculated and compared to the previous results obtained using a bench-
top instrument [22].

3.7. Blending Experiments

Blending experiments were performed with a lab scale Erweka Y mixer equipment
(Erweka, Langen, Germany). 152 g ibuprofen, 113.20 g paracetamol, 27.80 g caffeine,
67.50 g microcrystalline cellulose, 24 g sodium starch glycolate, 11.50 g Methocel E5LV, 2 g
colloidal silicium dioxide, 2 g magnesium stearate were weighed accurately and transferred
in the same order into the blending recipient. The quantitative composition was changed
compared to the center formulation for a better evaluation of instrument performance. This
combination of concentrations was not found within the calibration samples.

4. Conclusions

The present study demonstrates the feasibility of MicroNIR for the characterization
of complex mixtures with three APIs and five excipients. The at-line NIR method was
validated on the entire calibration range, between 80% and 120%, using ±10% acceptabil-
ity limits.
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Comparing the performance with a previously studied benchtop instrument, a lower
performance was obtained for ibuprofen and paracetamol. The improved results obtained
with the benchtop spectrometer can be attributed to the more representative transmission
spectra and to the improved spectral resolution.

The portable PAT instrument could be efficiently used for real time prediction of all
three active ingredients’ concentrations, offering accurate predictions and good recovery
against the reference method. In the current experimental setup, the homogeneity could be
reached only in terms of ibuprofen and paracetamol, as the lack of an efficient dispersive
contributor to the blending mechanism caused an inhomogeneity in caffeine content.

The implementation of such a monitoring method provides a real time overview of the
blending process, showing its evolution through time, thus allowing an early observation
of potential problems and their analysis, or the establishment of the process’ end point
at the moment when the desired homogeneity has been reached. In this way, the use of
MicroNIR enhances process understanding and control, assuring that the quality of the
medicine gets not only to be tested, but built into the product.

Applying in-line techniques eases process optimization and scale up, demonstrating
that portable spectrometers have the potential to deliver the desired results within the PAT
framework for complex formulations.

In point of fact, the described PAT tool has been used for the pharmaceutical develop-
ment of a drug product, which has already been approved by authorities and is currently
manufactured at industrial scale.
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