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Abstract: The aim of this paper is to conduct an experimental study in order to obtain a roughness
(Ra) prediction model for dry end-milling (with an AlTiCrSiN PVD-coated tool) of the Co–28Cr–6Mo
and Co–20Cr–15W–10Ni biomedical alloys, a model that can contribute to more quickly obtaining
the desired surface quality and shortening the manufacturing process time. An experimental plan
based on the central composite design method was adopted to determine the influence of the
axial depth of cut, feed per tooth and cutting speed process parameters (input variables) on the
Ra surface roughness (response variable) which was recorded after machining for both alloys. To
develop the prediction models, statistical techniques were used first and three prediction equations
were obtained for each alloy, the best results being achieved using response surface methodology.
However, for obtaining a higher accuracy of prediction, ANN models were developed with the
help of an application made in LabView for roughness (Ra) prediction. The primary results of this
research consist of the Co–28Cr–6Mo and Co–20Cr–15W–10Ni prediction models and the developed
application. The modeling results show that the ANN model can predict the surface roughness with
high accuracy for the considered Co–Cr alloys.

Keywords: roughness prediction; biomedical alloys machining; Co–28Cr–6Mo; Co–20Cr–15W–10Ni;
ANN model; AlTiCrSiN PVD coated tool

1. Introduction

The most commonly used materials for manufacturing medical implants are stainless
steels, titanium alloys and CoCrMo alloys [1–4].

Co–Cr based alloys were patented in 1913, being initially used for applications requir-
ing outstanding resilience in high-temperature corrosion (aircraft engines) and the first
alloys of this class were called Stellites [4–6]. Later (1930), other types of Co–Cr alloys
such as CoCrMoMn (Vitallium) and CoCrMoNiFeMn (HS-21 CoCrMoNi or HS-25 CoCrNi)
were developed [1,4,7,8].

The chemical composition of these alloys has undergone changes over time, depending
on the required use characteristics. Consequently, for applications in the medical field the
molybdenum content was maintained to ensure grain refinement, increase the mechanical
strength of the solid solution and corrosion resistance, tungsten was eliminated due to the
carbide forming tendency and the lack of homogeneity of very hard phases, while nickel
was added to improve toughness and corrosion resistance [8].
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Currently, from the six classes of Cobalt alloys standardized in ISO 5832, four are
specific to the orthopedic domain. These alloys are available both as cast and wrought
products. The Co–Cr alloys recommended for use in medical applications can be classified
in the following alloying systems: CoCrMo alloy, CoCrWNi alloy, CoNiCrMo alloy and
CoNiCrMoWFe alloy [9–11].

The use of nickel-free CoCr alloys is recommended for permanent implantable medical
devices, as Ni can affect cell viability and proliferation, examples of which include wrought
Co–20Cr–15W–10Ni and Co–Ni–Cr–Mo–W–Fe [1,12,13]. Cast alloys are characterized by a
rough dendritic structure. In cobalt-based alloys, coarse dendrites have a high Co content,
while interdendritic areas contain some inter-metallic compounds. This microstructural
configuration determines a weaker behavior in subsequent processing, so it is preferable to
apply grain refinement processes, such as hot isostatic pressing [4].

The most common processes used for manufacturing metallic parts are cutting pro-
cesses: turning, milling, grinding, etc. The relative measure that defines how easily a
material can be cut is called machinability [11,14]. Cutting process reliability is one of the
parameters that defines the machinability of a material [14] and it can be characterized by
effective surface quality, chip breaking and cutting tool durability [14,15].

Unlike the expansive knowledge developed on titanium alloys and stainless steel
machinability from extended scientific studies, scientific data on Co–Cr alloys and par-
ticularly CoCrMo alloys requires further research and experimental studies in order to
acquire a complete picture of their machinability behavior [16–19]. When evaluating and
measuring the surface quality of machined parts, surface roughness is an important quality
criterion [20–24].

The surface roughness of machined parts is influenced by numerous factors, such as
material characteristics, cutting data (depth of cut, feed rate, cutting speed), tool geom-
etry, tool wear, cutting fluids, etc. [17,21,24–26]. In the case of medical implants, surface
roughness has a significant effect on functionality and biocompatibility, influencing im-
portant characteristics of the implants as osseointegration, wettability and bacterial adhe-
sion [3,27–32]. The main parameter used to evaluate the surface roughness of a machined
surface is the average roughness (Ra) [21,33]. In medical implants, the Ra value is most
often situated below 2 µm [30,34,35].

Analyzing the research conducted on Co–Cr alloys used in biomedical applications,
primarily focusing on CoCrMo and CoCrWNi alloys, it can be ascertained that most
studies examine alloys’ microstructure, microstructural changes, corrosion resistance and
mechanical properties [36–45]. The primary objects of the current research trend are
implant functionality and biocompatibility, which are determined by the above-listed
characteristics. Despite the existing research focus, the manufacture of medical implants
also plays a determining role in terms of functionality and cost, and the research conducted
in this area for Co–Cr alloys should be further expanded, particularly concerning the
surface roughness that can be obtained by various machining processes, given that surface
roughness is not only a surface quality indicator, but also an important factor for evaluating
the machining performance and the technological operation cost [21].

Several researchers have proposed approaches that evaluate, predict and/or optimize
surface roughness obtained from different machining processes, such as analytical models,
multiple regression functions, fuzzy logic, genetic algorithms and artificial neural networks
(ANN) [15,20,21,24,33,46–56].

A research investigation performed by Zain et al. [33] indicated that using ANN for
Ra prediction gives better results compared to other approaches. For example, while the
statistical analysis techniques usually generate good prediction models, sometimes these
techniques may not present, with high accuracy, the nonlinear relationship between the
cutting parameters and the measurements, while ANN models result in more accurate
predictions of the dependent variable than a conventional model because the prediction
error is smaller for ANNs [21,33,57].
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ANN is a rapid and reliable method broadly used for solving complex problems by
using various algorithm architectures [33,58,59]. Consequently, this modeling approach
can be used as a prediction instrument for determining nonlinear relationships between
input and output results for different manufacturing processes [59].

Considering the fact that the Ra roughness parameter is an important criterion for
evaluating the surface quality of a medical implant, its functionality and biocompatibility,
and the fact that the actual research developed on Co–Cr alloys machinability still present
with unexplored areas, it can be ascertained that the prediction of the surface roughness
resulting from mechanical processing of the Co–Cr alloys as Co–28Cr–6Mo and Co–20Cr–
15W–10Ni is a subject of current interest, particularly due to the fact that these alloys are
constantly used in medicine as well as in other fields, and it is important to study this
subject in order to gain more knowledge of this area.

The aim of this study is to analyze the surface quality, in terms of the resulting
Ra roughness from the dry end-milling of two Co–Cr based alloys for medical devices
(Co–28Cr–6Mo and Co–20Cr–15W–10Ni) using AlTiCrSiN PVD coated tools. For this
purpose, an ANN application developed in LabView was used to predict the roughness
values. The input parameters considered for the experiment and the Ra prediction were
axial depth of cut ap (mm), feed per tooth fz (mm/tooth) and cutting speed vc (m/min).
The importance and novelty of this study results from the need to establish processing
parameter values that permit the faster achievement of a desired surface quality for medical
devices manufactured from Co–Cr alloys and, implicitly, to allow for the shortening of the
manufacturing process time.

2. Materials and Methods

The materials that are the subject of this research study are two Co–Cr based alloys
used in medical applications: a CoCrMo alloy (Co–28Cr–6Mo) with a high content of
Chromium used in the medical practice for manufacturing implants for dentistry and
orthopedic applications, and a CoCrWNi (Co–20Cr–15W–10Ni) alloy used in the medical
practice for manufacturing joint replacements, as hip and knee implants [1,10,16].

The main steps considered for the research program are the following: materials
characterization (see Section 2.2), defining the cutting regime parameters, preparation of
the material samples for cutting tests, sample processing (dry end-milling), roughness
measurement (Ra parameter), data registration, data processing and discussion.

The material samples were provided as round bars, with a diameter of 8 mm for
the CoCrMo alloy, and a diameter of a 6.5 mm for the CoCrWNi alloy. These samples
were cut in order to be used for material characterization analysis and to perform the end-
milling tests. Sample preparation and materials characterization were performed in the
laboratories of University Politehnica of Bucharest, and the cutting tests were performed at
the Romanian Research and Development Institute for Gas Turbines—COMOTI.

2.1. Materials Characterization

As hardness and microstructure have major influences on material machinability,
first a characterization of the Co–Cr-based alloys was performed, including chemical
composition analysis, metallographic structure analysis, and hardness measurements in
different areas. The chemical composition is presented in Table 1.

Table 1. Chemical composition of the CoCrMo and CoCrWNi alloys.

Material
Chemical Elements (%)

Cr Mo Ni Fe C Si Mn W P S Co

Co–28Cr–6Mo 27.8 5.65 2.08 0.39 0.27 0.69 0.75 0.14 0.02 0.01 Bal.

Co–20Cr–15W–10Ni 19.68 - 10.13 2.11 0.09 0.72 1.04 15.1 0.015 0.022 Bal.

Bal.: Balanced element.
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To highlight the metallographic aspects of the CoCrMo and CoCrWNi alloys, samples
were cut using the precision cutting machine IsoMet 4000 under a coolant jet. The samples
were then hot embedded (195 ◦C) in phenolic resin, after which they were subjected to
grinding and polishing operations using a series of abrasive discs with different granula-
tions (320 to 1000 grit) and fine abrasive powders (alumina alpha 6 to 0.1 µm diameter).
The electrochemical attack was carried out in a solution of 2–10 g CrO3 in 100 mL of
water at 3 volts for 10 s. Microstructure examination was performed with an Olympus
GX51 microscope (Hamburg, 20034, Germany) equipped with AnalySIS image processing
software (Munster, Germany, 2007, build 1274).

Images of the Co–Cr alloy effective microstructures are presented in Figure 1 for the
CoCrMo alloy and Figure 2 for the CoCrWNi alloy.
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An analysis of the obtained microstructure images shows the following: for the
CoCrMo alloy a fine columnar dendritic microstructure with Co-rich, Cr-rich and Mo-
rich interdendritical phases can be identified (see Figure 1a). The CoCrWNi alloy shows
a columnar dendritic microstructure with W, Co-rich, Cr-rich and Cr-Ni inter-dendritic
precipitates (see Figure 2a). The detail of the central area of the CoCrWNi sample highlights
large Co-rich dendrites (5–10 µm), while the CoCrMo sample core center detail highlights
grain refining compared to CoCrWNi alloys, and a high tendency to accumulate secondary
phases in interdendritic areas (see Figures 1b and 2b).

The materials’ microhardness effective values were determined using the Vickers HV
0.5 method. Five hardness measurements were performed, in a straight line, using the
microhardness tester Shimadzu HMV 2TE (Shimadzu Europa, Duisburg, 47269, Germany)
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from the LAMET laboratory of University Politehnica of Bucharest. The microhardness
variation intervals and their mean values are shown in Table 2.

Table 2. CoCrMo alloy and CoCrWNi alloy microhardness effective values.

Material Hardness Type Microhardness Measurements Mean Value

Co–28Cr–6Mo
HV 0.5 431 475 467 456 450 456
HRC 43.7 47.3 46.6 45.8 45.3 45.7

Co–20Cr–15W–10Ni
HV 0.5 370 366 345 351 345 355
HRC 37.7 37.3 35 35.6 35 36.1

2.2. Cutting Experiment Setup
2.2.1. Milling Equipment Description and Experimental Conditions

The cutting experiment was performed at the National Research and Development In-
stitute for Gas Turbines—COMOTI, within the NC Programming and Technology Research
Department. The machine tool considered for performing the milling tests was a DAH LIH
MCV-1250B vertical machining center with a 3 NC axis system (Taichung 413, Taiwan). The
main specifications/working capabilities of the machine-tool are: longitudinal travel (X):
1250 mm, cross travel (Y): 650 mm, headstock travel (Z): 700 mm, maximum spindle speed:
8000 rpm, maximum cutting feed: 10,000 mm/min, minimum input increment: 0.001 mm
and spindle drive power: 7.5 kW. The cutting tool is a Ø6 endmill cutter PVD coated with
AlTiCrSiN layers provided by ISCAR (Figure 3), with 4 flutes, different helixes (values of
36◦ and 40◦) and variable pitch for chatter dampening.
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The cutting tool was fixed in the machining center’s BT 40 tool holder. The system
used for holding the cutting samples consisted of a Ø144 mm 4-jaw chuck used for directly
holding the cutting samples, which was secured on a Ø450 mm 4-jaw chuck fixed with
clamps on the machining center table. All the elements presented in this section compose
the milling technological system used for the experimental phase. The main components
of this system are shown in Figure 4.

2.2.2. Cutting Parameters and Experimental Plan

The cutting regime variables considered for the end-milling experiment were estab-
lished, taking into account the analyzed Co–Cr based alloy properties, the cutting tool
manufacturer recommendations and the capabilities of the machining center. The cutting
parameters (independent variables) considered for the milling experiments were the axial
depth of cut ap (mm), the feed per tooth fz (mm/tooth) and the cutting speed vc (m/min).
The radial depth of cut ae (mm) was kept constant, ae = 6 mm (the milling tool diame-
ter). For each parameter, three levels were considered, as shown in Table 3. The defined
experimental plan consisted of 15 experimental trials, and is presented in Table 4. This
experimental plan was developed using the central composite design (CCD) method and
the face centered composite design type (CCF) where α = ±1; a method that involves
fewer experimental trials than the factorial experiment with good accuracy. In our case, the
first 8 experimental trials proposed represent the factorial portion of the design, and the
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9–14 experimental trials represent the axial points, while the last trial represents the central
point. Experimental trial 15 was repeated 3 times.
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Table 3. Cutting process parameters (variables) and their considered levels.

Cutting Parameter Symbols
Levels

−1 0 +1

Axial depth of cut (mm) ap 0.25 0.45 0.75
Feed per tooth (mm/tooth) fz 0.02 0.032 0.05

Cutting speed (m/min) vc 20 24.5 30

Table 4. Experimental plan.

Experiment No.
Process Variables Values

Axial Depth of Cut,
ap (mm)

Feed per Tooth, fz
(mm/tooth)

Cutting Speed, vc
(m/min)

1 0.25 0.02 20
2 0.75 0.02 30
3 0.25 0.02 30
4 0.75 0.02 20
5 0.25 0.05 30
6 0.75 0.05 20
7 0.25 0.05 20
8 0.75 0.05 30
9 0.25 0.032 24.5
10 0.75 0.032 24.5
11 0.45 0.02 24.5
12 0.45 0.05 24.5
13 0.45 0.032 20
14 0.45 0.032 30
15 0.45 0.032 24.5

2.2.3. Samples Preparation

The samples used for the milling tests were prepared in the Cutting Technologies
Laboratory of UPB. Taking into account the number of experiments that composed the
defined experimental plan, a set of 15 samples was prepared for each analyzed material.
The material samples were cut (part off) from rods with the diameters mentioned in the
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introduction of this section, with the samples’ frontal surfaces being further subjected to
the end-milling process. The length of each sample was chosen to be 30 mm (Figure 5).
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2.2.4. Roughness Measurement Equipment and Procedure

The equipment considered for surface roughness measurement was the Insize ISR-
C002 portable roughness tester with an inductive diamond tip capable of performing
measurements within a range of 160 µm and an Ra resolution of 0.001 µm. The settings
considered for the measurements are in accordance with ISO 4288 for Ra values between
0.1 µm and 2 µm, as follows: cut-off value λc = 0.8 mm, number of cut-offs = 5, evaluation
length lt = 4 mm. The surface roughness measurements were carried out across the cutting
tool feed direction on three areas of each sample, and the average of these values was
considered as the Ra surface value.

3. Results and Discussion

This section provides a presentation of the obtained results in terms of Ra roughness
parameter values of the machined samples, their processing and interpretation.

3.1. Results Presentation

The average Ra parameter values obtained after the measurements performed on
the machined samples for all experimental trials and the measurement uncertainty are
presented in Table 5.

Table 5. Ra average values for the Co–Cr alloys analyzed.

Experiment No.
Process Variables Values Ra Average Values ± u 1 (µm)

ap (mm) fz
(mm/tooth)

vc
(m/min)

Co-20Cr-15W-
10Ni Co-28Cr-6Mo

1 0.25 0.02 20 0.595 ± 0.003 0.654 ± 0.026
2 0.75 0.02 30 0.586 ± 0.004 0.533 ± 0.016
3 0.25 0.02 30 0.548 ± 0.004 0.496 ± 0.032
4 0.75 0.02 20 0.652 ± 0.004 0.503 ± 0.034
5 0.25 0.05 30 1.471 ± 0.025 1.331 ± 0.006
6 0.75 0.05 20 0.702 ± 0.015 1.570 ± 0.017
7 0.25 0.05 20 1.354 ± 0.014 1.381 ± 0.041
8 0.75 0.05 30 1.130 ± 0.014 0.896 ± 0.087
9 0.25 0.032 24.5 0.636 ± 0.016 0.673 ± 0.024
10 0.75 0.032 24.5 0.829 ± 0.024 0.910 ± 0.008
11 0.45 0.02 24.5 0.623 ± 0.005 0.617 ± 0.009
12 0.45 0.05 24.5 1.066 ± 0.006 0.897 ± 0.025
13 0.45 0.032 20 0.684 ± 0.011 0.747 ± 0.042
14 0.45 0.032 30 0.692 ± 0.003 0.705 ± 0.018
15 0.45 0.032 24.5 0.672 ± 0.039 0.728 ± 0.034

1 u = expanded measurement uncertainty.
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The performed measurements revealed that the Ra values belong to the following
intervals: Ra ∈ [0.581, 1.463] µm for Co–20Cr–15W–10Ni, where the minimum value was
registered for experiment 3 and the maximum value was registered for experiment 5; and
Ra ∈ [0.491, 1.589] µm for Co–28Cr–6Mo, where the minimum value was registered for
experiment 3 and the maximum value was registered for experiment 6. While looking at
the Ra average values (Table 5), it can be seen that the minimum and maximum values
belonged to the same experiments and the average values belong to the following intervals:
Ra ∈ [0.586, 1.375] µm for Co–20Cr–15W–10Ni and Ra ∈ [0.496, 1.570] µm for Co–28Cr–
6Mo. In general, the Ra values achieved for the Co-28Cr-6Mo alloy were higher than the
ones achieved for Co–20Cr–15W–10Ni alloy, and this phenomenon is explained by the fact
that the first sample had a higher effective hardness which made the material more difficult
to cut.

For Co–20Cr–15W–10Ni, the lower average Ra roughness of 0.548 µm was achieved for
ap = 0.25 mm, fz = 0.02 mm/tooth and vc = 30 m/min and the higher average Ra roughness
of 1.471 µm was achieved for ap = 0.25 mm, fz = 0.05 mm/tooth and vc = 30 m/min, a
fact that shows the high influence exerted by the feed per tooth cutting parameter on the
surface quality that can be achieved. Small values of Ra roughness were also obtained for
experimental trial numbers 1 (0.595 µm) and 2 (0.586 µm). If for trial2, the value obtained
was explained by the lower value of fz and the upper value of vc, for experimental trial 1,
the low value at low cutting speed can be explained by the built-up edge formed on the
cutting tool and the small ap value.

For Co-28Cr-6Mo, the lower average Ra roughness of 0.496 µm was achieved for
ap = 0.25 mm, fz = 0.02 mm/tooth and vc = 30 m/min; and the higher average Ra roughness
of 1.570 µm was achieved for ap = 0.75 mm, fz = 0.05 mm/tooth and vc = 20 m/min. In this
last case, the results were as expected, and it is known from the scientific literature that
when ap and fz have high values and vc has a small value, the value of the roughness should
be high [12,26]. Small values of the Ra roughness were also obtained for experimental
trials 2 (0.533 µm) and 4 (0.503 µm). If for trial 2 the value obtained was explained by the
lower value of fz and the upper value of vc (same case as above), for experimental trial 4,
the low value at low cutting speed can be explained by the built-up edge formed on the
cutting tool.

The variation of the Ra roughness in relation with the milling process variables
considered for the experimental research: axial depth of cut, ap; feed rate per tooth, fz; and
cutting speed, vc; when two of these parameters are kept constant, is shown in Figure 6.

Analyzing the variation graphs presented in Figure 6, it can be ascertained that,
in terms of constant values for the other process variables taken into account for the
experiments, the highest influence on the Ra surface parameter was given by feed per tooth
and the lowest influence was given by the cutting speed.

From the interdependence graphs between the Ra roughness parameter and the depth
of cut (Figure 6a), when the other two parameters are constant, it can be observed that when
the depth of cut increases by 80%, the Ra parameter increases by 8.17% for Co–28Cr–6Mo
and by 5.66% for Co–20Cr–15W–10Ni, and when the depth of cut increases by 200%, the Ra
parameter increases by 35.22% for Co–28Cr–6Mo and by 30.35% for Co–20Cr–15W–10Ni.
Theoretically, this variation of the roughness values is as expected, because at a low depth
of cut the roughness should have a small value, and at a high depth of cut, the roughness
should have a high value; and the same dependence is expected for the feed per tooth
variation [24–26].

From the interdependence graphs between the Ra roughness parameter and the feed
per tooth (Figure 6b), when the other two parameters are constant, it can be observed
that when the feed per tooth increases by 60%, the Ra parameter increases by 17.99% for
Co-28Cr–6Mo and by 7.87% for Co–20Cr–15W–10Ni, and when feed per tooth increases
by 150%, the Ra parameter increases by 45.38% for Co–28Cr–6Mo and by 71.10% for Co–
20Cr–15W–10Ni. It can be seen that, even if the evolution of the roughness is as expected,
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its value increases by a higher percent in the second interval for the Co–20Cr–15W–10Ni, a
fact that can be explained by tool wear.
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Figure 6. Variation of Ra roughness in relation to the milling process variables: (a) variation of surface roughness, Ra,
in relation to the axial depth of cut, ap; (b) variation of surface roughness, Ra, in relation to the feed rate per tooth, fz;
(c) variation of surface roughness, Ra, in relation to the cutting speed, vc.

From the interdependence graphs between the Ra roughness parameter and the
cutting speed (Figure 6c), when the other two parameters are constant, it can be observed
that when the cutting speed increases by 22.5%, the Ra parameter decreases by 2.54% for
Co–28Cr–6Mo and by 1.75% for Co–20Cr–15W–10Ni and when the cutting speed increases
by 50%, the Ra parameter decreases by 5.62% for Co–28Cr–6Mo and increases by 1.17%
for Co–20Cr–15W–10Ni. As presented above, a high cutting speed should result in a low
roughness and a low cutting speed should result in a high roughness of the machined
surface; the fact that for Co–20Cr–15W–10Ni a higher roughness value is obtained for
vc = 30 m/min than for vc = 20 m/min can be explained by the built-up edge formed on
the cutting tool or by tool wear.

3.2. Prediction Model Development

Generally, roughness prediction for milling process can be done using several methods.
In our research, taking into account that prediction of the Ra should be made based on
3 independent variables: axial depth of cut—ap (mm), feed per tooth—fz (mm/tooth)
and cutting speed—vc (m/min), statistical techniques were applied first to achieve Ra
prediction models.

Equations (1)–(6) present the Ra roughness prediction models obtained by apply-
ing multiple linear regression (MLR), response-surface regression (RSR) and nonlinear
regression(NR) for the Co-28Cr-6Mo and Co-20Cr-15W-10Ni alloys, respectively.
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Ra_CoCrMo = 0.524344535971431 − 0.0136101606385584∗ap
+ 22.1355978517912∗fz − 0.0172205349781354∗vc

(1)

Ra_CoCrWNi = 0.0789015828122097 − 0.257581853702271∗ap
+ 18.6487680467611∗fz + 0.00916261206257762∗vc

(2)

Ra_CoCrMo = 0.8005121 − 0.5931409∗ap + 44.54829∗fz − 0.06556462∗vc
+ 1.855399∗ap

2 + 40.42375∗fz
2 + 0.002083401∗vc

2 − 3.427583∗ap∗fz
− 0.04793371∗ ap∗vc − 0.9592412∗fz∗vc

(3)

Ra_CoCrWNi = 1.377755 − 0.5671411∗ap − 23.55592∗fz − 0.0365608∗vc
+ 0.8959987∗ap

2 + 454.1539∗fz
2 − 0.0001372941∗vc

2 − 37.3593∗ap∗fz
+ 0.02708041∗ ap∗vc + 1.132445∗fz∗vc

(4)

Ra_CoCrMo = 127.086071087871 ∗ ap
−0.0283522477878498 ∗ fz

0.912892216393497 ∗ vc
−0.611403498322333 (5)

Ra_CoCrWNi = 3.61413779230374 ∗ ap
−0.228933901981133 ∗ fz

0.827767771694901 ∗ vc
0.34954784648001 (6)

The performance of the prediction models in this paper was examined based on their
coefficient of determination (R2 value) between the output (predicted) values and the target
(experimental) values for each alloy. The value of the coefficient of determination (R2) is a
statistical measurement of how the regression model matches with the real data points. For
a perfect match fit of data, the regression model should have a coefficient of determination
of 1. The R2 values obtained for the presented models are shown in Tables 6 and 7.

Table 6. Comparison of coefficient of determination with different regression models for Co–28Cr–
6Mo alloy.

Model (Equation) Type of Regression Coefficient of Determination R2

Equation (1) Multiple linear regression 0.7650
Equation (3) Response-surface regression 0.8561
Equation (5) Nonlinear regression 0.793799

Table 7. Comparison of coefficient of determination with different regression models for Co–20Cr–
15W–10Ni alloy.

Model (Equation) Type of Regression Coefficient of Determination R2

Equation (2) Multiple linear regression 0.7026
Equation (4) Response-surface regression 0.93394
Equation (6) Nonlinear regression 0.770015

Based on results from Table 6 for Co–28Cr–6Mo, the best result was achieved for the
model obtained by response-surface regression analysis (R2 = 0.8561), and the weakest
result by multiple linear regression (R2 = 0.7650). Similar results were obtained for the
Co-20Cr–15W-10Ni alloy where the best and weakest results were achieved for the same
models (R2 = 0.93394 for RSR and R2 = 0.7026 for MLR). However, even if the achieved R2

values for RSR models indicate that they can characterize the process, being close enough
to the desired value of 1, especially for Co–20Cr–15W–10Ni, a prediction model that can
better characterize the relationship between variables is desirable.

In this context, other prediction models were investigated, and it was determined that
the model based on an artificial neural network (ANN) can produce better prediction results
in case of nonlinear relationships between the dependent and independent variables.

The development process of the proposed ANN model and its results for the two
analyzed Co–Cr alloys will be further presented.
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3.2.1. Artificial Neural Network (ANN)

An artificial neural network (ANN) is a computational system that uses a network
of functions (nodes) to process data input into a desired output. It was inspired by the
biological nervous system; therefore, the network is composed of interconnected elements
(nodes) called artificial neurons [21,59,60]. The ANN computational system consists of
three layers: the input layer, which contains input neurons that represent input data; the
hidden layer, which contains a specific number of hidden neurons; and the output layer,
which consists of the output data (the number of neurons is equal to the number of desired
outputs). In Figure 7a, the input layer contains 3 neurons: I1, I2, I3, the hidden layer
contains 5 neurons: H1:1, H1:2, H1:3, H1:4, H1:5 and the output layer contain 2 neurons: O1
and O2. A general mathematical representation of an individual neuron within an ANN is
represented in Figure 7b. The input vector (x1,x2, . . . xi) is transferred using a connection
that multiplies its strength by weights (wi). The output is obtained using a summation
function with a specific bias (b) and an activation function. This study used a feedforward
neural network with a sigmoidal unipolar activation function [61].
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cial neuron.

The teaching algorithm chosen for the ANN study was resilient propagation (RProp)
due to its universality and because it adapts the step size dynamically for each weight
independently [62].

3.2.2. ANN Application Software for Prediction of Surface Roughness

The present ANN study attempted to predict the surface roughness Ra (µm) for the
dry milling process for two alloys (Co–20Cr–15W–10Ni and Co–28Cr–6Mo) based on three
process parameters (independent variables): axial depth of cut, ap (mm), feed per tooth, fz
(mm/tooth), and cutting speed, vc (m/min).

An ANN application was developed in LabVIEW, a system engineering software that
allows use of a graphical programming approach for developing data analysis algorithms
and custom engineering user interface design. A specific addon toolkit was also used: NI
Super Simple Neural Network, which is based on a feedforward neural network with a
sigmoidal unipolar activation function and uses the RProp teaching algorithm [63].

Drawing upon the experimental data sets of the analyzed Co–Cr alloys, an algorithm
based on specific Sub-VIs for preparing the data for the ANN training process was de-
veloped, generating customized teaching and validation data files. The use of different
data sets for teaching, validation, and testing was considered optimal and implemented.
A partial diagram of the code to create, save, teach, test and save an ANN developed in
LabView is presented in Figure 8.
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Figure 8. Partial diagram of application software to create, save, teach, test and save an ANN.

Because the experimental data sets contain three Ra measurements taken in different
areas for each trial, the ANN data set was prepared accordingly to prevent retraining.

Based on experimental data sets the ANN was trained by using a different training
data set after normalizing the data. Figure 9 shows how different data files were generated
using dedicated sub-VIs to produce the teaching and validation data files.
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Figure 9. Partial diagram of application software for preparing the teaching and validation data files
of an ANN.

For the test data, another set of data was used, which was different from the teaching
and validation data files.

A specific searching algorithm for generating and training different ANN architectures
with two hidden layers was designed. For each alloy, based on its experimental data set,
the algorithm generated architectures with a different number of neurons for each hidden
layer, with the number of neurons varying between 3 and 90.

For each ANN configuration, an architecture with a set of neurons for each hidden
layer was generated and trained using the specific sub-VI RProp teaching algorithm. Each
time when, in the training process, an ANN solution was found (the ANN error trend out
became less than the error goal) then the resulting ANN was saved, and its prediction
was tested with another experimental data set. The max error (%) and coefficient of
determination R2 were calculated. In all cases when a solution was found, the ANN
architecture was automatically saved.

The searching algorithm was executed for each data set for Co–20Cr–15W–10Ni and
Co–28Cr–6Mo using different ANN training setting parameters which were varied between
the following ranges:
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• Max epocs: 8000–20,000;
• Error goal: 0.2–0.1;
• Max time (s): 15–40 s;
• Error evaluation: over both sets; and
• Vectors per iteration: 200–400.

Figure 10 presents the plot of the training ANN process together with other rele-
vant parameters: ANN training settings: error goal, max time, training error evaluation,
vectors per iteration. The training process is validated or invalidated by the algorithm,
which is indicated by the green LED which displays “Solution was found” and indicates
the last value of “Error trend out” of the teaching process. If the process ends with “So-
lution found,” then the corresponding ANN data files are saved (Example Figure 10a:
RaNN_CoCrMo_51 16Error0.3.nnet, Ra_CoCrMo_TestTeachingFile51 16Error0.bin and
Ra_CoCrMo_TestValidationFile51 16Error0.bin).
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3.2.3. ANN Analysis and Prediction

Based on the search algorithm, after an ANN was found and saved, the performance of
prediction was tested with another set of experimental data. In Figure 11 examples with the
resulting ANN architectures which were found suitable for our two alloys are displayed.
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3.2.3. ANN Analysis and Prediction 
Based on the search algorithm, after an ANN was found and saved, the performance 

of prediction was tested with another set of experimental data. In Figure 11 examples with 
the resulting ANN architectures which were found suitable for our two alloys are dis-
played. 
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Figure 11. ANN architectures: (a) ANN 3:51:16:1 for Co-28Cr-6Mo; (b) ANN 3:50:21:1 for Co–20Cr–15W–10Ni. Figure 11. ANN architectures: (a) ANN 3:51:16:1 for Co-28Cr-6Mo; (b) ANN 3:50:21:1 for Co–20Cr–15W–10Ni.
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For the Co-28Cr-6Mo alloy, Figure 12 indicates the two plots of the Ra: one is for the
experimental data set, and the other is the data set with the prediction which resulted from
the ANN (ex: ANN 3:51:16:1 is the set of prediction results for an ANN with 3 inputs,
51 neurons on the 1st hidden layer and 16 neurons on the 2nd hidden layer). The coefficient
of determination R2 and the maximum error (%) of the predicted ANN data set compared
with the experimental set is also indicated. In the lower part of the plot, the input data sets
are presented. Figure 13 shows the plots of the Ra with the experimental data and with the
predictions that resulted from the ANN 3:50:21:1 for Co–20Cr–15W–10Ni.
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Figure 13. Ra comparison between experimental data and ANN predictions with architecture 3:50:21:1 for Co–20Cr–
15W–10Ni.

Figures 14a and 15a display the performance of the ANN, where the prediction error
of Ra is presented for each data set. Figures 14b and 15b indicate the coefficients of
determination R2 and the correlation between the predicted values and entire data set.
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The present study succeeded in identifying and analyzing several ANN architectures
which can adhere to the initial goal of a less than 5% prediction error and a coefficient
of determination R2 greater than 0.9996. Figure 16a shows 5 ANN architectures which
were in line with these requirements for the Co–28Cr–6Mo alloy. Figure 16b shows 9 ANN
architectures which were in line with these requirements for the alloy Co-20Cr-15W-10Ni.

It can be confirmed that there are no general rules for defining the number of hidden
layers for all ANN architectures and this can be determined only by employing a trial-and-
error method [64]. The important factor is the number of nodes for each layer, and it was
proven that the search algorithm developed in the present research succeeded in identifying
different ANN architectures with different node distributions for each hidden layer. For the
Co–28Cr–6Mo alloy, ANN 3-51-16-1 had the best coefficient of determination R2 = 0.999991
while having an architecture with 3 inputs (ap, fz, vc), 51 neurons on the 1st hidden layer,
16 neurons on the 2nd hidden layer, and one output Ra. For the Co–20Cr–15W–10Ni alloy,
ANN 3-61-50-1 has the best coefficient of determination R2 = 0.999671, with an architecture
with 3 inputs (ap, fz, vc), 61 neurons on the 1st hidden layer, 50 neurons on the 2nd hidden
layer, and one output Ra.
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For a better understanding of the roughness prediction behavior during milling
process of the selected ANNs architectures, another analysis was conducted where some
input datasets were extended.

Figure 17 displays the prediction results for five ANNs found for the milling process
of the Co–28Cr–6Mo alloy which were in line with performance prediction requirements
for the initial range of input data sets. In this case, the input data set was extended from 15
to 36 with additional data corresponding to the following extending limits:

• ap (mm): maximum limit was extended from 0.75 mm to 1 mm;
• fz (mm/tooth): maximum limit was extended from 0.05 to 0.08;
• vc (m/min): maximum limit was not extended.
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Figure 17. Prediction of Ra with 5 ANNs for Co–28Cr–6Mo with a data set of 36 inputs.

Figure 18 displays the prediction results with the same 36 input data set for nine
ANNs found for the milling process of the alloy Co-20Cr-15W-10Ni.
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The results indicate that for Co–28Cr–6Mo alloy, starting with the data set 23, the
Ra exceeded 2 µm. This occurs when ap exceeds 0.75 mm, fz is 0.07 mm/tooth and
0.08 mm/tooth, and vc is 20, 24.5 or 30 m/min. A first interpretation is that an Ra of less
than 2 µm is difficult to obtain from milling with an ap higher than 0.75 mm.

The ANN prediction behavior starting with data set 29 became uncertain and varied
from one ANN architecture to another. Consequently, this opened another research di-
rection towards performing more experimental trials where milling process parameters
should fall within the following extended ranges: ap (0.75 to 1) mm, fz 0.07 mm/tooth and
0.08 mm/tooth, and vc 20, 24.5, or 30 m/min.

For the Co–20Cr–15W–10Ni alloy, the Ra seems to exceed 2 µm starting with data set 29
for 2 of ANNs. Additionally, it can be observed that the ANN prediction behavior starting
with data set 29 became uncertain and varied. We may conclude that when we increase the
ap over 0.75 mm, either the Ra may exceed 2 µm or the prediction is not accurate.

The ANN application software designed for this study is based on an architecture
based on sub-Vis which can be extended and integrated in larger subsystems to cover
predictive and adaptive roles in the design process of future products made from materials
such as these alloys.

Another direction of software development is to build ANN models based on more
relevant input process parameters (independent variables) such as displacement of tool
vibration, tool wear, etc. Increasing the number of variables as an input to an ANN may
increase the accuracy of the predicted answers.

4. Conclusions

Ra roughness is an important parameter in the evaluation of the quality of a machined
surface. Consequently, developing prediction models for this parameter is important
for improving the performance of the machining operation, product functionality and
optimizing costs. Even if end-milling is not always the last operation performed in order
to obtain the final characteristics prescribed for a certain surface, especially in regard to
medical implants, obtaining small roughness values during this process will reduce the
cost and increase the performance of the finishing operations.

In the present study, ANN models were used to predict the surface roughness for
the dry end-milling of the biomedical alloys Co–20Cr–15W–10Ni and Co–28Cr–6Mo. The
models used three input process parameters (independent variables): axial depth of cut, ap
(mm); feed per tooth fz (mm/tooth); and cutting speed vc (m/min), which were initially
measured in an experimental design. An ANN application for surface roughness prediction
was developed based on the obtained data.
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The relevant conclusions associated with the research presented in this paper are
as follows:

• The obtained experimental data shows that the Ra values that can be obtained by
dry end-milling with an AlTiCrSiN PVD coated tool for Co–28Cr–6Mo and Co–20Cr–
15W–10Ni alloys used in biomedical applications are under 2 µm. Consequently, the
finishing operation necessary to obtain the final surface quality will have a smaller cost
generated by a shorter processing time and, implicitly, a lower usage of the finishing
cutting tool.

• When maintaining two of the considered process variables at a constant value, it can
be observed that the Ra values obtained for machining Co–20Cr–15W–10Ni were
predominantly smaller than those obtained for Co–28Cr–6Mo.

• The results obtained via regression analysis models for both alloys indicated less
accurate prediction of Ra compared with the ANN models.

• The comparison of the measured results to the results originating from the numeri-
cal simulation indicated that the ANN model allows for the accurate estimation of
the roughness value of the surface processed by milling, consequently becoming a
valuable tool for technical applications. The generation of several ANN architec-
tures with high prediction performance may lead to further studies and research
efforts, which may include other process parameters and may help in establishing
a correlation between machining processes and the processing requirements of the
medical implants.

• Developing customized software for the prediction of Ra based on ANNs could be a
development path to investigate for a future generation of applications which could
assist the design process of implants for medical applications. Increasing the number
of relevant input process parameters to the ANN may increase the accuracy of the
predicted answer for Ra.

• To obtain an Ra value of less than 2 µm for the Co–20Cr–15W–10Ni or Co–28Cr–6Mo
alloys, the study showed that the axial depth of cut ap should not exceed 0.75 mm, the
feed per tooth fz should be 0.07 mm/tooth and 0.08 mm/tooth and the vc should be
20, 24.5, or 30 m/min.

• The presented results are in line with the concept of vertical integration, applying
Industry 4.0 concepts and principles and may lead to new directions for developing
useful ANN submodule tools which can assist the concept designing process of future
medical implants based on biomedical alloys.
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