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Abstract

Obsessive–compulsive disorder (OCD) displays alterations in regional brain activ-

ity represented by the amplitude of low-frequency fluctuation (ALFF), but the

time-varying characteristics of this local neural activity remain to be clarified. We

aimed to investigate the dynamic changes of intrinsic brain activity in a relatively

large sample of drug-naïve OCD patients using univariate and multivariate ana-

lyses. We applied a sliding-window approach to calculate the dynamic ALFF

(dALFF) and compared the difference between 73 OCD patients and age- and

sex-matched healthy controls (HCs). We also utilized multivariate pattern analysis

to determine whether dALFF could differentiate OCD patients from HCs at the

individual level. Compared with HCs, OCD patients exhibited increased dALFF

mainly within regions of the cortical–striatal–thalamic–cortical (CSTC) circuit,

including the bilateral dorsal anterior cingulate cortex, medial prefrontal cortex

and striatum, and right dorsolateral prefrontal cortex (dlPFC). Decreased dALFF

was identified in the bilateral inferior parietal lobule (IPL), posterior cingulate cor-

tex, insula, fusiform gyrus, and cerebellum. Moreover, we found negative correla-

tions between illness duration and dALFF values in the right IPL and between

dALFF values in the left cerebellum and Hamilton Depression Scale scores.

Furthermore, dALFF can distinguish OCD patients from HCs with the most dis-

criminative regions located in the IPL, dlPFC, middle occipital gyrus, and cuneus.

Taken together, in the current study, we demonstrated a characteristic pattern of

higher variability of regional brain activity within the CSTC circuits and lower

variability in regions outside the CSTC circuits in drug-naïve OCD patients.
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1 | INTRODUCTION

Obsessive–compulsive disorder (OCD) is a disabling psychiatric disor-

der with an approximate lifetime prevalence of 2–3%. Patients with

OCD are characterized by recurrent unwanted thoughts, images, or

impulses (obsessions) and repetitive behaviors (compulsions) (Stein

et al., 2019), which are associated with substantial global disability.

Although multiple advances have been made in the exploration of

neural deficits related to OCD, the precise underlying neural mecha-

nisms of OCD remain unclear.

One neuropathology hypothesis of OCD is that it is caused by

the disruption of large-scale functional brain networks, particularly

three networks (the frontoparietal network, default mode network,

and salience network), which together are called the triple network

model and underlie the pathophysiology of OCD (Gürsel, Avram, Sorg,

Brandl, & Koch, 2018). Nevertheless, dysfunction of other networks,

such as the visual and cerebellar networks, has also been discovered

(Reggente et al., 2018; Xu et al., 2019). More recently, the temporal

dynamic properties of functional network connectivity in the resting

state have gained increased attention because a more thorough

understanding of the brain's function can be obtained through its

analysis (Liao et al., 2019). The aberrant dynamic functional network

connectivity patterns emerging from this analysis have been identified

as important features of many psychiatric disorders, such as schizo-

phrenia (Wang, Zhang, Sun, Hu, & Chen, 2016), major depressive dis-

order (MDD) (Qiu et al., 2018) and OCD (Gürsel et al., 2020; Liu

et al., 2020).

The brain functional network is usually described as the func-

tional connectivity between regions and the activity strength of the

local brain region, particularly the hub regions (Hou et al., 2014). A

previous study demonstrated that local neural activity itself fluctuates

substantially and is correlated with dynamic functional network con-

nectivity (Fu et al., 2018). Therefore, focusing only on the time-

varying patterns of functional connectivity is insufficient, and the

investigation of dynamic changes in regional brain activity holds prom-

ise to provide information about regional alterations within a network

and can help researchers understand the neuropathological mecha-

nism of mental diseases (Fan et al., 2017).

The amplitude of low-frequency fluctuation (ALFF) has been

proven to be an effective and reliable parameter for evaluating local

intrinsic brain activity (Zang et al., 2007), which is closely associated

with mental state and cognitive processes (Raichle & Snyder, 2007).

ALFF represents a potential relationship to the brain's glucose metab-

olism (Aiello et al., 2015) and morphology (Liao et al., 2016).

Alterations in ALFF in cerebral regions that comprise the cortical–

striatal–thalamic–cortical (CSTC) circuits and other regions, such as

the parietal gyrus, middle occipital gyrus (MOG), middle temporal gyrus

(MTG), and cerebellum, have also been implicated in OCD patients

(Fan et al., 2017; Hou et al., 2012). Although these altered spontaneous

neuronal activities improve our understanding of the pathophysiologic

characteristics of OCD, the aforementioned ALFF measures are static

throughout the entire scan, ignoring the characteristics of dynamic

changes of intrinsic brain activity over time in patients with OCD.

In our previous study, we demonstrated alterations in static ALFF

among patients with drug-naïve OCD and found that ALFF had the

best performance in discriminating OCD from healthy controls (HCs)

among four resting-state functional magnetic resonance imaging (rs-

fMRI) parameters (Bu et al., 2019). Thus, in the current study, we

mainly focused on the temporal variability of ALFF and its potential

role in classification. Because medication and other treatments have

been proven to have effects on brain structure (Benedetti et al., 2013)

and function (Yin et al., 2018), we recruited only patients who had

never received systematic treatment before to exclude these con-

founding factors (Boedhoe et al., 2018), and thus reveal the temporal

variability of intrinsic cerebral activity directly related to disease

pathology.

2 | MATERIALS AND METHODS

2.1 | Participants

The study was approved by the Ethics Committee of the West

China Hospital, Sichuan University, and written informed consent

was obtained from each participant. We recruited 74 OCD patients

who had never received medication or systematic psychotherapy

and 76 HCs. Among them, 54 OCD patients and 54 HCs were the

same as our previous analysis (Bu et al., 2019). All the subjects were

right-handed individuals and native Chinese speakers. OCD

patients were recruited from the Mental Health Center, West

China Hospital, Sichuan University. The diagnosis of OCD was

made by two experienced clinical psychiatrists based on the Struc-

tured Clinical Interview for DSM-IV Axis I Disorders (SCID). The

Yale-Brown Obsessive–Compulsive Scale (Y-BOCS) was used to

rate the severity of OCD symptoms, whereas the 14-item Hamilton

Anxiety Scale (HAMA) and 17-item Hamilton Depression Scale

(HAMD) were used to assess accompanying anxiety and depression

symptoms.

These patients had not received any prior psychiatric medications

for various reasons, mainly because of (a) a lack of understanding or

recognition of the severity of mental illness and (b) poor socioeco-

nomic conditions that limited travel and search for medical care in

rural areas. As a result of these factors, each patient had been shel-

tered in the home without medical care through the course of the

illness.

Seventy-six HCs were recruited via a poster and were screened

by two experienced psychiatrists using the SCID (nonpatient edition)

to confirm the current absence of psychiatric and neurological illness

as well as the absence of a history of psychiatric illness among first-

degree relatives.

The exclusion criteria, applied to both OCD patients and HCs,

included the following: (a) the existence of neurological diseases or

other mental disorders; (b) any history of cardiovascular diseases, met-

abolic disorders, or major physical illness; (c) history of previous sub-

stance abuse for any drugs or alcohol; (d) pregnancy and

(e) participants younger than 18 years or older than 60 years.
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2.2 | Image acquisition

All the participants were scanned using a 3.0-T MRI system (EXCITE;

General Electric, Milwaukee, WI) with an eight-channel phase-array

head coil. Before scanning, the participants were instructed to stay

awake with their eyes closed. Foam pads were used to reduce head

motion, and earplugs were used to attenuate scanner noise.

The rs-fMRI images were obtained using a gradient-echo echo-

planar imaging sequence with the following parameters: time repeti-

tion (TR) = 2,000 ms, time echo (TE) = 30 ms, flip angle = 90�, slice

thickness = 5 mm with no slice gap, field of view (FOV) =

240 � 240 mm2, matrix size = 64 � 64, 30 axial slices, and 200 vol-

umes in each run.

High-resolution, T1-weighted images were acquired using a volu-

metric three-dimensional spoiled gradient recall sequence with the

following parameters: TR = 8.5 ms, TE = 3.4 ms, flip angle = 12�, axial

slice thickness = 1.0 mm, FOV = 240 � 240 mm2, matrix size =

256 � 256, and number of coronal slices = 156.

2.3 | Image preprocessing

The data were processed using the Data Processing Assistant for

Resting-State fMRI (DPARSFA; http://rfmri.org/dpabi, version 4.4)

(Yan, Wang, Zuo, & Zang, 2016). For each subject, the first 10 volumes

were discarded to ensure signal stabilization. The remaining 190 rs-

fMRI images were corrected for acquisition time intervals between

slices and head motion between volumes.

After these corrections, the structural image was coregistered to

the mean functional image of each participant, and the transformed

structural image was segmented into gray matter, white matter, and

cerebrospinal fluid. Based on these segmented images, the Dif-

feomorphic Anatomical Registration Through Exponentiated Lie alge-

bra tool (Ashburner, 2007) was used to compute transformations

from the individual native space to the Montreal Neurological Insti-

tute space. To remove the head-motion artifacts, we adopted the

regressors of the Friston 24-parameter model (Friston, Williams, How-

ard, Frackowiak, & Turner, 1996), which was demonstrated to be

superior to the 6-parameter model (Yan et al., 2013). Furthermore, we

regressed out covariates including the cerebrospinal fluid signal and

white matter signal to minimize the effects of nonneuronal blood oxy-

gen level-dependent fluctuations.

Thereafter, the linear trend in the fMRI data were removed to

decrease the impact of high-frequency physiological noise and very

low-frequency drift.

2.4 | Quality control for head motion

We used stringent criteria to minimize the effects of head motion on

dynamic ALFF (dALFF). Here, we only selected participants with rela-

tively low head motion, as assessed using mean framewise displace-

ment (derived from Jenkinson's formula (Jenkinson, Bannister,

Brady, & Smith, 2002)) (criteria: mean FD < 0.2 mm). This method

greatly reduces motion-induced artifacts when combined with various

motion correction strategies (Power, Barnes, Snyder, Schlaggar, &

Petersen, 2013; Satterthwaite et al., 2013). Additionally, this threshold

has been used in recent dynamic studies to rigorously control head

motion (Denkova, Nomi, Uddin, & Jha, 2019; Yan, Yang, Colcombe,

Zuo, & Milham, 2017). We also calculated three translational parame-

ters and three rotational parameters obtained from the realignment

steps for each subject. The rs-fMRI images meeting the criteria of

<1.5 mm of spatial movement and <1.5� of rotation in any direction

were retained. Because of the necessary contiguous time points in

dALFF analysis, we did not perform scrubbing, which alters the tem-

poral structure of the data (Yan et al., 2013).

After these head motion controls, four of the subjects (three HCs

and one OCD patient) were excluded.

2.5 | dALFF calculation

The dALFF analysis was performed using the temporal dynamic analy-

sis toolkits based on Data Processing and Analysis of Brain Imaging

(DPABI; http://rfmri.org/dpabi, version 3.1) (Yan, Wang, Zuo, &

Zang, 2016). A sliding-window approach was performed to character-

ize the dALFF throughout the whole brain.

The window length is an open but important parameter. Previous

studies demonstrated that a window length of 50 TRs (100 s) is the

optimal parameter to maintain the balance between capturing rapidly

shifting dynamic activity (with shorter windows) and achieving reliable

estimates of brain activity (with longer windows) (Cui et al., 2020; Liao

et al., 2019). Thus, we selected 50 TRs as the sliding window length

and 1 TRs as the step size to calculate the dALFF of each participant.

The time series of each participant was divided into 141 windows,

and the ALFF map was computed within each window.

Specifically, the time series in each window was first converted to

the frequency domain with a fast Fourier transform, and the power

spectrum was obtained. The sum of the amplitudes in the low-

frequency bands (0.01–0.08 Hz) was calculated, and the averaged

square root of the power in the above frequency windows at each

voxel represents the ALFF measured value. The SD of the ALFF at

each voxel across 141 windows was calculated to assess the temporal

variability of the ALFF, which is defined as dALFF. For standardiza-

tion, the dALFF of each voxel was divided by the global mean dALFF

values within a gray matter mask. Finally, the mean normalized

dALFF maps were spatially smoothed using an isotropic Gaussian ker-

nel of 8 mm full-width at half-maximum.

2.6 | Univariate group comparison

Two-sample t tests were performed to assess the group differences in

dALFF between the OCD patients and HCs, with age, sex and mean

FD as covariates. We utilized a statistical height threshold of

puncorr < .001 at the voxel level and a false discovery rate (FDR)
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correction of pcorr < .05 at the cluster level for multiple comparison

correction. All statistical analyses were performed using SPM12 soft-

ware (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/).

2.7 | Correlation analysis

To examine the association between alterations of dALFF and clinical

symptoms, we performed Pearson's correlation analyses between the

illness duration, Y-BOCS scores, obsessions, compulsions, HAMA

scores, and HAMD scores and the dALFF values from regions showing

group differences.

2.8 | Multivariate pattern analysis

Multivariate pattern analysis (MVPA) is a useful approach based on a

machine learning algorithm that can classify patients and healthy sub-

jects at the individual level (Vieira, Pinaya, & Mechelli, 2017) and has

shown promise for making diagnostic predictions in psychiatric disor-

ders (Huang, Gong, Sweeney, & Biswal, 2019). In the present study,

we used the linear support vector machine (SVM) as implemented in the

PRoNTo toolbox (http://www.mlnl.cs.ucl.ac.uk/pronto/prtsoftware.html,

Version 2.1.1) (Ashburner et al., 2012) to distinguish patients with OCD

and HCs on the basis of whole-brain dALFF maps.

In SVM, individual brain scans were treated as points located at

high-dimensional space defined by the dALFF map in the

preprocessed images. In this high-dimensional space, a linear decision

boundary was defined by a “hyperplane” that separated the individual

brain scans according to a class label (i.e., OCD patients vs. HCs). The

optimal hyperplane was computed based on the whole multivariate

pattern of the dALFF map across each image.

The considered algorithm is based on the SVM model, which

includes a soft-margin parameter C. This hyperparameter penalizes

more (large values of C) or less (small values of C) misclassifications

during training and affects the resulting decision boundary (Schrouff,

Mour~ao-Miranda, Phillips, & Parvizi, 2016). Thus, a nested cross-

validation (CV) with hyperparameter optimization was used in our

study. In this case, there are two loops in the CV scheme. The inner

CV selected the value of C leading to the highest model performance,

and the outer CV estimated the performance on a test set using the

selected value of C. We used soft-margin hyperparameter optimiza-

tion with the best configuration among C = 0.01, 0.1, 1, 10, and 100.

For the outer loop, we adopted 10-fold CV on subject per group out

method to evaluate classification performance, which is preferred

because the training sets have less overlap (resulting in less variance in

the test error), and the approach is suitable for our paired samples (Halai,

Woollams, & Lambon Ralph, 2020). Specifically, the dataset was ran-

domly divided into 10 folds for each group at a time, one pair of folds

(one OCD fold and one HCs fold) was selected as the testing set, and

the remaining nine pairs of folds were used as training sets. This proce-

dure for the outer loop was repeated 10 times to ensure that every fold

had a chance to become a test dataset. The inner loop adopted the same

CV scheme as the external loop since it had fewer folds and reduced the

computational time (Youssofzadeh, McGuinness, Maguire, & Wong-

Lin, 2017). A detailed description of the method was displayed in previ-

ous studies (Vieira, Garcia-Dias, & Pinaya, 2020).

The accuracy presented was obtained by averaging the values

over all folds. The statistical significance of the overall classification

accuracy was determined by conducting nonparametric permutation

tests, which involve repeating the classification procedure 1,000 times

with a different random permutation of the training group labels and

counting the number of permutations achieving higher sensitivity

and specificity than the true labels. Ultimately, a discriminative map

was generated to display the relative contributions of each voxel to

the SVM classification decision.

3 | RESULTS

3.1 | Demographic and clinical characteristics

The demographic information and clinical characteristics of all the

subjects are presented in Table 1. No significant differences were

identified with respect to sex (p = 1.000) or age (p = .352) between

drug-naïve OCD patients and HCs. The mean (±SD) scores of the Y-

BOCS, obsessions, compulsions, HAMD, and HAMA were 20.97

(±5.26), 12.40 (±4.44), 8.58 (±5.34), 8.68 (±5.28), and 9.16 (±4.70),

respectively. The illness duration of the OCD group was 7.47

± 5.51 years, and the mean age of onset for patients was 22.23 years.

3.2 | Univariate results of group differences

Compared with HCs, patients with OCD showed increased dALFF in

regions within CSTC circuits (i.e., the bilateral dorsal anterior cingulate

cortex [dACC], medial prefrontal cortex [mPFC] and striatum [includ-

ing the putamen and caudate], and the right dorsolateral prefrontal

cortex [dlPFC]) and increased dALFF in the left MOG, inferior tempo-

ral gyrus, and MTG. Conversely, compared with HCs, OCD patients

showed decreased dALFF in the bilateral inferior parietal lobule (IPL),

posterior cingulate cortex (PCC), insula, fusiform gyrus, and cerebel-

lum (Table 2 and Figure 1a).

We analyzed the data using different sliding window lengths

(30 TRs and 80 TRs) and obtained similar results as the main finding,

which is shown in Supplementary Figure S1.

In addition, we repeated our analysis with global signal regression,

and the findings also revealed good consistency with the main results

without global signal regression (Supplementary Figure S2).

3.3 | Relationship between dALFF and clinical
symptoms

We found negative correlations between dALFF values in the right

IPL and illness duration (r = �.284; p = .015; Figure 1b) and between
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dALFF values in the left cerebellum and HAMD scores (r = �.28;

p = .016; Figure 1c). These results did not survive the FDR correction.

3.4 | Multivariate results from MVPA

The classification plots for the SVM classifier utilizing dALFF images

are displayed in Figure 2a. The receiver operating characteristic curve

evaluating the performance using dALFF as features is displayed in

Figure 2b. The SVM yielded an accuracy of 83.56% for the compari-

son between OCD patients and HCs (sensitivity = 80.82%; specific-

ity = 86.30%; p = .001).

The spatial maps of the brain regions that contributed to the dis-

crimination between patients with OCD and HCs are shown in

Figure 2c. These regions included the bilateral IPL, cuneus, left MOG,

and right dlPFC.

3.5 | Reproducibility analysis

Split-half and leave-one-out methods were used to examine the

reproducibility of the results of statistical comparisons (Li, Xu, Zhang,

Hoptman, & Zuo, 2015; Zhang et al., 2011).

First, we divided the HC subjects into two subgroups matched

for age and sex (HC1: 37 participants, 14 females, age: 29.00

± 9.13 years; HC2: 36 participants, 16 females, age: 27.36

± 12.44 years). Similarly, we divided the OCD patients into two sub-

groups (OCD1: 37 participants, 16 females, age: 29.38 ± 8.52 years;

OCD2: 36 participants, 14 females, age: 30.03 ± 8.60 years) (all

p > .05). We performed the same statistical comparisons between

each HCs subgroups and OCD subgroups (i.e., HC1 vs. OCD1; HC1

vs. OCD2; HC2 vs. OCD1; HC2 vs. OCD2) as the full sample. The

split-half results are shown in Figure 3a and basically replicated the

findings from the full sample.

However, the group comparisons may significantly lose statistical

power in the split-half analysis as the sample size was relatively small.

Therefore, we also performed leave-one-out method to validate the

reproducibility and robustness of these results on dALFF without los-

ing statistical power. Specifically, we left one OCD patient out of the

sample and performed the same group comparisons based upon

the permutated sample (i.e., 72 OCD vs. 73 HCs). This analysis led to

a total of 73 two-sample t-test images, based on which, for each

voxel, we calculated the number of tests where this voxel exhibited

significant group differences across the 73 tests as the reproducibility

of the dALFF differences between OCD patients and HCs. Leave-

one-out sample validation suggested a highly reproducible pattern of

dALFF across these tests as well as the original test (Figure 3b).

4 | DISCUSSION

To the best of our knowledge, the current study is the first to explore

regional brain intrinsic activity fluctuations in a relatively large sample

of drug-naïve patients with OCD. We demonstrated a characteristic

pattern of dynamic changes for regional intrinsic activity in OCD

patients with increased temporal variability mainly within CSTC cir-

cuits (i.e., the bilateral dACC, mPFC and striatum; and right dlPFC),

while decreased dALFF was located outside of the CSTC regions,

including the bilateral IPL, PCC, insula, fusiform gyrus and cerebellum.

We also found that the dALFF in the right IPL correlated negatively

with illness duration and that the dALFF in the left cerebellum corre-

lated negatively with HAMD scores. Moreover, dALFF can distinguish

OCD patients from HCs at the individual level with an accuracy of

83.56%, and the most discriminative regions were located mainly in

the IPL, dlPFC, MOG, and cuneus.

The CSTC model of OCD (also termed the frontostriatal model or

corticostriatal model) has been the prevailing model regarding the

neural and pathophysiological underpinnings of OCD for years (Pauls,

Abramovitch, Rauch, & Geller, 2014). It has three main components:

affective circuits involving the ACC/ventral mPFC-nucleus accumbens-

thalamus, dorsal cognitive circuits involving the dlPFC-caudate nucleus-

thalamus and ventral cognitive circuits involving the orbitofrontal

TABLE 1 Demographic and clinical
characteristics of drug-naïve OCD
patients and HCs

OCD (n = 73) HCs (n = 73) Significance

Characteristic Mean SD Mean SD t/χ2 p

Sex (male: female) 43:30 — 43:30 — 0.000 1.000

Age (years) 29.70 8.51 28.19 10.84 0.934 .352

Illness duration (years) 7.47 5.51 — — — —

Age of onset (years) 22.23 7.21 — — — —

Y-BOCS total 20.97 5.26 — — — —

Obsessions 12.40 4.44 — — — —

Compulsions 8.58 5.34 — — — —

HAMD 17 8.68 5.28 — — — —

HAMA 14 9.16 4.70 — — — —

Abbreviations: HAMA, Hamilton Anxiety Rating Scale; HAMD, Hamilton Depression Rating Scale; HCs,

healthy control subjects; OCD, obsessive–compulsive disorder; SD, standard deviation; Y-BOCS, Yale-

Brown Obsessive–Compulsive Scale.
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cortex-putamen-thalamus (Milad & Rauch, 2012). In the current study,

we found increased dALFF in most of the above regions at the same

time in OCD patients, providing direct evidence of the wide dysfunc-

tion in the CSTC circuits.

The dACC region is crucially involved in detecting the presence

of cognitive conflicts, error monitoring, and detection in OCD

(Melcher, Falkai, & Gruber, 2008; Milad & Rauch, 2012). The most

consistent finding is hyperactivity in the region in OCD patients at

TABLE 2 Significant differences in dALFF between drug-naïve OCD patients and HCs

MNI coordinate

Region Side Voxel size x y z T p*

OCD patients > HCs

Dorsolateral and medial prefrontal

cortex, dorsal anterior cingulate cortex

L/R 1,650 36 30 �21 5.72 <.001

�3 0 54 5.58

30 27 39 5.46

Putamen, caudate L 151 �27 12 �9 4.71 .006

�21 18 �3 4.62

�24 6 9 4.25

Putamen, caudate R 107 27 15 �6 4.76 .016

18 15 �9 4.10

15 18 9 3.99

Middle occipital gyrus L 319 �45 �81 18 6.11 <.001

�54 �72 18 5.07

�36 �93 9 4.49

Inferior temporal gyrus L 302 �51 �30 �30 6.19 <.001

�45 �36 �30 6.00

�42 �45 �39 5.07

Middle temporal gyrus L 147 �48 9 �27 4.72 .006

�45 24 �15 4.42

OCD patients < HCs

Inferior parietal lobule R 523 30 �60 45 �8.24 <.001

36 �39 42 �6.06

30 �78 21 �4.89

Inferior parietal lobule L 163 �30 �51 42 �5.05 .004

�48 �36 51 �4.81

Cerebellum, fusiform gyrus R 2,116 39 �72 �30 �7.70 <.001

36 �72 �18 �7.34

21 �87 �21 �6.86

Cerebellum, fusiform gyrus L 330 �39 �75 �18 �5.30 <.001

�24 �87 �15 �4.40

�27 �63 �18 �4.39

Posterior cingulate cortex L/R 176 12 �33 45 �4.20 .004

�9 �39 45 �4.09

3 �45 51 �3.56

Insula R 89 39 �12 12 �4.25 .031

36 �27 12 �4.15

57 �12 3 �3.68

Insula L 88 �33 �24 12 �4.82 .031

�39 �9 0 �3.69

Abbreviations: HCs, healthy control subjects; MNI, Montreal Neurological Institute; OCD, obsessive–compulsive disorder.
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rest (Chen et al., 2019; Hou et al., 2012). Our study also showed

overhyperactivity in the dACC, which may reflect abnormal error

detection and conflict monitoring in OCD. OCD patients also

exhibited greater activity in the mPFC than HCs due to a failure to

deactivate this default mode network region (Stern et al., 2011),

perhaps reflecting an inability of patients to disengage from auto-

matic evaluative processes when errors occur (Bu et al., 2019).

Additionally, prior studies reported that the striatum and dlPFC

show increases in gray matter volume and activity in patients with

OCD (Gao et al., 2019; Pico-Perez et al., 2020). Consistent with

previous findings, the brain activity of the dACC, mPFC, striatum,

and dlPFC displayed increased temporal variability in OCD patients,

and the dlPFC also exhibited high discriminative power in the pre-

sent study, providing further support for dysfunction in CSTC path-

ways in patients with OCD.

In addition to CSTC circuits, other models have implicated alter-

ations in the frontoparietal, default mode, and salience networks (the

triple network model), and the visual and cerebellar networks (Gürsel

et al., 2018; Reggente et al., 2018; van den Heuvel et al., 2016). Inter-

estingly, we found that OCD patients showed decreased dALFF in the

bilateral IPL, PCC, insula, fusiform gyrus and cerebellum, supporting

the involvement of the above models and distinguishing their roles

from CSTC circuits in the neural mechanism of OCD.

The IPL is the key region in the frontoparietal network involved in

attention set shifting and response inhibition in OCD (Eng, Sim, &

Chen, 2015). Patients with OCD showed decreased activity in the

right IPL during inhibition relative to healthy comparison subjects, and

a relationship was found between the activity in the IPL and stop-

signal reaction time in the OCD group (de Wit et al., 2012). Similar to

our results of decreased temporal variability in the IPL, a previous

study also demonstrated hypoactivation in the right IPL during the

resting state (Hou et al., 2012). Thus, the decreased regional activity

of the IPL, as reflected by the dALFF in the current study, could

reflect impaired attention to the stop signal or impaired action repro-

gramming, leading to excessive repetitive behavior.

Moreover, we discovered a negative correlation between dALFF

values in the right IPL and illness duration in OCD patients, indicating

that a longer illness duration is associated with decreased IPL func-

tion. This means that OCD is a progressive disease (Chen et al., 2016),

and temporal variability changes in the right IPL may be a potential

biomarker for the progression of OCD. However, as these correlations

did not survive the FDR correction, thus the correlation results should

F IGURE 1 (a) Significant regions in the group comparison between OCD patients and HCs. Warm/cool colors indicate regions showing
higher/lower dALFF values in the OCD group than in HCs. (b) Negative correlation between illness duration and dALFF values in the right IPL.
(c) Negative correlation between HAMD and dALFF values in the left cerebellum. dACC, dorsal anterior cingulate cortex; dALFF, dynamic
amplitude of low-frequency fluctuation; dlPFC, dorsolateral prefrontal cortex; HAMD, Hamilton Depression Rating Scale; HCs, healthy control
subjects; IPL, inferior parietal lobule; ITG, inferior temporal gyrus; MOG, middle occipital gyrus; mPFC, medial prefrontal cortex; MTG, middle
temporal gyrus; OCD, obsessive–compulsive disorder; PCC, posterior cingulate cortex

3798 LIU ET AL.



be regard as preliminary and may need large sample of datasets to val-

idate. The MVPA results suggest that the IPL is a major region with

discriminative power and may be an important site for differentiating

OCD patients from HCs at the individual level.

In addition to the frontoparietal network, we also found that the

time-varying activity of hub regions in the default mode, salience, and

visual networks was decreased in OCD patients. The PCC is a core

region of the default mode network, and it controls the balance

between internally and externally focused thoughts (Chen

et al., 2019). The insula is a key hub in the salience network and is also

related to internal and external stimulation. The region is important

for switching attention away from an internal focus toward the

external environment after detecting potentially harmful situations

(Stern et al., 2011). Studies have also displayed lower brain activity in

these regions at rest in OCD patients than in HCs (Cheng et al., 2013;

Zhu et al., 2016). Hypoactivity may suggest that patients have a

decreased level of arousal and attention to external stimuli, likely

explaining the immersion of OCD patients in their own intrusive

thoughts and repetitive behaviors (Chen et al., 2019). Additionally, the

fusiform gyrus is an important region in the visual network

(Muthukrishnan, Soni, & Sharma, 2020) and is implicated in the visual

processing dysfunction associated with OCD (Lei et al., 2020). The

decreased dALFF in the fusiform gyrus in the present study may be

associated with visual deficits in OCD.

F IGURE 2 Classification performance for OCD patients and HCs. (a) Classification plots for the SVM classifier. (b) ROC curves assessing SVM
performance. (c) Discrimination weight map using dALFF. The color bar indicates the weighted vector value determined from SVM. dALFF,
dynamic amplitude of low-frequency fluctuation; dlPFC, dorsolateral prefrontal cortex; HCs, healthy control subjects; IPL, inferior parietal lobule;
MOG, middle occipital gyrus; OCD, obsessive–compulsive disorder; ROC, receiver operating characteristic; SVM, support vector machine
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We also found reduced temporal variability in the bilateral cere-

bellum in OCD patients compared with HCs, and it was also associ-

ated with increased depressive symptoms, as revealed by HAMD

scores. The cerebellar network is another part outside the CSTC net-

work. An increasing number of studies have reported that, in addition

to the traditional role of motor control, the primate cerebellum is

involved in cognitive control and emotional regulation

(Hu et al., 2019). Furthermore, the cerebellum has also been impli-

cated in ruminative and obsessive behaviors (Figee, Wielaard,

Mazaheri, & Denys, 2013; Schmahmann, Weilburg, & Sherman, 2007),

which are related to OCD. Most previous rs-fMRI studies have shown

decreased intrinsic activity in the cerebellum in OCD patients (Hou

et al., 2012; Qiu et al., 2017), the finding that is consistent with ours.

OCD symptoms typically precede the onset of depressive symptoms

(Jones, Mair, Riemann, Mugno, & McNally, 2018), and distress related

to obsessional thoughts and concentration problems link depressive

and OCD symptom clusters (Sha et al., 2020). Thus, the negative cor-

relation between the cerebellum and HAMD scores in our study might

reflect a relationship between the cerebellum and cognitive dysfunc-

tion in OCD.

We found that dALFF had a relative higher accuracy in dis-

tinguishing OCD from HCs compared with most previous studies. For

example, a study achieved 72% accuracy using fractional ALFF of

68 drug-naïve OCD patients and 68 HCs (Yang et al., 2019), another

study got 78.98% accuracy using regional homogeneity of 88 medica-

tion-free OCD patients and 88 HCs (Hu et al., 2019). A seed-based

resting state functional connectivity revealed that the abnormal

cerebellar–default mode network connectivity can be used to discrim-

inate patients with OCD from HCs with an accuracy of 76.92%

(Lv et al., 2020). In our current study, OCD patients could be differen-

tiated from HCs based on dALFF with classification accuracy of

83.56%, though our previous study with smaller sample size showed a

higher accuracy of 95.37% for discriminating drug-naïve OCD from

HCs using ALFF (Bu et al., 2019). We suppose that the lower classifi-

cation accuracy of dALFF compared with ALFF maybe represents less

sensitivity of distinguishing OCD patients from HCs in our population,

and this raises the necessity of evaluating different parameters in dif-

ferent datasets for translational purpose.

A few limitations in the current study are worth mentioning. First,

our results were from drug-naïve OCD patients, providing more direct

evidence of the intrinsic function of the brain relevant to the disease

itself without confounding factors of medication; however, our results

may not apply to other OCD populations such as those who had been

on medication for years. Future work will be necessary to explore the

time-varying intrinsic brain activity in other OCD populations. Second,

the selection of the optimal sliding window length for obtaining the

dynamics of brain activity remains unclear. We selected 50 TRs as

the window length based on previous studies. We validated our

F IGURE 3 Reproducibility of dynamic amplitude of low-frequency fluctuation (dALFF) findings. (a) Split-half sample validation. For each
voxel, the color indicates T scores of group comparison. (b) Leave-one-out sample validation. For each voxel, the color indicates the number of
tests where this voxel exhibited significant group differences across the 73 tests
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results by utilizing different sliding window lengths and demonstrated

that our findings are stable and not substantially influenced by this fac-

tor. Third, patients with different subtypes or experiencing different level

of childhood trauma would exhibit different neural alterations. However,

due to the lack of those information, we cannot explore the impact of

these factors in current study. Fourth, the group comparison of some

confounding factors such as education duration or socioeconomic status

is not clear due to the lack of relevant information. This may have a little

impact on the results of the group comparison.

5 | CONCLUSIONS

In summary, we demonstrated characteristic changes in increased

dynamic intrinsic activity in CSTC circuits and decreased variability in

regions outside of the circuits in OCD patients. In particular, we

emphasize that the dysfunction of regions outside the CSTC circuits,

such as the parietal cortex and cerebellum, plays an important role in

the pathophysiology of OCD. Furthermore, the SVM analysis of

dALFF achieved the accuracy of 83.56% in classifying OCD patients

and HCs at the individual level, with different CV strategies showing

similar accuracy, which indicated the stability of results achieved in

the current study.
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