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Abstract

Age-related macular degeneration (AMD) is the leading cause of vision loss in adults over 60 

years old globally. There are two forms of advanced AMD: “dry” and “wet”. Dry AMD is 

characterized by geographic atrophy of the retinal pigment epithelium and overlying 

photoreceptors in the macular region; whereas wet AMD is characterized by vascular penetrance 

from the choroid into the retina, known as choroidal neovascularization (CNV). Both phenotypes 

eventually lead to loss of central vision. The pathogenesis of AMD involves the interplay of 

genetic polymorphisms and environmental risk factors, many of which elevate retinal oxidative 

stress. Excess reactive oxygen species react with cellular macromolecules, forming oxidation-

modified byproducts that elicit chronic inflammation and promote CNV. Additionally, genome-
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wide association studies have identified several genetic variants in the age-related maculopathy 

susceptibility 2/high-temperature requirement A serine peptidase 1 (ARMS2-HTRA1) locus 

associated with the progression of late-stage AMD, especially the wet subtype. In this review, we 

will focus on the interplay of oxidative stress and HTRA1 in drusen deposition, chronic 

inflammation, and chronic angiogenesis. We aim to present a multifactorial model of wet AMD 

progression, supporting HTRA1 as a novel therapeutic target upstream of vascular endothelial 

growth factor (VEGF), the conventional target in AMD therapeutics. By inhibiting HTRA1’s 

proteolytic activity, we can reduce pro-angiogenic signaling and prevent proteolytic breakdown of 

the blood-retina barrier. The anti-HTRA1 approach offers a promising alternative treatment option 

to wet AMD, complementary to anti-VEGF therapy.
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INTRODUCTION

Age-related macular degeneration (AMD) is the leading cause of irreversible central vision 

loss in people over 60 years old[1] and is a burgeoning public health problem in many 

developed countries due to aging populations[2]. There are two types of AMD: dry AMD, 

characterized by geographic cellular atrophy in the macula; and wet AMD, a proliferative 

retinopathy caused by aberrant blood vessel growth from the choroid into the neural 

retina[3]. While wet AMD only accounts for 10%–15% of patients with AMD, it is 

responsible for 90% of AMD-related severe visual impairment[4]. Despite recent advances in 

understanding the mechanisms of AMD progression, it remains unclear what predisposes 

individuals to develop dry vs. wet AMD and what triggers the transition from dry to wet 

AMD in certain patients. Finding answers to these questions will not only catalyze the 

development of more effective therapeutics against AMD but may also elucidate 

mechanisms underlying other neovascular diseases.

Like many age-related diseases, AMD is believed to result from an interplay of genetic, 

environmental, and behavioral risk factors. The complex etiology of AMD closely resembles 

that of polypoidal choroidal vasculopathy (PCV) compared to other retinopathies [Table 1]. 

However, the choroidal neovascularization (CNV) associated with wet AMD does not 

display the hallmark vascular polyp-like dilations found in patients with PCV, distinguishing 

the two conditions. The primary environmental/behavioral risk factor for AMD is cigarette 

smoking, likely via an increase in systemic oxidative stress that promotes chronic 

inflammatory responses in the retina[23–25]. Chronic retinal inflammation is thought to 

accelerate degradation of the blood-retina barrier and trigger signaling cascades that increase 

pro-angiogenic gene expression associated with wet AMD[26]. The most prominent genetic 

risk factors for AMD include the nonsynonymous variant rs1061170 on chromosome 1q31, 

which encodes a Tyr402His substitution in complement factor H (CFH), and an ~5-kb high 

linkage-disequilibrium (LD) block spanning the age-related maculopathy susceptibility 2/

high-temperature requirement A serine peptidase 1 (ARMS2-HTRA1) locus on chromosome 

10q26[27–30]. Because the ARMS2-HTRA1 risk haplotype slightly favors progression to wet 
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AMD, we focus this review on the interplay among ARMS2-HTRA1 genetic risk, cigarette 

smoking, and oxidation-induced inflammatory responses on wet AMD development. We 

conclude with a mechanistic model of wet AMD progression that we hope will stimulate 

future investigations on wet AMD and other neovascular diseases.

PATHOLOGY OF WET AMD

AMD leads to degeneration of the macula, the cone-rich central portion of the retina that is 

adapted for high-acuity daytime color vision [Figure 1][31]. It primarily affects the blood-

retina barrier, consisting of the retinal pigment epithelium (RPE) and underlying Bruch’s 

Membrane (BM), and secondarily the photoreceptors [Figure 2A]. Proper phototransduction 

by photoreceptors is reliant on an intact and functional blood-retina barrier for uptake of 

essential nutrients from the choroidal vasculature, disposal of cellular waste to systemic 

circulation, and regeneration of the active chromophore 11-cis-retinal via the visual cycle, 

among other functions[32,33]. This delicate balance is disrupted in the AMD eye. The first 

clinical manifestations of disease are drusen, which appear on color fundus as yellowish 

focal deposits beneath the retina [Figure 2B and C]. They accumulate in the extracellular 

space between the RPE and BM and have recently been suggested to result from the 

oligomerization of lipids and proteins onto hydroxyapatite spherules[34]. Regardless of their 

origin, the size and number of drusen are used to determine an individual’s disease stage and 

assess the likelihood of progression to advanced AMD with severe central vision loss[35,36]. 

“Soft” drusen with poorly demarcated boundaries or diameter greater than 125 μm are 

particularly prognostic for severe AMD[37,38]. Unfortunately, drusen characteristics do not 

readily distinguish between individuals who will develop dry vs. wet AMD[38].

In the early stages of wet AMD, inflammatory cells are observed in the subretinal space 

between the RPE and BM[39]. They disrupt the integrity of the blood-retina barrier through 

the release of inflammatory oxidants and pro-angiogenic cytokines and chemokines, 

including vascular endothelial growth factor (VEGF). VEGF stimulates endothelial cells to 

proliferate, migrate, and germinate to form new capillaries that cross the BM into the neural 

retina, a process referred to as CNV [Figure 2D][40,41]. VEGF mediates the expression of 

MCP-1, an angiogenic chemokine that recruits more macrophages to the retina[42,43], and 

acts as a specific endothelial cell mitogen to increase vascular permeability[44]. The 

structural integrity of the blood-retina barrier is further compromised by macrophage matrix 

metalloproteinases (MMP), which degrade the pentalaminar fibrous proteins of the 

BM[45–49]. As CNV expands within the subretinal space, the macula deforms and subretinal 

hemorrhaging allow cells and fluid in circulation to leak into the neural retina[50]. In its most 

advanced stages, CNV sites become fibrotic and form disciform scars, leading to necrosis of 

RPE and photoreceptors[33,50]. Photoreceptor cell death secondary to these processes is the 

immediate cause of vision loss for the patient.

REDOX BIOCHEMISTRY AND OXIDATIVE STRESS IN THE RETINA

Introduction to oxidation in the retina—Free reactive oxygen species (ROS) can react 

with biological macromolecules to form oxidation-modified, pro-inflammatory 

species[51,52]. Photoreceptor outer segments are rich in polyunsaturated fatty acids, which 

are easily oxidized by photosensitizers in the retina[53]. As these highly oxidized outer 
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segments are shed, they are phagocytosed by the RPE through a tightly regulated sequence 

of steps that involves outer segment recognition and binding by the integrin αvβ5[54,55] and 

the scavenger receptor CD36[56], followed by activation of MERTK to trigger 

internalization[57]. Once inside the RPE, the outer segments are degraded along the 

phagolysosomal pathway into compounds that are either recycled back into the visual cycle 

or exocytosed from the RPE basolateral membrane into the choroid for clearance from 

systemic circulation[32]. The continuous shedding of oxidized outer segments is a major 

phagocytic challenge for the RPE that heightens intracellular oxidative stress and may 

contribute to age-related accumulation of oxidation-modified lipids and proteins in the 

retina, leading to disease[58,59].

The inflammatory response to oxidative stress—As people age, the permeability of 

Bruch’s Membrane decreases, thereby hindering the transport of exocytosed waste products 

from the RPE to the choroid[60]. These waste products accumulate in the sub-RPE space, 

prolonging their exposure to the oxidizing extracellular environment. Oxidation-specific 

epitopes, also referred to as Damage-Associated Molecular Patterns (DAMPs), on otherwise 

normal lipids and proteins, signal to the cell that the parent compound is damaged, flagging 

it for clearance by the immune system[61]. Many cytokines and chemokines are recruited 

during the inflammatory response, promoting angiogenesis and CNV [Table 2].

DAMPs are bound by a variety of Pattern Recognition Receptors (PRRs), including 

scavenger receptors, toll-like receptors, C-reactive protein, complement components, and 

IgM antibodies[80,81]. Interestingly, drusen have also been found to contain C-reactive 

protein, immunoglobulins, and many components of the complement pathway[82,83]. The 

presence of these complement proteins and oxidation products has been shown to result in 

changes to the cellular composition of the RPE and choroid. However, before these changes 

occur, cellular oxidative stress must elicit the secretion of pro-inflammatory cytokines and 

chemokines, overwhelming the cellular regulatory mechanisms. In the next section, we will 

review how this redox regulatory system becomes overburdened in the AMD eye.

Overview of redox biochemistry—Biochemical oxidation-reduction reactions are 

central components of many metabolic and signaling pathways[84]. As such, they are tightly 

regulated using a variety of enzymatic and non-enzymatic mechanisms, which control the 

balance of pro-oxidant and antioxidant species[52]. One of the most studied redox regulators 

is glutathione (GSH), a tripeptide of glutamate, cysteine, and glycine[85]. When exposed to 

oxidizing agents, glutathione’s thiol moiety is oxidized to form a disulfide bridge with 

another molecule of glutathione, forming glutathione disulfide (GSSG)[86]. GSSG can be 

reduced by glutathione reductase (GSH reductase) at the expenditure of one NADPH, 

reforming two GSH[86]. Together, the interconversion of GSH and GSSG forms a redox 

buffer system[87], analogous to the bicarbonate buffer system for pH.

The status of the redox buffer system can be used to assess the oxidative state of the 

intracellular environment. Studies have shown that the GSH:GSSG ratio remains within 

narrow ranges that are specific to particular intracellular compartments[88]. The GSH:GSSG 

ratio of the endoplasmic reticulum ranges from 1:1 to 1:3[89,90], whereas the GSH:GSSG 

ratio of the cytosol ranges from 30:1 to 100:1[90]. However, chronic overproduction of 
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oxidizing agents can alter redox homeostasis and decrease the GSH:GSSG ratio, which has 

been correlated with aging and disease[91,92]. The greatest endogenous source of oxidizing 

agents is release of ROS from the mitochondrial matrix as byproducts of oxidative 

phosphorylation[93]. As electrons move along the electron transport chain, some electrons 

leak from Complexes I and III, forming superoxide radical (O2
-)[94]. Superoxide radical is 

scavenged by superoxide dismutase (SOD) to form hydrogen peroxide (H2O2), which may 

be either reduced to water by glutathione peroxidase (GPx) at the expenditure of one 

glutathione or dismutated to water and molecular oxygen by catalase (CAT)[95]. However, 

excess leakage of O2
- can overload these enzymatic mechanisms, resulting in increased ROS 

concentration in the cytosol and nucleus [Figure 3]. Excess ROS can lead to nuclear and 

mitochondrial DNA damage, autophagy decay, and apoptosis of photoreceptors and RPE via 
the MAPK/ERK 1/2 pathway[96–99]. In addition to an endogenous leakage of mitochondrial 

ROS, cigarette smoke, a prominent environmental/behavioral risk factor for AMD[100–103], 

contains an assortment of free radicals and ROS that disturb cellular redox[104].

Oxidative stress in the retina—The retina is especially prone to increased endogenous 

ROS production due to its high energy demand, high dissolved oxygen concentration, and 

dependency on mitochondrial oxidative phosphorylation for proper function[105,106]. 

Photoreceptor mitochondria are predominantly clustered within the inner segment, whereas 

the outer segment is sparsely populated[107]. Unlike most neurons, photoreceptors are 

depolarized in their unstimulated state and are hyperpolarized upon stimulation with light, 

forming the dark current[108]. In the absence of light, Na+/K+ ATPases are actively 

maintaining a continual flux of Na+ into the cell, enabling continual release of the excitatory 

neurotransmitter glutamate into the photoreceptor-bipolar cell synaptic cleft[109]. This 

ATPase activity accounts for most retinal energy requirements[109,110]. The RPE is also 

densely populated with mitochondria, which are used to power phagocytosis of 

photoreceptor outer segments; metabolic exchange between the neural retina and the 

choroid; and maintenance of transepithelial potential[107,111–113].

ARMS2-HTRA1 GENETIC RISK AND HTRA1 ACTIVITY IN WET AMD Introduction to ARMS2-
HTRA1 in AMD: discovery and controversy

In addition to cigarette smoking and oxidative stress, many genetic variants have been linked 

to AMD pathogenesis. The first genome-wide association studies (GWAS) on AMD 

identified variants in the complement factor H (CFH) locus on chromosome 1q31 that 

strongly associate with progression to late-stage AMD[114–117]. Shortly thereafter, two 

studies simultaneously discovered another strong genetic risk locus on chromosome 

10q26[118,119]. These risk variants span a ~5-kb region of high linkage disequilibrium (LD) 

that includes the promoter of HtrA serine peptidase 1 (HTRA1), a secreted serine protease 

that has been extensively studied for its role in extracellular matrix (ECM) 

remodeling[120–122], transforming growth factor β (TGF-β) signaling[123–127], and various 

cancers[128–130]. Preliminary evidence from luciferase reporter assays using HTRA1 

promoter sequences[118] and RT-PCR of HTRA1 mRNA from blood lymphocytes[119] 

indicated that the AMD risk haplotype increases HTRA1 expression ~2-fold. These findings 

support a putative disease mechanism in which chronically elevated HTRA1 due to the risk 

haplotype alters ECM homeostasis along the blood-retina barrier, leading to AMD. 
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However, the risk haplotype also extends into the coding sequence for age-related 

maculopathy susceptibility 2 (ARMS2), an 11-kDa protein whose structure, function, and 

localization have been disputed since its discovery. Initially thought to be a mitochondrial 

protein[131,132], ARMS2 is now known to be secreted from cells[133] via a Golgi-

independent pathway[134] and may regulate complement activation[135]. However, ARMS2 

seems to be an unlikely source for AMD pathogenicity due to (1) its weak expression in the 

retina[131,132,136,137] and (2) a recent expression quantitative trait loci (eQTL) analysis that 

found multiple AMD-associated eQTLs that affect HTRA1 expression, but no AMD-

associated eQTLs that exclusively affect ARMS2 expression[138]. While it is our view that 

HTRA1 is the more plausible candidate for AMD pathogenicity, we emphasize the pressing 

need for future studies to carefully isolate the potential roles of ARMS2 and HTRA1 in 

AMD pathogenesis to pinpoint the causal agent. In this review, we will focus on the 

evidence for HTRA1’s role in AMD pathogenesis and its interplay with aging, oxidative 

stress, and other genetic risk factors that predispose development of wet AMD [Figure 4].

Evidence for HTRA1’s role in wet AMD

HTRA1 is a 51-kDa secreted protein that belongs to the high temperature requirement A 

(HtrA) family of chymotrypsin-like serine proteases, which includes the paralogs HTRA2, 

HTRA3, and HTRA4[139,140]. Originally discovered in E. coli as an integral component of 

the heat shock response[141,142], HTRA1 is widely expressed in human tissue and has been 

implicated in many physiological processes, notably ECM remodeling[120–122] and TGF-β 
signaling[123–127]. Since the AMD risk haplotype does not extend into the HTRA1 coding 

region, researchers have long suspected that chronic excess HTRA1 expression mediates 

ARMS2-HTRA1 genetic risk by altering ECM physiology at the blood-retina barrier. These 

changes may result from either proteolytic degradation of Bruch’s Membrane or 

dysregulation of signaling pathways - especially TGF-β - that compromise blood-retina 

barrier integrity and/or promote CNV. It is important to note that these processes are not 

mutually exclusive and may have varying relevance to disease progression in specific AMD 

patients.

The preceding mechanisms share the common assumption that the ARMS2-HTRA1 risk 

haplotype increases retinal expression of HTRA1 in AMD patients, but this assertion 

remains unsettled due to conflicting results. Early studies of HTRA1 expression noted 

excess HTRA1 levels in patients harboring the AMD risk haplotype, but the sample sizes 

were generally small (< 10 subjects)[119,143–145]. In contrast, later studies with larger patient 

cohorts (> 30 subjects) oftentimes did not observe a significant difference in HTRA1 

expression between patients harboring the protective and risk haplotypes[146–148]. However, 

these apparently contradictory findings may be resolved by impinging environmental 

factors, chiefly oxidative stress. Recent studies have found that oxidative stress induces 

HTRA1 expression[149–151]. Oka and colleagues were the first to show that oxidative stress 

elicits HTRA1 expression in the human RPE cell line ARPE-19 and murine embryonic 

fibroblasts (MEF)[150]. Excess HTRA1 induced cellular senescence by activating the p38 

mitogen-activated protein kinase (MAPK) pathway, which was dependent on HTRA1 

proteolytic activity. In our previous study, ARPE-19 cells challenged at their apical surface 

with oxidized low-density lipoprotein, which mimics the shedding of highly oxidized 
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photoreceptor outer segments, had significantly increased HTRA1 levels but surprisingly 

had no change in VEGF levels 24 h after stimulation[151]. In contrast, when these cells were 

exposed to secretions from macrophages under oxidative stress, both HTRA1 and VEGF 

levels increased, likely via the Wnt signaling cascade. These results highlight the role of 

oxidative stress in exacerbating HTRA1 expression associated with the AMD risk haplotype 

and the role of pro-angiogenic factors secreted by macrophages in accelerating 

neovascularization in the wet AMD eye.

Assuming HTRA1 expression is increased by the ARMS2-HTRA1 risk haplotype and/or 

under heightened oxidative stress, chronic excess HTRA1 would be predicted to 

compromise the structural integrity of the blood-retina barrier. HTRA1 is known to cleave 

many transmembrane and secreted proteins in the ECM, including critical components of 

Bruch’s Membrane. Major structural ECM proteins known to be substrates of HTRA1 

proteolysis include decorin[152,153], EGF-containing fibulin-like extracellular matrix protein 

1 (EFEMP1)[154], fibronectin[122,153,155], fibromodulin[120,152], nidogen-1[122], 

nidogen-2[122], thrombospondin-1[143,151], type II collagen[152], and vitronectin[120]. 

Gradual degradation of Bruch’s Membrane opens pathways for vascular penetrance from the 

choroid into the neural retina, heightening the risk of wet AMD development. An 

underappreciated aspect of this process is that the ECM fragment by-products of HTRA1 

proteolytic digestion may themselves be pro-angiogenic, exacerbating risk for wet AMD 

beyond the breakdown of physical separation between the choroid and neural retina. For 

example, it was recently shown that the N-terminal fragment of thrombospondin-1 produced 

by HTRA1 digestion promotes endothelial tube formation, whereas the parent 

thrombospondin-1 is anti-angiogenic[143]. Presumably, the parallel processes of structural 

proteolysis and ECM fragment signaling always have the potential to mediate rapid 

breakdown of the blood-retina barrier. Future studies are needed to elucidate the regulatory 

mechanisms that keep these potentially deleterious processes within healthy limits and to 

identify the age-related or AMD risk factor-specific changes that disrupt these safeguards, 

leading to pathology.

HTRA1 also regulates TGF-β signaling, which serves diverse functions in adults and 

developing embryos[156]. The pathway is triggered by ligand binding to TGF-β receptors, 

followed by phosphorylation of SMAD proteins, which then form complexes that translocate 

into the nucleus and act as transcription factors[156]. HTRA1 has been implicated in cleaving 

multiple members of the TGF-β protein family, including mature TGF-β[125] (although this 

is disputed[123,126]), proTGF-β1[126], Type II and Type III TGF-β receptors[123], and latent 

TGF-β binding protein 1 (LTBP1)[127]. Regardless of its mechanism of action, HTRA1 

proteolytic activity decreases TGF-β signaling, leading researchers to explore the 

consequences of downregulated TGF-β on AMD pathogenesis. Zhang and colleagues 

suggested that excess HTRA1 promotes angiogenesis via growth differentiation factor 6 

(GDF6), a member of the TGF-β family[145]. In patients harboring the ARMS2-HTRA1 risk 

variant rs10490924, they noted increased HTRA1 and decreased GDF6. Conversely, in 

HTRA1-knockout mice, they observed increased GDF6 and decreased VEGF levels, 

suggesting that the HTRA1-null allele is protective against VEGF-mediated retinal 

neovascularization. Additionally, a study of Type II TGF-β receptor knockout mice 

(TGFBR2−/−) at 3-weeks and 6-months exhibited clear signs of wet AMD, including 
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deformed RPE, mononuclear cells in the subretinal space, and degraded photoreceptor outer 

segments[157]. Critically, VEGF was significantly increased in these mice, suggesting that 

insufficient TGF-β signaling can induce CNV. Schlecht and colleagues proposed that VEGF 

and TGF-β serve antagonistic roles in maintaining endothelial homeostasis[157]. Since 

HTRA1-mediated cleavage of either TGF-β or its receptors decreases overall TGF-β 
signaling, it is plausible that chronic excess HTRA1 induces CNV because there is 

insufficient TGF-β to counteract VEGF activity. However, more research is needed to 

identify the precise mechanism by which decreased TGF-β activity accelerates AMD 

pathogenesis.

GENETIC INSIGHTS SUGGEST A NEW MODEL FOR WET AMD PROGRESSION

For years, research on AMD pathogenesis has largely focused on the two most prominent 

genetic risk loci as unveiled through GWAS: ARMS2-HTRA1 and CFH. However, critical 

perspectives can be gleaned by assessing genetic risk factors that predispose development to 

wet AMD vs. dry AMD. In the largest GWAS on AMD to date, Fritsche and colleagues 

found 52 variants distributed across 34 loci that are associated with progression to late-stage 

AMD, either dry or wet[158]. Interestingly, only four loci harbored variants that significantly 

predispose development to the wet subtype: ARMS2-HTRA1 on chromosome 10, CETP on 

chromosome 16, MMP9 on chromosome 20, and SYN3-TIMP3 on chromosome 22 

(mutations in this locus are also associated with Sorby’s Fundus Dystrophy, an AMD-like 

phenotype). While these four loci predispose development to wet AMD over dry AMD, the 

MMP9 locus is unique in that its risk variant is only associated with wet AMD, not dry 

AMD. This region encodes matrix metalloproteinase 9 (MMP9), which, like HTRA1, is a 

critical regulator of ECM remodeling. MMP9 is known to participate in positive feedback 

with VEGF; when MMP9 levels increase, so do VEGF levels, and vice versa[159]. Even 

more striking, MMP9 expression in cultured RPE cells is elicited by exposure to fibronectin 

fragments, which notably are the byproduct of HTRA1-mediated degradation of 

fibronectin[160]. Chronically elevated fibronectin fragment levels along the blood-retina 

barrier due to excess HTRA1 expression would also be expected to increase MMP9 

expression. Much like the pro-angiogenic N-terminal fragment of thrombospondin-1, excess 

MMP9 would not only accelerate Bruch’s Membrane breakdown, but also stimulate VEGF 

expression, thereby triggering neovascularization. Over time, elevated expression of HTRA1 

in dry AMD patients harboring the ARMS2-HTRA1 risk haplotype may elicit sufficient 

MMP9 and, subsequently, VEGF to trigger the transition to wet AMD. While it remains 

unclear why only some dry AMD patients develop wet AMD, these findings suggest that the 

HTRA1-MMP9 axis may be the critical intermediate between ARMS2-HTRA1 genetic risk 

and wet AMD [Figure 5].

CONCLUSION: NEW AVENUES FOR INVESTIGATION AND THERAPEUTIC INTERVENTION

Despite major advancements in our understanding of the risk factors for AMD through 

GWAS, eQTL, and longitudinal case studies, there is a dearth of effective treatment options 

for patients living with AMD. Currently, the only robustly effective treatment for wet AMD 

is anti-VEGF therapy (e.g., ranibizumab, bevacizumab). While anti-VEGF therapy has 

undoubtedly revolutionized clinical management of wet AMD, this approach targets a late 

downstream effector of CNV, requires repeated monthly injections to sustain therapeutic 
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effect, and is ineffective in a substantial portion of wet AMD patients[161,162]. Above all, 

anti-VEGF offers no benefit to people living with dry AMD, who constitute roughly 90% of 

all AMD cases. The lack of novel and effective alternative approaches to treat both wet and 

dry AMD is a pressing unmet medical need facing ophthalmologists worldwide. Our 

analysis suggests that HTRA1 and MMP9 are strong candidate therapeutic targets that 

warrant further investigation. Because HTRA1 is considerably upstream of VEGF and is 

associated with both wet and dry AMD, anti-HTRA1 therapy holds promise of slowing or 

halting the progression of both wet and dry AMD. Our lab has uncovered encouraging 

preliminary evidence that anti-HTRA1 single-chain variable fragment (scFv) can 

significantly reduce the size of neovascular lesions in a laser-induced mouse model of wet 

AMD[151]. Further support for this approach comes from a recent report by Lill and 

colleagues, who independently generated an anti-HTRA1 Fab and demonstrated that 

Dickkopf-related protein 3 (DKK3) levels in the aqueous humor of patients with dry AMD 

could serve as a biomarker for HTRA1 proteolytic inhibition by their anti-HTRA1 Fab[163]. 

Despite these early successes, HTRA1’s position upstream of VEGF implies that inhibiting 

its proteolytic activity will affect a greater number of physiological pathways in the retina, 

increasing the likelihood of deleterious side effects. For this reason, MMP9 may be a viable 

alternative or combinatorial therapeutic target in patients with wet AMD who do not respond 

adequately to anti-VEGF alone. Regardless of which therapeutic approach is ultimately most 

successful, these investigations will yield valuable insights into the pathways leading from 

genetic risk to AMD pathology and potentially uncover new ways of conceptualizing and 

treating other neovascular diseases.
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Figure 1. 
Anatomical cross section of the human eye. The macula is the central portion of the retina, 

responsible for high-acuity vision. Age-related macular degeneration progression leads to 

macular dystrophy, death of overlying photoreceptors, and eventually central vision loss
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Figure 2. 
The clinical features of AMD progression. (A) Cross section and fundus photo of normal 

retina showing BM; choriocapillaris; IPL; INL; photoreceptors; and RPE; (B) drusen form 

underneath the RPE cell layer, preceding late-stage AMD; (C) dry AMD is characterized by 

extensive drusen, atrophy of RPE and photoreceptors, and deformed blood-retina barrier; 

(D) wet AMD is characterized by choroidal neovascularization across Bruch’s Membrane 

into the macula, leading to subretinal hemorrhage and possibly retinal detachment. AMD: 

age-related macular degeneration; BM: Bruch’s Membrane; IPL: inner plexiform layer; INL: 

inner nuclear layer; RPE: retinal pigment epithelium
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Figure 3. 
The flow of ROS in the retina. Mitochondria respond to high energy demand in the retina by 

synthesizing ATP, a by-product of which is the potent ROS superoxide radical. Superoxide 

radical is converted to less reactive species through a sequence of enzymatic and non-

enzymatic pathways. If mitochondrial ROS release exceeds antioxidant scavenging capacity, 

ROS accumulate in the retina and can react with macromolecules, including DNA and 

unsaturated phospholipids. Elevated ROS and oxidation-modified by-products elicit chronic 
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inflammation, contributing to retinal pathologies like AMD. ROS: reactive oxygen species; 

AMD: age-related macular degeneration
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Figure 4. 
Retinal impact of wet AMD risk factors. (A) Depicts age-related lipofuscin accumulation 

and drusen formation; (B) the ARMS2-HTRA1 locus is a prominent genetic risk factor for 

AMD, resulting in excess HTRA1 expression and heightened degradation of RPE 

extracellular matrix and Bruch’s Membrane; (C) oxidative stress due to mitochondrial 

superoxide release and bloodborne cigarette smoke extracts alter transcriptional pathways 

that increase oxidative load in the retina. AMD: age-related macular degeneration; RPE: 

retinal pigment epithelium
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Figure 5. 
The proposed HTRA1-MMP9 axis in wet AMD. The ARMS2-HTRA1 risk haplotype 

increases expression of HTRA1, heightening the degradation of ECM constituents. HTRA1-

mediated cleavage of the ECM protein fibronectin generates fibronectin fragments, which 

stimulate MMP9 expression. Positive feedback between MMP9 and VEGF promotes CNV 

and leads to wet AMD. AMD: age-related macular degeneration; ECM: extracellular 

membrane; VEGF: vascular endothelial growth factor; CNV: choroidal neovascularization
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Table 1.

Comparison of risk factors and clinical features between AMD and related retinal dystrophies

Disease Risk factors Clinical features Ref.

Age-related 
macular 
degeneration 
(AMD)

Age > 55 years is the greatest risk factor Genetic: strongly 
associated with variants in the CFH and ARMS2-HTRA1 
loci; other variants also implicated
Environmental: cigarette smoking, high body mass index, 
other oxidative stressors

Development of drusen followed by 
geographic atrophy (GA) and/or choroidal 
neovascularization (CNV)

[5,6]

Polypoidal 
Choroidal 
Vasculopathy 
(PCV)

Like AMD, age > 55 years is a risk factor
Genetic: associated with AMD risk variants in the ARMS2-
HTRA1, CFH, Elastin and C2 loci. Notably, only 
rs10490924, an ARMS2/LOC38771 coding variant, displays 
a statistically significant difference between PCV and AMD 
risk
Environmental: cigarette smoking, high body mass index, 
other oxidative stressors

Abnormal branching network of blood 
vessels displaying polyps or polypoidal 
dilations within the Bruch’s Membrane in 
addition to choroidal thickening

[7–10]

Doyne 
Honeycomb 
Retinal Dystrophy

Genetic: R345W variant in EFEMP1, which encodes 
Fibulin-3, an ECM protein

Radial/honeycomb pattern of drusen 
formation leading into geographic atrophy 
and choroidal neovascularization

[11–13]

Sorby’s Fundus 
Dystrophy

Genetic: loss of function missense and nonsense variants in 
TIMP3, an MMP regulator

Accumulation of drusen in the subretinal 
space preceding subretinal hemorrhaging; 
RPE detachment and atrophy; and possibly 
choroidal neovascularization

[14,15]

Stargardt Disease Genetic: 95% of cases are attributed to variants in ABCA4, 
an ATP-binding cassette transporter protein. The remaining 
5% of cases are associated with variants in STGF4, 
ELOVL4, and PRPH2

Accumulation of A2E and lipofuscin in RPE 
cells, leading to dyschromatopsia and 
macular degeneration. Several variants are 
associated with “fovea-sparing”

[16,17]

Best Vitelliform 
Macular 
Dystrophy

Genetic: variants in BEST1, encoding an ion channel protein 
that regulates Ca2+ signaling

Lipofuscin accumulation within the RPE and 
macular vitelliform lesions, leading to 
cellular atrophy and sometimes choroidal 
neovascularization

[18,19]

Angioid (Knapp) 
Streaks

Phenotype associated with Pseudoxanthoma Elasticum, 
Paget Disease, Ehlers-Danlos Syndrome, sickle cell 
hemoglobinopathies, and other diseases

Calcification of Bruch’s Membrane, leading 
to the development of linear breaks, lesions, 
and choroidal neovascularization

[20–22]
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Table 2.

Inflammatory agents implicated in wet AMD progression

Protein Location Function Ref.

IL-6 Soluble Induces expression of angiogenic cytokines, including VEGF; regulates CNV progression [62–64]

IL-8 Soluble Pro-angiogenic factor; strong chemotactic factor for neutrophils; elicits VEGF-A and VEGFR2 
expression by endothelial cells

[65–67]

MCP-1/ CCL2 Soluble Regulates migration and infiltration of monocytes and macrophages; participates in VEGF-

induced angiogenesis; and contributes to the formation of sub-foveal choroidal neovascular 
membranes

[63,68–70]

CCR2 Membrane Promotes CNV formation by enhancing recruitment of myeloid cells [68]

ICAM-1 Membrane Associates with inflammatory cells in subretinal neovascular lesions [71]

VEGF Soluble Most prominent pro-angiogenic factor that stimulates CNV [72]

IP-10 Soluble Associated with CNV [73]

TGF-β Soluble Both promotes and inhibits CNV via diverse signaling pathways [74,75]

IFN-γ Soluble Anti-angiogenic cytokine; induces expression of CFH and major histocompatibility complex-II in 
RPE cells

[76,77]

IGF-1 Soluble Pro-angiogenic cytokine; promotes CNV [78,79]

IL: interleukin; CCL2:C-C motif chemokine ligand 2; MCP1: monocyte chemotactic protein 1; ICAM1: intercellular adhesion molecule 1; VEGF: 
vascular endothelial growth factor; IP-10: interferon gamma-inducible protein-10; TGF-β: transforming growth factor β; IFN-γ: interferon γ; 
IGF-1: insulin-like growth factor-1; AMD: age-related macular degeneration; CNV: choroidal neovascularization
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