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Abstract: Aflatoxin B1 is one of the contamination indicators for food safety monitoring. The
rapid and effective assessment and determination of AFB1 in food is of great importance to dietary
safety. The lateral flow assay shows advantages in its simplicity, and rapidity, and provides a
visual readout, while the available lateral flow assay for AFB1 requires a competitive format that
produces readings inversely proportional to the AFB1 concentration, which is counterintuitive and
may lead to a potential misinterpretation of the results. Herein, we developed a positive readout
aptamer-based lateral flow strip (Apt-strip) for the detection of AFB1. This Apt-strip relies on the
competition between AFB1 and fluorescein-labeled complementary DNA strands (FAM-cDNA) for
affinity binding to limited aptamers against AFB1 (AFB1-Apt). In the absence of AFB1, AFB1-Apt
hybridizes with FAM-cDNA. No signal at the T-line of the Apt-strip was observed. In contrast,
AFB1-Apt binds to AFB1 in the sample, and then a part of the FAM-cDNA is hybridized with the
free AFB1-Apt, at which time the other unreacted FAM-cDNA is captured by A35-Apt on the T-line.
The signal was observed. This method achieved fast detection of AFB1 with a detection limit (DL) of
0.1 ng/mL, positive readout, and increased sensitivity.

Keywords: positive readout; lateral flow assay; aptamer; aflatoxin B1

1. Introduction

Aflatoxin B1 (AFB1), a fungal metabolite, is highly toxic and carcinogenic to humans
and animals [1,2], and it is most commonly found in cereal and oil foods [3]. Long-term
exposure to very low levels of AFB1 in feed and food is a threat to human and animal
health [4,5]. In order to protect the health of humans and animals, many countries and
regions have set the maximum allowable limit of AFB1 (Table S1) in feed and food [6,7].
The National Food Safety Standards of China (GB 2761-2017) stipulate that AFB1 is one of
the compulsory inspection items for most foods. Therefore, it is particularly important to
establish an accurate and rapid method for the determination of AFB1 in food. Currently,
liquid-chromatography-based methods, including high-performance liquid chromatogra-
phy (HPLC) and liquid chromatography–tandem mass spectrometry (LC–MS/MS), are
already officially accepted for the quantitative analysis of AFB1. However, these methods
have the disadvantages of being time consuming, requiring expensive equipment and
professional technicians to operate, and are not suitable for the rapid on-site screening
of bulk samples. The enzyme-linked immunosorbent assay (ELISA) [8] is an alternative
method for the rapid analysis of AFB1. Nevertheless, the antibodies are costly and not
easily stored, which limit its application in the rapid analysis of AFB1.

Lateral flow assay (LFA) has been widely used for the rapid determination of AFB1 [9–12]
because of its simplicity, portability, cost effectiveness, and suitability for on-site screen-
ing [13–16]. In 2005, Delmulle et al. prepared an LFA strip using colloidal gold as a signal
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marker for the rapid assay of AFB1 [17]. Subsequently, there has been a significant increase
in the number of studies based on colloidal gold LFA for the detection of AFB1 [18–20].
Until 2014, Wang first reported the use of luminescent nanomaterials as signal amplifiers
for the more sensitive detection of AFB1 [21]. Since then, various luminescent materials,
including quantum dots [22–25] and fluorescent microspheres [26,27], have been used as
signal probes for the LFA technique to enhance the sensitivity of AFB1 detection. Recently,
in view of the high cost and fallibility of antibodies, aptamer-based lateral flow strips have
been developed to detect AFB1 [28–30]. However, the currently reported LFA methods
for detecting AFB1 produce readings inversely proportional to the analyte content; i.e.,
negative samples have the strongest T-line signal intensity, while positive samples have
a decreasing T-line signal intensity with an increasing AFB1 concentration. This is coun-
terintuitive [31]. In particular, when the AFB1 concentration is at the critical value, the
sensitivity is low and the observations are not intuitive.

In this paper, we proposed a positive readout aptamer-based lateral flow strip (Apt-
strip) for the detection of AFB1. The Apt-strip indirectly assays AFB1 utilizing the com-
petition of AFB1 and 6-FAM labeled DNA complementary strands (FAM-cDNA) to the
affinity binding to AFB1-Apt. This Apt-strip presents a positive readout. With the increase
in AFB1 concentration, the greater the amount of FAM-cDNA hybridized at the T-line, and
the stronger the fluorescence intensity showed. Through using this Apt-strip, AFB1 can
be rapidly detected within 15 min, and the detection limit (DL) is less than 0.1 ng/mL.
The method possesses the characteristics of good selectivity, a strong anti-interference
ability, high sensitivity, and the potential for the rapid and on-site screening of AFB1 in the
food matrix.

2. Results and Discussion
2.1. Principle of the Apt-Strip

The principle of the Apt-strip is shown in Scheme 1. FAM-cDNA is loaded on the con-
jugate pad, and the streptavidin-labeled aptamer against AFB1 is immobilized at the T-line
(Scheme 1a). For AFB1-positive samples analysis, AFB1 competes with FAM-cDNA to bind
to the affinity ligand AFB1-Apt in a solution, forming the AFB1-Apt/AFB1 complex. Then,
the AFB1-Apt/AFB1 complex and free FAM-cDNA probe migrate to the NC membrane,
and the A35-Apt of the T-line hybridized with the free FAM-cDNA probe, resulting in
the formation of double-stranded DNA (hybridized A35-Apt/FAM-cDNA probe) and the
immobilization of FAM-cDNA at the T-line. As a result, a fluorescent spot is observed at the
T-line with a ChemiDocTM MP system (Scheme 1b). The fluorescence intensity is increased
by increasing the concentration of AFB1, which can be used for the quantitative analysis
of AFB1. For negative samples, the free FAM-cDNA probes hybridize with AFB1-Apt in a
solution to form double-stranded DNA (AFB1-Apt/FAM-cDNA probe) instead of A35-Apt
of T-line, leading to a negative fluorescence signal at the T-line.

The results of the qualitative analysis can be identified by the naked eye with the
aid of the ChemiDocTM MP system. For quantitative results, this is achieved by further
analysis of the image. The specific steps are as follows. First, the strip is imaged using the
ChemiDocTM MP system. Then, the fluorescence intensities are converted to numerical
values with the help of software Image J. The relationship between the AFB1 concentration
(X) and fluorescent intensity (Y) can be obtained by constructing a fitting curve.

2.2. Optimization of cDNA Length

The affinity of the cDNA and aptamer is a vital factor for the competition of cDNA and
AFB1 to bind to the aptamer, which differs depending on the length of the cDNA [32–36].
For this reason, we optimized the length of cDNA, ranging from 10 to 16 nucleotides.
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Scheme 1. (a) Schematic diagram of the Apt-strip analytical device. (b) Working principle and
detection procedures of the Apt-strip for AFB1 detection.
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As shown in Figure 1, with the increase in cDNA length (n), both blank samples and
AFB1 samples (100 nM) showed an increasing fluorescence intensity, which resulted from
stronger hybridized double-stranded DNA between the cDNA with a longer length and
aptamer. The biggest fluorescence intensity change induced by AFB1 was obtained when
cDNA with 12 nucleotides (12-cDNA). The results indicate that cDNA with more than
12 nucleotides is not in favor of the competition of AFB1. Thus, 12-cDNA was selected as
the complementary strand for the subsequent tests.

Figure 1. Effects of n-cDNA on the fluorescence intensity of the A35-apt coupled with FAM labeling
in the absence (0 nM) or presence (100 nM) of AFB1.

2.3. Analytical Performance of the Apt-Strip

To verify the feasibility of the Apt-strip for the detection of AFB1, different con-
centrations of AFB1 (0, 0.1, 1, 5, 10, 30, 60, and 100 ng/mL) were analyzed using the
Apt-strip. Buffer C containing10 mM Tris-HCl (pH 7.4), 50 mM NaCl, 10 mM MgCl2, and
10% methanol was used as the assay buffer.

As shown in Figure 2a, there was no fluorescence signal at the T-line for the blank sample,
and the fluorescence signal appeared when the AFB1 concentration was 0.1 ng/mL. Then,
the fluorescence intensity gradually increased with the increase in AFB1 concentration, and
the fluorescence intensity reached the highest when the AFB1 concentration was 100 ng/mL.
The calibration curve (Figure 2c) was constructed using fluorescence intensity (Y) against
the concentrations of AFB1 (X). The fitted equation was Y = 11,891 − 11,751 × exp (−0.05X)
with a reliable correlation coefficient (R2 = 0.9864), and the dynamic range of AFB1 was
from 0.1 ng/mL to 100 ng/mL. The DL for the qualitative evaluation was defined as the
minimum concentration when displaying a very weak fluorescence intensity at the T-line,
compared with a blank sample [37]. Therefore, the DL was less than 0.1 ng/mL, which was
comparable to the value previously reported using other antibody or other aptamer-based
LFA (Table 1). In addition, the DL was less than the minimum allowable limit of AFB1
(Table S1) set by different countries and regions. Therefore, the Apt-strip could meet the
various screening requirements of AFB1. It is noteworthy that compared with other strips
for AFB1 detection, the Apt-strip showed a positive readout, which means the fluorescence
signal increased with the increase in AFB1 concentration. This positive readout method
is more convenient and sensitive for qualitative analysis, especially for the analysis of
samples containing very small amounts of AFB1. To the best of our knowledge, no AFB1
detection method has been reported by positive readout strips, and this strategy is the first
report of positive readout test strips for AFB1 detection.
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Figure 2. (a) Images of Apt-strips after the assay procedures. The numbers below the strips are the
standard concentrations of AFB1 (ng/mL). (b) Fluorescence intensity at the detection line of Apt-
strips identified by image J. (c) The calibration curve for the quantitation of AFB1 using fluorescence
intensity versus the concentration of AFB1. Error bars are based on three duplicate measurements of
different AFB1 concentrations.

Table 1. Comparison of the Apt-strip in this study with other methods for AFB1 detection based
on LFA.

Type T-line Probes Signal
Readout DL Signal Reader Ref.

Antibody-strip AFB1-BSA colloidal gold-mAb negative 5 µg/kg Strip reader [5]

Antibody-strip AFB1-BSA QB-mAbs negative 1 ng/mL A fluorescent
reader [23]

Antibody-strip AFB1-BSA mAb@Eu-
nanosphere negative 0.16 µg/kg Fluorescent

strip reader [38]

Antibody-strip AFB1-BSA Ab-GNPs negative 0.1 µg/kg Strip reader [39]

Antibody-strip AFB1–OVA gold-labeled
antibody negative 5 µg/kg ICheck-III card

reader [10]

Nanozyme-strip AFB1-BSA MnO2NSs-mAb negative 15 pg/mL Smart phone [40]

Aptamer-strip AFB1-BSA Cy5-Aptamer negative 0.1 µg/kg Fluorescent strip
reader [41]

Aptamer-strip DNA single
strand Cy5-Aptamer negative 0.16 µg/kg The portable

multi-target reader [28]

Aptamer-strip SA Cy5-Aptamer negative 0.1 ng/mL ChemiDocTM MP
System [42]

Aptamer-strip bio-DNA
probe-SA

NGPs-Aptamer negative 0.5 µg/mL Strip reader
[43]5 µg/mL Naked eye

Aptamer-strip DNA single
strand FAM-Aptamer Positive <0.1 ng/mL ChemiDocTM MP

System This work
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To assess the precision and accuracy of the prepared Apt-strip, we chose spiked
samples of corn and wheat as the food matrixes. All of the food samples were first analyzed
by the HPLC-FLD method to ensure there was no contamination of AFB1.

First, we accurately weighed 5 g of the sample into a 50 mL PP tube. Then, we added
the appropriate amount of different concentrations of the AFB1 standard solution. The
spiked samples were processed as in Section 3.6. The extracts were analyzed using the
Apt-strip. Experimental results in Table 2 indicate that the recoveries were in the range of
50.0–97.0% for AFB1 with relative standard deviations (RSDs) less than 36.7%, and were
acceptable within the requirements of No. 401/2006 [7]. These results suggest that the
Apt-strip developed in this study can be used for the quantitative and qualitative detection
of AFB1 in real samples.

Table 2. Recovery results of spiked samples using the Apt-strip.

Sample AFB1 spiked
(ng/g)

Detected
(ng/g)

Recovery
(%)

RSD
(%)

Corn
1 0.5 a 50.0 36.7
3 2.9 96.7 8.7

10 9.7 97.0 6.1

Wheat
1 0.5 50.0 21.7
3 2.5 83.3 8.4

10 9.6 96.0 7.3
a Take three parallel samples. Each sample was measured three times, and the average value was used for
data processing.

To verify the specificity of the Apt-strip for AFB1, we tested several mycotoxins,
including OTA, AFG1, AFG2, ZAE, and the mixture of AFB1 with the above mycotoxins
together. AFB1 and other mycotoxins were all tested at 50 ng/mL. The results are shown in
Figure 3. The tested mycotoxins did not cause a significant increase in intensity (Figure 3b),
while AFB1 induced a clear fluorescence spot (Figure 3a). The mixture of these mycotoxins
with AFB1 presented a similar fluorescence spot as for the AFB1 sample. The results indicate
that the Apt-strip had a good selectivity for AFB1 detection.

Figure 3. Specificity verification of the Apt-strip by comparing AFB1 (50 ng/mL) and four other
mycotoxins (50 ng/mL). (a) Images of the results of the Apt-strip assaying various toxins. (b) Com-
parison of intensity of various toxins detected using Apt-strip. From left to right: (1) blank; (2) AFB1;
(3) OTA; (4) AFG1; (5) AFG2; (6) ZEN; (7) mixture of AFB1 and other four mycotoxins.

To evaluate the stability of the Apt-strip, stability experiments over time were carried
out. Apt-strips of the same batch were placed in foil pouches with a desiccant, and were
stored at room temperature for 90 days. Then, the strips were used to detect different
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concentrations of AFB1 (0, 0.1, 1, 5, 10, 30, 60, and 100 ng/mL), and the detection was
performed once every 24 h. The Apt-strip assayed different concentrations of AFB1, and
the RSDs were all less than 5.3% (Table 3), indicating that the repeatability of the Apt-
strip remained consistent. Trend plots with a 24 h interval (Figure 4) show that there was
no change in trend over time. These results show that the performance of the Apt-strip
remained stable after 90 days of storage at room temperature.

Table 3. Stability results of the different concentrations of AFB1 using Apt-strip (n = 5).

Concentrations of AFB1
(ng/g) Intensity (a.u) a RSD

(%)

0.1 294.7 ± 15.4 5.3
1 582.9 ± 21.7 3.8
5 2800.7 ± 75.9 2.8
10 5460.2 ± 188.2 3.5
30 9457.6 ± 312.8 3.4
60 11,249.7 ± 444.8 4.0

100 11,700.2 ± 352.2 3.1
a Mean ± SD, is the mean and standard deviation of five measurements with a 24 h interval between each test.

Figure 4. Trend plots of the response values of the Apt-strip to different concentrations of AFB1 with
a 24 h interval.

2.4. Detection of AFB1 in Real Samples

To evaluate the practicability of the Apt-strip in real samples, 25 batches real sam-
ples were analyzed using the Apt-strip and HPLC-FLD. First, 25 batches of real samples,
composed of 13 corn, 6 wheat, and 6 sorghum, were collected from Changzhi City, Shanxi
Province, China. Table 4 shows that 11 out of 25 samples were found to have AFB1. The
residual level of AFB1 ranged from 2.4 ± 0.7 µg/kg to 75.3 ± 5.3 µg/kg. All the samples
were confirmed by HPLC-FLD analysis. The results of the Apt-strip were not false-positive
or false-negative. Figure 5 indicates that the two methods yielded consistent results with a
good correlation (R2 = 0.9938). The above results demonstrate that the Apt-strip is reliable
and accurate for thepractical qualitative and quantitative detection of AFB1 in real samples,
and is a portable tool for the on-site detection of AFB1.
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Table 4. Analysis results of the Apt-strip and HPLC-FLD for AFB1 in maize, wheat, and sorghum
samples (n = 3).

Category Sample No Apt-Strip a (µg/kg) HPLC-FLD (µg/kg)

Maize

1 ND b ND
2 ND ND
3 5.4 ± 1.2 6.3 ± 0.8
4 ND ND
5 12.6 ± 1.8 10.8 ± 0.8
6 32.4 ± 2.4 30.2 ± 1.0
7 ND 0.1
8 75.3 ± 5.3 80.2 ± 2.4
9 18.4 ± 1.8 17.4 ± 0.9

10 10.8 ± 0.9 11.6 ± 0.6
11 ND ND
12 7.6 ± 1.6 8.9 ± 0.6
13 ND ND

Wheat

14 ND ND
15 ND ND
16 3.2 ± 1.5 3.7 ± 1.1
17 23.6 ± 3.4 25.4 ± 0.7
18 ND ND
19 ND ND

Sorghum

20 ND ND
21 ND ND
22 15.3 ± 1.9 13.3 ± 0.6
23 2.4 ± 0.7 1.8 ± 1.2
24 ND ND
25 ND ND

a Values are expressed as the mean ± standard deviation. b ND: None detected (<DL).

Figure 5. Correlation between Apt-strip and HPLC-FLD for the quantification of AFB1 in real
samples (n = 3).

3. Materials and Methods
3.1. Reagents and Materials

AFB1, aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), zearalenone (ZEN), and ochra-
toxin A (OTA) were purchased from Aladdin (Shanghai) Co., Ltd. (Shanghai, China).
First, 96-Microwell plates (flat bottom) were purchased from Thermo Fisher Scientific Inc.
(Shanghai, China). The nitrocellulose (NC) membrane, sample pad, conjugate pad, ab-
sorbent pad, and PVC backing were purchased from Shanghai Jieyi Biotechnology Co.,
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Ltd. (Shanghai, China). All of the other reagents were purchased from Sangon Biotech
(Shanghai) Co., Ltd. (Shanghai, China).

3.2. Aptamer and DNA Probes

The aptamer sequence was referenced from our previously published paper [44]. The
complementary DNA (cDNA) of the aptamer was designed for the development of LFA.
Aptamer and cDNA were ordered from Sangon Biotechnology Co., Ltd. (Shanghai, China),
and the sequences are listed in Table 5. A35 had one biotin label at the 3’ terminus and a
TEG (triethylene glycol) linker. The cDNA each had one 6-FAM label at the 3’ terminus.

Table 5. Sequences of aptamer and cDNA.

Name Sequences (5’-3’)

A35-Apt TGCACGTGTTGTCTCTCTGTGTCTCGTGCTTTTTT-biotin-TEG
AFB1-Apt TGCACGTGTTGTCTCTCTGTGTCTCGTGC
10-cDNA AACACGTGCA-6-FAM
12-cDNA ACAACACGTGCA-6-FAM
14-cDNA AGACAACACGTGCA-6-FAM
16-cDNA AGAGACAACACGTGCA-6-FAM

3.3. Preparation of A35-Apt Coated Microplates

The A35-Apt was coated on the surface of 96-well black microplates by the following
steps. Firstly, 100 µL of streptavidin (SA, 10 µg/mL) in 0.1 M Na2CO3 solution (pH 9.6)
was added into the wells of the microplates and they were incubated overnight at 4 ◦C.
Then, after washing three times with 150 µL of buffer A (10 mM Tris-HCl (pH 7.5), 150 mM
NaCl, and 0.1% Tween 20), the wells of the microplate were bound with 200 µL of buffer A
containing 10 mg/mL BSA at 25 ◦C for 2 h under shaking. The wells were washed with
250 µL of buffer A. Next, 100 µL of buffer A containing 25 nM biotinylated A35-Apt was
added to the SA coated wells, and the mixture was incubated for 1 h at 25 ◦C under shaking.
Finally, the wells were washed three times with 200 µL of buffer B (10 mM Tris-HCl (pH 7.5),
10 mM MgCl2, and 50 mM NaCl), and the A35-Apt coated microplate was ready for the
analysis of targets.

3.4. Optimization Procedure of cDNA Length

The optimization was as follows. Firstly, 100 µL of buffer B containing 100 nM AFB1
was added to each of the four wells of the A35-Apt coated microplates, and 100 µL of
20 nM n-cDNA (n = 10, 12, 14, and 16) was added sequentially. Secondly, the mixtures
were incubated for 10 min at room temperature, and the wells were washed three times
with buffer B. Thirdly, 100 µL of buffer B was added sequentially to the four wells, and the
fluorescence intensity was measured using a multifunctional enzyme marker (Infinite M
Plex, λex/em = 495/517 nm). Meanwhile, buffer B without AFB1 (AFB1 0 nM) was used as
a control.

3.5. Manufacture of the Apt-Strip

The structure of the Apt-strip is shown in Scheme 1a. Firstly, an NC membrane was
treated with a streptavidin labeled aptamer against AFB1 (A35-Apt-SA, 30 µM, 0.5 µL/cm)
for T-line, and a conjugate pad was treated with cDNA (2 µM, 5 µL/cm). Then, the treated
NC membrane and conjugate pad were dried at 37 ◦C for 20 min. Secondly, the test strips
were assembled according to Scheme 1a, and the joints overlapped by 2 mm. Thirdly, the
strip was cut into 4 mm wide test strips and stored in a desiccator at room temperature until
use. In our experiments, we omitted the preparation of the control line (C-line) because it
is very simple and always effective in actual operation [43]. Note that the final Apt-strip
design would include a control line.
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3.6. Assay Procedure of AFB1 in Food Samples

The food samples were prepared according to the procedure described in GB 5009.22-2016
of China. Briefly, solid samples of food were ground, weighed (5 g), and transferred
into a 50 mL PP tube, and then extracted with 20 mL methanol/water (70:30, v/v) by
homogenizing for 5 min, followed by centrifugation at 5000 r/min for 5 min at 4 ◦C. The
supernatant was collected and diluted seven times with buffer B to obtain a sample solution.

The procedure for determining AFB1 using Apt-strip is as follows. Forst, 2 µL of
AFB1-Apt (2 µM) and 50 µL of the sample solution were mixed in a PP tube and incubated
at 25 ◦ C for 5 min, and then the mixture was placed on the Apt-strip. After 10 min, the
results were observed by the ChemiDocTM MP system. Then, the fluorescence intensity at
the T-line was scanned with Image J software to achieve a quantitative analysis of the assay
results. All of the assays were repeated three times.

3.7. HPLC-FLD Confirmation

The reliability and practicability of the Apt-strip was further confirmed by HPLC-FLD
analysis using the retention time and chromatographic peak area of AFB1 as the basic
parameters. The specific analytical conditions are listed in the supporting information
(HPLC-FLD conditions).

4. Conclusions

In this paper, we report a positive readout Apt-strip for the detection of AFB1 in
food. We used competition between AFB1 and FAM-cDNA to bind the limited AFB1-Apt
and free FAM-cDNA hybridized to A35-Apt at the T-line, and detected AFB1 indirectly by
measuring the fluorescence intensity at the T-line. The DL of this method was 0.1 ng/mL for
AFB1 in buffer and 0.3 ng/g in food, with a dynamic range of 0.1–100 ng/mL in the buffer
and an R2 of 0.9864. The sensitivity and selectivity were very satisfactory. The validation
results on the spiked samples and real samples show that the method is dependable. In
addition, the Apt-strips are low-cost, and the detection process does not require specialized
technicians and it can be used as a rapid scanning tool for food industries or regulatory
laboratories. This work is expected to provide new insight into the detection of other
food contaminants.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27154949/s1, Table S1: The maximum tolerable limit of
AFB1 in feed and food set by different countries; HPLC-FLD conditions.
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