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Recent advances in brain decoding have made it possible to classify image categories
based on neural activity. Increasing numbers of studies have further attempted to
reconstruct the image itself. However, because images of objects and scenes inherently
involve spatial layout information, the reconstruction usually requires retinotopically
organized neural data with high spatial resolution, such as fMRI signals. In contrast,
spatial layout does not matter in the perception of “texture,” which is known to be
represented as spatially global image statistics in the visual cortex. This property of
“texture” enables us to reconstruct the perceived image from EEG signals, which have
a low spatial resolution. Here, we propose an MVAE-based approach for reconstructing
texture images from visual evoked potentials measured from observers viewing natural
textures such as the textures of various surfaces and object ensembles. This approach
allowed us to reconstruct images that perceptually resemble the original textures with
a photographic appearance. The present approach can be used as a method for
decoding the highly detailed “impression” of sensory stimuli from brain activity.

Keywords: visual texture, multimodal variational auto encoder (MVAE), DNN (deep neural network), brain
decoding, EEG

INTRODUCTION

In the field of neuroscience, an increasing number of studies have been conducted to estimate
perceptual content and psychological states by extracting certain statistical patterns from brain
activity data (Kamitani and Tong, 2005; Schwartz et al., 2006; Miyawaki et al., 2008; Carlson et al.,
2011; Green and Kalaska, 2011; Nishimoto et al., 2011). A number of “brain decoding” techniques
that identify the object category of an image from the fMRI-BOLD signal have been reported
(Shenoy and Tan, 2008; Das et al., 2010; Wang et al., 2012; Carlson et al., 2013; Stewart et al., 2014;
Kaneshiro et al., 2015). In recent years, ambitious attempts have been made to reconstruct the image
itself from brain activity (Palazzo et al., 2017; Shen et al., 2019a,b). For instance, Shen et al. (Shen
et al., 2019a) proposed a method of decoding visual features for each hierarchical stage of visual
information processing from an fMRI signal using a deep neural network (DNN) (Krizhevsky et al.,
2012; Simonyan and Zisserman, 2015; He et al., 2016) and successfully reconstructed not only the
presented image but also the image that an observer imagined in her/his mind.

While excellent decoding is supported by the big data of fMRI, the scope of application is
limited by the high costs and potential invasiveness of fMRI. To overcome this limitation, several
studies adopted EEG, which provides an easy, cheap, and non-invasive way to collect brain activity
data. Palazzo et al. (2017) introduced a method for reconstructing the image of an object from
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EEG signals by converting the EEG signals into features
and conditioning generative adversarial networks (GANs)
(Goodfellow et al., 2014) by it. This approach allowed them
to reconstruct an image that can be correctly classified into
the original object category [EEG classification accuracy: 84%,
Inception Score (IS): 5.07, Inception Classification accuracy
(IC): 0.43]. However, as pointed out by the authors themselves,
their result is a product of a generative model conditioned by
categorical information extracted from an EEG signal and not
the direct reconstruction of the image itself actually given to the
observer. It is evident that this method fails to reproduce aspects
of the perceptual realism of an image, such as the detailed shape,
sharp contours, and textures. This limitation seems unavoidable
considering the small data size of EEG signals, especially in terms
of spatial resolution.

Against the above background, it is of interest to explore
the use of texture images in decoding from EEG signals. The
perception of a texture is based on spatially global image statistics
(Julesz, 1965; Heeger and Bergen, 1995; Portilla and Simoncelli,
2000; Landy and Graham, 2004; Freeman and Simoncelli, 2011),
and it is even possible to synthesize perceptually similar texture
images using only those statistics (Portilla and Simoncelli, 2000).
Such statistical information is represented in the low- and mid-
level visual cortex, such as V1, V2, and V4 (Freeman et al., 2013;
Okazawa et al., 2015, 2017; Ziemba et al., 2019), and used in
the rapid perception of scenes, objects, and surface materials
(Thorpe et al., 1996; Oliva and Torralba, 2001; Motoyoshi
et al., 2007; Rosenholtz et al., 2012; Whitney et al., 2014). In
convolutional neural network (CNN), which computationally
mimics neural processing in the ventral stream of the visual brain,
the spatially global information obtained by the Gram matrix
transformation of features extracted from each hierarchical layer
stage corresponds to texture representation (Gatys et al., 2015,
2016).

According to these findings, it is expected that texture can be
reconstructed from EEG signals by estimating the information
that correlates with the spatially global statistics for texture
representation. In fact, the recent study (Orima and Motoyoshi,
2021) were able to estimate lower-order image statistics from
visual evoked potentials (VEPs) using a linear regression model
and synthesize the texture images with identical image statistics.
Using the Image-VEP dataset collected in that study, the present
paper proposes a CNN-based method that allows a high quality
of reconstruction of the original texture image from a VEP for a
variety of natural textures.

MATERIALS AND METHODS

Texture perception is essentially based on the visual appearance,
or impression, of an image according to the continuous
perceptual similarity, rather than categorical conceptual
knowledge as required for object recognition. From this view,
we specifically adopted an MVAE-based approach (Suzuki et al.,
2017; Wu and Goodman, 2018; Kurle et al., 2019; Shi et al., 2019;
Tsai et al., 2019) that acquires a continuous latent representation
shared by a texture image and EEG signal. Using the trained

MVAE model, we attempted to reconstruct the texture image
from the latent variables obtained when only one-modality
information, EEG data, was input.

In our approach, the MVAE model is trained with the texture
images and VEP as two-modality information. After training, the
latent space shared by the two modalities is acquired in the model.
Finally, the test texture image is reconstructed from the latent
variable obtained from the corresponding EEG signals input to
the trained model.

EEG Measurement
In training the model, we used the dataset obtained by Orima
and Motoyoshi (2021). The dataset comprises EEG signals for 166
natural texture images, with each signal measured for a period of
500 ms, 24 times, for each of 15 human observers. Figure 1 shows
examples of texture images used in EEG measurements.

Visual stimuli were images of 166 natural textures subtending
5.7 deg × 5.7 deg (256 × 256 pixels). The images were collected
from the Internet and our own image database. Each image
was achromatic and had a mean luminance of 33 cd/m2. In
each of 24 measurement blocks, 166 images were presented in
random order for 500 ms followed by a 750-ms blank that is
equal to a uniform gray background and 15 observers viewed
each image with their eyes steadily fixed at the center of the
image. During each block, the VEP was measured using 19
electrodes (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7,
T8, P7, P8, Fz, Cz, and Pz according to the international 10/20
method; BrainVision Recorder, BrainAmp Amplifier, EasyCap;
Brain Products GmbH) at a 1,000-Hz sampling rate. All stimuli
were presented on a gamma-corrected LCD (BENQ XL2420T).
The refresh rate of the LCD was 60 Hz, and the spatial resolution
was 1.34 min/pixel at an observation distance of 100 cm. All
measurements were conducted in accordance with the Ethics
Committee for Experiments on Humans at the Graduate School
of Arts and Sciences, The University of Tokyo. The participants
completed a written consent form.

Multimodal Variational Auto Encoder for
Image Reconstruction From EEG Signals
Considering the continuous and variegated nature of natural
textures as visual information, we consider a variational auto
encoder (VAE) -based (Kingma and Welling, 2013) approach in
which the texture images and the corresponding EEG signals are
represented in a continuous latent space.

The VAE is a deep generative model that conducts its
generation process by deep learning assuming the existence of a
latent variable z when data v are observed (Kingma and Welling,
2013; Kingma et al., 2014; Dai et al., 2015; Krishnan et al.,
2015). Here, by assuming that latent variables are represented
on a probabilistic distribution space, we can perform continuous
representation learning on the observed input data (Equation 1).

z ∼ p (z) = N(0, I), v ∼ pθ (v | z) (1)

In the VAE, the observed input data v are transformed by
the encoder into a contractive intermediate representation called
latent variable z, and the decoder reconstructs the original input

Frontiers in Computational Neuroscience | www.frontiersin.org 2 November 2021 | Volume 15 | Article 754587

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-15-754587 November 17, 2021 Time: 15:54 # 3

Wakita et al. Visual Texture Reconstruction From EEG

FIGURE 1 | Examples of texture images used in the EEG measurement.

data v′ with this latent variable as input. The entire model is
trained so as to minimize the difference between the input data
v and the reconstructed data v′, and the model parameters of
the encoder and decoder are updated. The encoder and decoder
comprise a neural network. [In the following,8 and θ refer to the
model parameters of the encoder and decoder, respectively, and
the multivariate Gaussian distribution is denoted p(z)].

More practically, the target of training is to maximize the
marginal likelihood pθ(v), but because this cannot be treated
directly, we optimize the model parameters of the encoder
qφ (z | v) and decoder pθ(v|z) to maximize the evidence lower
bound (ELBO) given in Equation 2.

In Equation 2, the first term on the right-hand side is called
the regularization term. This term regularizes the latent variable
z, which is obtained from the mean vector µ and variance vector
σ output by the encoder, to distribute according to prior p (z).

The second term on the right-hand side is the reconstruction
error term, which minimizes the difference between the original
input data v and v′, the input data reconstructed from the decoder
using the latent variable z. β and λ are weight parameters.

ELBO (v) = −βDKL(qφ (z|v)
∣∣p (z))+ Eqφ(z|v)[λlogpθ (v|z)]

(2)

As an extension of the VAE, the multimodal VAE, which treats
multimodal information as input, has been proposed (Suzuki
et al., 2017; Wu and Goodman, 2018; Kurle et al., 2019; Shi
et al., 2019; Tsai et al., 2019). This extension is inspired by
the fact that our cognition in the real world uses multimodal
information, not unimodal information (Ngiam et al., 2011;
Srivastava and Salakhutdinov, 2012; Kiros et al., 2014; Pandey
and Dukkipati, 2016). In fact, it is generally known that learning
with multimodal information induces the acquisition of better
informative representations compared with the case of unimodal
information (Ngiam et al., 2011; Srivastava and Salakhutdinov,
2012).

In this study, we apply the extended method for the MVAE
(Wu and Goodman, 2018), which allows inference of latent
variables even under the partial observation of multimodal
information aiming at reconstructing texture images only
from EEG signals.

Here, the texture images and EEG signals are treated as
different information modalities, and the latent representation
shared by these two modalities is acquired by the learning MVAE.
As a result of this training, the stimulus can be reconstructed
by decoding the texture image using latent variables acquired
by the input of a single modality, the EEG signal. Figure 2 is
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FIGURE 2 | Model overview. The MVAE model comprises an encoder and decoder for the EEG signal modality and an encoder and decoder for the texture stimulus
modality. After training this model, the latent space shared by the two modalities is acquired. Thus, the texture stimulus that was presented in the EEG measurement
can be reconstructed from the latent variable obtained by inputting only the EEG signals to this trained model.

an overview of the structure of the MVAE model. The MVAE
model comprises an encoder and decoder for the EEG signal
modality and an encoder and decoder for the texture image
modality. By inputting one or both modalities of information into
the encoder corresponding to the respective modal information,
mean vector µ and variance vector σ can be inferred for the
Gaussian distribution. The mean vector µ and variance vector
σ obtained here are integrated into, and represented as, a single
latent variable using the product of experts (PoE) (Hinton, 2002).
Finally, the reconstructed results of EEG signals and texture
images are obtained by inputting this latent variable to each of
the decoders corresponding to each modal information.

In the training of the MVAE model, there are three
possible patterns for the combination of the observable
modal information (Here, we denote the texture image modal
information as x, the EEG signal modal information as w, and
the observed whole or partial modal information as V = {v :
v1, v2, ...vn}}.)

• V1 = {v : x, w}: Both modalities, the EEG signal and
texture image, can be observed.
• V2 = {v : x}: One modality, the texture image,

can be observed.
• V3 = {v : w}: One modality, the EEG signal,

can be observed.

In reconstructing texture images from EEG signals, which is
the target of this study, it is necessary to obtain a representation
in the latent space shared by the two modalities of texture
images and EEG signals, and to be able to extract latent variables
under the partial modal observation (V2, V3) that are as good as
or similar to those extracted under the full modal observation
(V1). Considering this point, we maximize the ELBO expressed

in Equation 3, proposed by Wu and Goodman (2018), in our
training.

ELBO (V) = −βDKL(qφ (z|V)
∣∣p (z))+ Eqφ(z|V)[∑

vi∈V

λilogpθ(vi|z)
]

(3)

The loss function of the entire model is thus expressed by
Equation 4, and the training proceeds accordingly.

loss =
∑

Vi∈{V1,V2,V3}
−ELBO(Vi) (4)

One issue that should be considered here is that the image
reconstructed using the VAE-based approach is generally blurred.
When we tested the reconstruction with the simple VAE using
texture images, we found that the reconstruction of fine texture
components did not work well, resulting in grayish or blurred
images. This is a crucial issue in the present study because
we are aiming to realize texture reconstruction with visual
similarity to the texture stimuli presented to the observers
during EEG measurement. As a solution to such problems, a
method combining a VAE and GAN (Rosca et al., 2017) has
been proposed to generate natural images and general object
images more realistically. However, in the present paper, it is
necessary to devise a loss function that improves the reproduction
for such texture components when we consider that we use
natural texture images in the present study and particularly when
failing to reconstruct fine and relatively high spatial frequency
components. We thus considered applying precedent knowledge
gained in the field of neural style transfer (Gatys et al., 2016;
Johnson et al., 2016; Ulyanov et al., 2016; Huang and Belongie,
2017), where texture synthesis is conducted using trained DNN
(Gatys et al., 2015).
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In general, VGG is used in the implementation of neural style
transfer. VGG is a representative DNN that achieved excellent
performance in the ILSVRC 2014 (ImageNet Large Scale Visual
Recognition Challenge), showing that deepening the layers of the
CNN contributes to improved classification accuracy in object
recognition tasks (Simonyan and Zisserman, 2015). According
to the knowledge in this field, in the trained VGG-19 model
(Simonyan and Zisserman, 2015), style information at different
levels of abstraction is processed at each stage of the hierarchical
processing, and we can extract fine style information at the
lower layers and global style information at the higher layers.
Additionally, this style information is sufficient for accurate
style transferring and texture synthesis (Gatys et al., 2015, 2016;
Johnson et al., 2016; Ulyanov et al., 2016; Huang and Belongie,
2017). We therefore use this style information in our approach
for more precise texture reconstruction. Specifically, we replace
the reconstruction error term in the ELBO with a combination
of original reconstruction error term and style error term, which
is commonly used in the framework of neural style transfer.
The style error is expressed in Equation 5. Here, we denote the
input image as x, reconstructed image as x′, and set of layers
in the trained VGG-19 from which the style information can
be extracted as L = {1, 2, ..., k}. Style information obtained by
Gram matrix transformation of the output from each layer is
denoted Gx={GL=1, G2, . . . ,Gk

} and Ĝx′={Ĝ
L=1, Ĝ2, . . . ,Ĝk

}

for the input image and reconstructed image respectively. α is
the weighting of style information in each layer, N is the number
of filter maps in each layer of VGG-19, and M is the number of
elements in each filter map in each layer. i, j denote the index of
the vectorized feature map in layer l.

StyleLoss
(

x, x
′
)
=
∑L

l=1 αl
1

4N2
l M2

l

∑
i,j (G

l
ij −Ĝl

ij)
2

(5)

Applying this style error for the loss function confirmed that
the texture pattern can be reconstructed clearly regardless of the
spatial frequency of the texture in the input image.

Psychophysical Experiment Setup
In validating the reconstruction results, we carried out a
behavioral experiment to examine the relative perceptual
similarity of the reconstructed texture to the original. In our
display, the original natural texture (2.6 × 2.6 deg, 128 × 128
pixels) was presented at the center, and reconstructed textures
were presented on the left and right, 3.5 deg from the center.
One reconstructed texture was the target image reconstructed
from EEG signals for the central original texture and the other
was the non-target image reconstructed from EEG signals for
another texture that was chosen randomly from the remaining
165 textures. Six observers with normal or corrected-to-normal
vision viewed the stimuli with a free gaze and indicated the
texture image (left/right) that was perceptually more similar to
the central original texture. Observers were strongly instructed
to evaluate the similarity in terms of the visual appearance and
not in terms of the categorical meaning. This evaluation was
performed on texture images reconstructed using each model
trained with the stratified k-fold cross validation (k = 10). For
each observer, at least five data for each of the texture images

were collected and the probability for each texture image of a
response that “the target appeared more similar” was calculated.
All experiments were conducted using gamma-corrected LCDs
with a refresh rate of 60 Hz (BenQ2720T, SONY PVM-A250,
BENQ XL2730Z, BENQ XL2730Z, BENQ XL2730Z, and BENQ
XL2735B), each of which was installed in a dark room of the
individual observer’s home owing to the COVID19 situation. The
viewing distance was adjusted so that the spatial resolution was
1.0 min/pixel. Other parameters were the same as those in the
EEG measurements.

RESULTS

Multimodal Variational Auto Encoder
Model and Training
The MVAE model was trained using a dataset consisting of 166
natural texture images and EEG signals for those images obtained
from Orima and Motoyoshi (2021). The dataset was divided
into 10 partitions, and stratified k-fold cross-validation (k = 10)
was performed. Each partition contained the EEG signals for
each of the 166 texture images. For evaluation, we conducted
psychological experiments using texture images reconstructed
by inputting the test data set into the models trained in each
cross-validation. In this experiment, we quantitatively evaluated
whether the reconstructed image had a high visual similarity to
the original image according to the human eye. Measurements
of the EEG signals, which were made every 1 ms for 500 ms after
the stimulus onset when the texture stimulus was presented to
the observer, were taken as the values of 500-dimensional vector
data. When we input the EEG signals to the MVAE model, 25–30
samples of EEG signals corresponding to one particular texture
stimuli were selected in random combinations and their average
waveforms were obtained. Then, for each average waveform,
we normalized the maximum value to be 1 and the minimum
value to be zero. Among the electrode channels used in the
EEG measurement, the signals measured at Fp1, Fp2, F3, F4,
C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, and P8 in the
international 10/20 method were used as input. Additionally,
texture images, as the other information modality, was resized
to 128 × 128 on input. At this time, the reconstructed texture
image was also output as a 128 × 128 image. In the training,
the Adam gradient descent method was used with a learning
rate of 1e-4. The batch size was 16. The vector size for the
latent variable of the MVAE model was 256. The MVAE model
comprises an encoder and decoder that treat the texture images
as modal information and an encoder and decoder that treat the
EEG signals as modal information. We used 2D-convolution for
the encoder and decoder that treat the texture images as modal
information, and 1D-convolution for the encoder and decoder
that treat the EEG data as modal information. The architectural
details of the MVAE model are given in Table 1. In the table,
Conv{n}d and UpConv{n}d denote the convolution layer and
transposition convolution layer, respectively. n refers to the
dimension. The parameter of the convolution (Conv, UpConv)
layer is denoted by “Up/Conv{n}d- {kernel size}- {number of
channels}-{stride}.” AvgPool refers to average pooling. FC refers
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TABLE 1 | Details of the model architecture.

Texture-image modal EEG brain signal modal

Encoder Decoder Encoder Decoder

Input 1 × 128
× 128

UpConv2d-3-256-1 Input 16 × 500 FC-256

Conv2d-1-32-1 UpConv2d-2-128-1 Conv1d-3-128-2 UpConv1d-3-256-1

ResNetBlock-
3-32-1

ResNetBlock-3-
128-1

Conv1d-1-128-1 UpConv1d-4-128-2

AvgPool2d UpConv2d-4-128-1 Conv1d-1-128-1 UpConv1d-4-128-2

Conv2d-1-64-1 ResNetBlock-3-64-
1

Conv1d-1-128-1 UpConv1d-4-64-2

ResNetBlock-
3-64-1

UpConv2d-4-64-1 Conv1d-3-256-2 UpConv1d-4-64-2

Conv2d-1-128-
1

ResNetBlock-3-32-
1

Conv1d-1-256-1 UpConv1d-4-32-2

ResNetBlock-
3-128-1

UpConv2d-1-32-1 Conv1d-1-256-1 UpConv1d-4-32-2

Conv2d-1-256-
1

(Sigmoid) Conv1d-1-256-1 UpConv1d-4-1-2

FC-256 (mean),
FC-256(var)

Output 1 × 128 ×
128

Conv1d-3-512-2 FC-638

Conv1d-1-512-1 Output 16 × 500

Conv1d-1-512-1

Conv1d-1-512-1

Conv1d-1-1024-1

Conv1d-1-256-1

GlobalAvgPool1d

FC-256 (mean),
FC-256(var)

to a fully connected layer, and the parameter is FC- {size of each
input sample}. ResNetBlock is a convolutional module that can
be applied to Reflection padding (where the size of the padding
is 1), Convolution, Batch Normalization, and ReLU processes
are conducted twice. The parameters of ResNetBlock are given
as “ResNetBlock- {kernel size}- {number of channels}-{stride}.”
In actual implementation, except for the final output layer, each
convolution layer is followed by batch normalization and ReLU
rectifier processing in order.

Reconstruction of the Texture Image
After training the MVAE model, we reconstructed the texture
image using the test EEG signals as input. More specifically, the
latent variables were extracted from the encoder that treats the
EEG signals as modal information, and the texture images were
reconstructed by inputting these latent variables to the other
decoder that treats the texture image as modal information.

Figure 3 shows examples of reconstructed images. In each
row, the upper images show the original textures, and the
lower images show the textures reconstructed from EEG. It is
seen that most of the reconstructed textures are remarkably
photorealistic, and some are similar to the original textures. The
quality of reconstruction is much higher than that of texture
synthesis based on linear regression reported in our previous
study (Orima and Motoyoshi, 2021).

Psychophysical Experiment
We conducted the psychological experiment described in
section “Psychophysical Experiment Setup” to validate the
reconstruction results. Texture images are evaluated in terms
of their continuous perceptual appearance, whereas general
object images are evaluated based on their categorical semantic
classification. Therefore, in this psychological experiment, we
instructed the observers to select the reconstructed texture image
that is closer to the original image in pure visual appearance
without being confined to the categorical classification.

We prepared 10 samples of reconstructed texture images
for each of the 166 different texture images. Each sample
for a particular texture image was reconstructed from each
of the 10 models in the stratified k-fold cross validation
(k = 10). Six observers participated in the experiment, and
each of the observers followed the experimental procedure five
times in evaluating the reconstruction result for each of the
166 textures. After numbering the 10 samples reconstructed
from each cross-validation model in order (1, 2, 3,..., 10), we
assigned odd-numbered samples to three observers and even-
numbered samples to the remaining three observers. Each
observer performed 830 trials (166 trials, five sessions), and the
total number of trials for all observers was thus 4,980.

The results of the experiment show that the correct
identification rate in all trials was 70.1%, which was significantly
higher than the chance level (50%) based on the binomial
test (p� 0.001). For all the six individual observers, we
found that the correct identification rate for 166 textures was
significantly higher than the chance level (50%) in a one-
tailed t-test (t(165) > 9.77, p < 4.41e− 18). Together with the
observations presented in Figure 3, these results suggest that the
reconstruction was successful.

For more analysis, Figure 4 shows the probability of a response
that “the target appeared more similar” averaged across the six
observers for each of 166 textures. The horizontal axis is the
index of the texture image, sorted from the left in descending
order of the proportion correct. The horizontal red line denotes
the chance level (50%). The asterisks indicate that the average
identification rate across the six observers for that texture is
statically significant in a one-tailed t-test (p < 0.05).

While our method has performed with a certain degree
of success, the reconstruction is limited to the textures used
for training the MVAE model. The establishment of a more
versatile reconstruction approach requires the consideration of
the possibility of reconstruction for unknown novel textures
that were not used in the model training phase. We therefore
considered conducting a limited test of reconstruction on
unknown novel textures. However, it should be explicitly stated
at the outset that the validation in this limited test was not
sufficient. The dataset used in the present study was collected
in our previous study (Orima and Motoyoshi, 2021), which was
not carried out for the purpose of brain decoding. Therefore, the
dataset was not adequate for considering unknown novel texture
reconstruction methods based on sufficient cross-validation. The
results presented below are examined under this constraint.

The novel texture reconstruction based on the MVAE-
based approach proposed in this study is expected to be
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FIGURE 3 | Examples of reconstructed texture images. In each row, the upper images are the original texture images shown to the observer and the lower images
are the images reconstructed from EEG.

FIGURE 4 | Probability of a response that the image reconstructed from the original texture (target) was more similar than the image reconstructed from another
random texture (non-target) to the original image. The horizontal axis shows the index of the texture image, sorted from the left in descending order of the probability.
The red line denotes the chance level (50%). The error bars indicate ± 1 s.e.m. across observers. The asterisks indicate that the average identification rate across six
observers for that texture is statically significant in a one-tailed t-test (p < 0.05).

realized using the intermediate representation of other multiple
textures on the latent space acquired using a variety of
textures according to the nature of the method. Specifically,
the acquisition of an internal representation that can represent
the new texture is important. This is analogous to the use of
visual features in pre-trained DNNs as a proxy for hierarchical
visual representation in the brain in visual decoding study
with fMRI data (Horikawa and Kamitani, 2017; Shen et al.,
2019a). Considering this point, we prepared the dataset in

the following manner. We used 140 of the 166 textures for
training and 26 for testing in this limited test. In preparing
these test textures, we created 83 visually similar pairs from
166 textures based on VGG’s style information. Of these pairs,
we manually selected 26 pairs that did not overlap in visual
impression between the pairs. One of the textures in each of
these 26 pairs was picked as the 26 textures for the test dataset.
The setting in model training was the same as that in cross-
validation training.
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FIGURE 5 | Examples of unknown novel texture reconstruction. The upper images are the original texture images shown to the observer and the lower images are
the images reconstructed from EEG.

Figure 5 shows examples of reconstructed images on the
limited test. The upper images show the original textures, and the
lower images show the textures reconstructed from EEG signals.
To evaluate the reconstruction results on novel textures, we
conducted a psychological experiment with the same procedure
as described in section “Psychophysical Experiment Setup.” We
prepared five samples of reconstructed texture images for 26
novel texture images in the test dataset. The six observers
evaluated the reconstruction results for each of 26 textures
(five repetitions for each). We found that the average correct
identification rate was 72.8%. For all of six individual observers,
the correct identification rate was significantly higher than the
chance level (50%) in a one-tailed t-test (t(25) > 4.18, p <
0.0003). Figure 6 shows the correct identification rate averaged
across the six observers for 26 unknown novel textures, sorted
from the left in descending order of the correct identification
rate. The horizontal red line denotes the chance level (50%). The
asterisks indicate that the identification rate over the six observers
for that texture is statically significant in a one-tailed t-test
(p < 0.05).

DISCUSSION

The present study introduced a method in which an MVAE
is used to reconstruct the image of a natural texture from
EEG signals alone. Our trained MVAE model successfully
reconstructed the original texture with photorealistic quality
and greatly outperformed linear regression on the same dataset
(Orima and Motoyoshi, 2021).

As mentioned earlier, it is generally challenging to decode
neural representations of a natural scene with EEG because of
the low retinotopic resolution of EEG as compared with that
of fMRI. The present study avoided this limitation by confining
the scope to textures for which the perception is determined by
spatially global image statistics, and we successfully reconstructed
various natural textures from EEG signals. The previous study
having a similar scope (Orima and Motoyoshi, 2021) focused on
understanding the neural dynamics for image statistics assumed
in human texture perception (e.g., Portilla–Simoncelli statistics)
and demonstrated a reconstruction of textures using image
statistics linearly regressed from EEG signals. In contrast, the
present study pursued a technique to reconstruct an image with

higher quality and showed that the use of an MVAE allows the
reconstruction of textures with high quality.

The previous approach reconstructed natural object images
from EEG signals on the basis of the classification of discrete
object categories acquired in a supervised network (Palazzo et al.,
2017). In contrast, the present study aimed to reconstruct a purely
perceptual impression without any dependency on top-down
knowledge such as that of categories, by acquiring a continuous
representation space of visual textures in a fully unsupervised
learning manner. The resulting images duplicated the perceptual
impression well. Of course, such success might be possible only
for the textures that we used, and it is unclear if the present
approach is applicable to a wide range of classes of images, such
as images of objects and scenes. However, we believe that the fact
that we were able to reproduce images from EEG signals in a
highly realistic manner brings a new direction in the decoding
of sensory information. We are currently applying the same
approach to sounds.

We should also note a limitation of the present approach.
Figure 7 shows the worst examples of texture reconstruction.
The upper images show the original texture, and the other
images show the image samples reconstructed from EEG signals.
These reconstructed images are similar to one of the other
textures tested, and there is a large variability among samples
for the same original texture. This result is due to the VAE
acquiring continuity on visual similarity between the considered
textures in the latent space, and therefore, when the proper
texture representation was not extracted from the EEG signals,
the representation became an intermediate representation that
was determined virtually randomly in the space defined by the
limited number of textures that we used. As a result, it is highly
possible that the reconstructed texture is similar to one of the
other original textures. This problem could be avoided with a
latent space that is richer with more diverse texture images.
However, such a latent space would require many more images
and corresponding EEG data.

A more generally applicable texture reconstruction from EEG
signals requires consideration of the possibility of reconstruction
on unknown novel textures in the model training phase.
To investigate this point, we performed a limited study on
reconstruction for novel textures by dividing the 166 textures into
training and test. While there are challenges for certain textures,
such as reconstruction being unstable from sample to sample, the
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FIGURE 6 | Psychological experimental results on texture images reconstructed from EEG signals corresponding to unknown novel textures in training. The correct
identification rate averaged across six observers for 26 unknown novel textures, sorted from the left in descending order of the correct identification rate. The
horizontal red line denotes the chance level (50%). The error bars indicate ± 1 s.e.m. across observers. The asterisks indicate that average identification rate across
the six observers for that texture is statically significant in a one-tailed t-test (p < 0.05).

FIGURE 7 | Failure examples of the reconstructed texture images having the lowest “more similar” response rates in the psychophysical experiment. The upper row
shows the original textures and the other rows show three sample images reconstructed from EEG signals.

result shows the possibility of reconstruction for novel textures
within the framework of the proposed MVAE-based approach.
However, it should be noted again that because we used a dataset
that measured for a different purpose in our previous study
(Orima and Motoyoshi, 2021), we could not examine the results
based on sufficient cross-validation in this limited test. This
problem needs to be investigated in future work with a sufficiently
extended dataset.

As the next advancement in the analysis of texture
representation on EEG signals, an investigation of the frequency
components on EEG signals may provide new findings. The
frequency components that contribute to the reconstruction of a
certain texture can be identified by evaluating the reconstruction
results with and without stripping certain frequency components
in texture reconstruction using the MVAE model. This is

expected to be valuable in understanding the correspondence
between the frequency bands in texture processing in the brain
that correspond to each of the various textural representations.

While the present approach provides an effective tool for
reconstructing the visual impression of an image with complex
spatial structures from EEG signals, there is still room for
improvement. In this study, the model was trained using an
EEG signal dataset for 166 texture images, which was divided
for cross-validation regardless of the observer. Therefore, we
were unable to analyze the characteristics of visual impressions
for each observer. As a future development, it would be
interesting to conduct research focusing on the differences in
visual impressions and visual functions specific to a particular
individual, although there are still challenges in measuring
sufficient data for each observer and methodological challenges in
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avoiding inadequate data. In the present study, we focused on the
pipeline of reconstructing texture stimuli from EEG signals, but
owing to the nature of MVAE-based systems, it is also possible to
consider the opposite pipeline through which the EEG signal is
reconstructed from an image.
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