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Purpose: To demonstrate the presence of natriuretic peptide receptors (NPRs) in primary human corneal epithelial cells
(p-CEPI), SV40-immortalized CEPI cells (CEPI-17-CL4) and in human corneal epithelium, and to define the
pharmacology of natriuretic peptide (NP)-induced cGMP accumulation.
Methods: NPR presence was shown by RT–PCR, western blot analysis, and indirect immunofluoresence. cGMP
accumulation was determined using an enzyme immunoassay.
Results: p-CEPI and CEPI-17-CL4 cells expressed mRNAs for NPR-A and NPR-B. Proteins for both NPRs were present
in these cells and in human corneal epithelium. C-type NP (CNP), atrial NP (ANP) and brain NP (BNP) stimulated the
accumulation of cGMP in a concentration-dependent manner in p-CEPI cells (potency; EC50s): CNP (1–53 amino acids)
EC50=24±5 nM; CNP fragment (32–53 amino acids) EC50=51±8 nM; ANP (1–28 amino acids) EC50=>10 µM; BNP (32
amino acids) EC50>10 µM (all n=3–4). While the NPs were generally more potent in the CEPI-17-CL4 cells than in p-
CEPI cells (n=4–9; p<0.01), the rank order of potency of the peptides was essentially the same in both cell types. Effects
of CNP fragment in p-CEPI and CEPI-17-CL4 cells were potently blocked by HS-142–1, an NPR-B receptor subtype-
selective antagonist (Ki=0.25±0.05 µM in CEPI-CL4–17; Ki=0.44±0.09 µM in p-CEPIs; n=6–7) but less so by an NPR-
A receptor antagonist, isatin (Ki=5.3–7.8 µM, n=3–7).
Conclusions: Our studies showed the presence of NPR-A and NPR-B (mRNAs and protein) in p-CEPI and CEPI-17-CL4
cells and in human corneal epithelial tissue. However, detailed pharmacological studies revealed NPR-B to be the
predominant functionally active receptor in both cell-types whose activation leads to the generation of cGMP. While the
physiologic role(s) of the NP system in corneal function remains to be delineated, our multidisciplinary findings pave the
way for such future investigations.

Atrial natriuretic peptide (ANP) [1] and brain natriuretic
peptide (BNP) [2,3] activate cytoplasmic membrane-
spanning receptors which themselves are guanylyl cyclases
(GCs) [4-7]. Three sub-types of receptors (NPR-A, NPR-B,
NPR-C) have been discovered so far that interact with the
natriuretic peptides (NPs) [4-7]. While NPR-A and NPR-B
mediate the effect of the NPs to generate cGMP, NPR-C is a
so-called “clearance receptor” that apparently is not coupled
to an effector system and is involved in eliminating NPs when
the concentrations of the latter exceed a certain level [4-7].
While ANP and BNP selectively activate NPR-A, the C-type
natriuretic peptide (CNP) binds selectively and with high
affinity and stimulates NPR-B [4-8]. NPs have many diverse
physiologic functions in vascularized tissues including
natriuresis, diuresis, vasorelaxation, hormone secretion, and
modulation of neural transmission and Ca2+-channel activity
[4-7]. Furthermore, NPs can affect tissue contractility, and cell
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proliferation and differentiation via the cGMP that is
generated upon NPR activation [5,9-11].

Overall, the roles of NPs in ocular functions are poorly
defined especially in the avascular corneal epithelium.
However, the presence of immunoreactive ANP has been
reported in the anterior uvea, retina, aqueous humor, ciliary
body, and lacrimal gland [12-15]. NPR-A has been observed
on the epithelial side of the ciliary body [16] and in the retina
[17], while NPR-B has been found in the trabecular meshwork
(TM), ciliary muscle (CM), and in non-pigmented ciliary
epithelial cell [18]. Topical or intracameral administration of
NPs in rabbits causes a reduction in intraocular pressure (IOP)
[19,20].

The corneal epithelium and the tear film that covers it
represent important barriers to protect the eye from airborne
pathogens, allergens, u.v. light, and chemicals [21]. A clear,
undamaged cornea is of course also important to permit light
entry through to the visual axis for proper vision. Thus, any
damage to the corneal epithelial cells (CEPIs) caused by the
aforementioned elements can result in inflammation,
perforation, neovascularization, fibrosis, and scarring that can
seriously reduce visual acuity and cause partial or complete

Molecular Vision 2010; 16:1241-1252 <http://www.molvis.org/molvis/v16/a137>
Received 20 May 2010 | Accepted 26 June 2010 | Published 7 July 2010

© 2010 Molecular Vision

1241

http://www.molvis.org/molvis/v16/a137


blindness [21]. Therefore, it is important to better understand
the physiology, pharmacology and pathology of the corneal
surface and the resident CEPIs. Relative to NPs and the
cornea, the locally released and/or lacrimal gland-derived NPs
may influence the CEPIs upon their arrival in the tear film.
Accordingly, while NPR-C, the clearance receptor, was found
on the bovine corneal endothelium [22], a GC-coupled NPR-
B was identified in total homogenates of whole bovine corneas
where CNP was twice as potent at stimulating cGMP
production as ANP [23]. However, the cell-type(s) responsive
to the NPs in the whole corneal tissue homogenates was not
elucidated [23]. Likewise, even though ANP inhibited the
epidermal growth factor-induced cell proliferation in rabbit
corneal epithelial cell cultures via an NPR-A [24],
unfortunately other NP agonists (e.g., CNP) were not used by
these investigators to define the pharmacological specificity
of the NPRs present in the rabbit CEPI cells [24].
Consequently, there is poor understanding about the NPR
system in the cornea, especially that of humans, and especially
that of the CEPIs. The fact that the CEPIs are probably
important in mediating the effects of locally produced NPs
and/or those released from the lacrimal gland [17] underscores
the need to better define the presence of and to characterize
the pharmacology of functionally active NPRs on the human
CEPIs. The results from such studies may reveal important
new means to positively influence corneal epithelial health
and may lead to discovery of new therapeutic agents to
promote corneal wound healing and/or treat dry eye and
related disorders. Therefore, the aims of our studies were to
demonstrate the presence of NPRs in the human corneal
epithelium, primary human corneal epithelial (p-CEPI) cells,
and in a human corneal epithelial cell-line (CEPI-17-CL4)
[25-28] at the mRNA and protein levels. We further
characterized, functionally and pharmacologically, the
predominant NPR present in p-CEPI and CEPI-17-CL4 cells
using a range of agonists and antagonists and measurement of
cGMP production.

METHODS
Materials: Sources of materials, reagents, equipment used
were as follows: NPs from American peptide (Vista, CA) or
Bachem (San Carlos, CA); various other compounds from
either Sigma-Aldrich (St. Louis, MO), Tocris (Ellisville, MO)
or Biomol (Plymouth Meeting, PA); HS-142–1 was a
generous gift from Kyowa Hakko Co. (Tokyo, Japan); RT–
PCR materials from InVitrogen (San Diego, CA); Gel
electrophoresis materials from Gibco BRL (Carlsbad, CA)
and New England Biolabs (Ipswich, MA);
Immunocytochemicals from Molecular Probes (Portland,
OR), Calbiochem (La Jolla, CA), and Fisher Scientific
(Pittsburgh, PA); NPR antibodies from Abcam (Cambridge,
UK); western blot materials from Pierce (Rockford, IL),
Sigma-Aldrich or Amersham Biosciences (Buckinghamshire,
UK).; Enzyme immunoassay kits from Amersham

(Piscataway, NJ); Cell culture reagents and materials from BD
Biosciences (San Jose, CA), Cascade Biologicals (Portland,
OR), Gibco BRL, or Sigma-Aldrich. All tissues were obtained
in compliance with good clinical practices with informed
consent under institutional review board regulations and with
the tenets of the Declaration of Helsinki.
Cell Culture:

Corneal Epithelial Cells (p-CEPI and CEPI-17-CL4)
—Epithelial sheets were obtained from Eye Bank corneas
from ocular pathogen-free donors (aged 40–86 years) and the
primary cells cultured as previously described [25-28].
Briefly, after incubation of corneas at 4 °C for 48 h in dispase
(diluted with calcium free EpiLife® medium to 12 Units/ml),
the epithelial sheets were removed from the stromas,
dissociated into single cell suspension, and plated on to
murine-collagen-IV-coated tissue culture flasks (75 cm2). The
cells were cultured in EpiLife® (Cascade Biologics Invitrogen,
Carlsbad, CA), a serum free defined media containing human
corneal growth supplement, to 80% confluence. The cells
were sub-cultured by harvesting with trypsin / EDTA,
treatment with trypsin inhibitor and plating into murine-
collagen-IV-coated multi-well plates.

The generation and extensive characterization of simian
virus (SV)-40 immortalized human p-CEPI cells (clone
CEPI-17-CL4) has been previously documented [25-28].
CEPI-17-CL4 cells (passages 58–158) were cultured and
plated into multi-well plates as described above for p-CEPI.
PCR: RNA was isolated using Trizol® reagent according to
manufacturer’s recommendations. Medium free cell
monolayers were treated with Trizol® (1ml / cm2) and the cells
detached from the flask using a cell scraper. After transferring
the mixture to centrifuge tubes (1 ml), and incubation at 30 °C
for 5 min, choloroform was added (0.2 ml) and the closed
tubes shaken vigorously for 15 s, then opened and incubated
at 30 °C for 2–3 min. The samples were centrifuged at 12,000×
g (2–8 °C) for 15 min and the top aqueous layer carefully
transferred to a fresh centrifuge tube. The RNA was
precipitated with isopropanol (0.5 ml/ml of Trizol® reagent)
and the precipitate washed twice with ethanol and finally
dissolved in DEPC- treated water. Primers were designed
using Primer 3 Input (Version 0.4.0) and cross-checked using
nucleotide BLAST and were: NPR-A forward: 5′-GCA TTG
AGC TGA CAC GAA AA-3′; reverse: 5′-GTC CAG GGT
GAT GCT CTC AT-3′; NPR-B forward: 5′-GGC ACA GGA
ATC ACC TTC AT-3′; reverse: 5′-GGT GTT GGC AAA
GAT CTG GT-3′. The RT–PCR kit reaction mixture consisted
of the following: RNA sample 1 µg, PCR buffer (2 reaction
mix from the kit) 25 µl, forward primer 2 µl (10 µM stock),
reverse primer 2 µl (10 µM stock), reverse transcriptase with
Taq polymerase 2 µl, and DNase-free water to make total
volume 50 µl. The reaction was run for 30 cycles according
to manufacturer’s recommendation and using annealing
temperature (Ta) of 55 °C. cDNA synthesis was performed by
incubation at 50 °C for 15 min followed by 94 °C for 2 min.
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The cycling temperatures were as follows: Step 2: 94 °C for
30 s, Step 3: Ta for 30 s, Step 4: 72 °C for 1 min, Step 5: Repeat
Steps 2–4 for 30 cycles, Step 6: 72 °C for 5 min, Step 7: 4 °C
storage until needed.
Agarose gel electrophoresis: Agarose gel (1.2%) was
prepared by heating agarose in TAE buffer. After cooling,
ethidium bromide (6 μl in 100 ml of solution) was added to
the mixture and the gels cast in a Horizon 58 (Life
Technologies, Carlsbad, CA) apparatus. The total sample
obtained from PCR was loaded on to the gel with 5 μl of
bromophenol blue dye and 100 bp ladder in two lanes flanking
the samples. Electrophoresis was performed at 100 V until the
dye reached half the length of the gel.
Indirect immunofluorescence:

Corneal tissue immunohistochemistry—Donor
corneas were fixed in 4% formaldehyde (4 °C, 24 h),
dehydrated through a series of ethanol and xylene incubations,
and embedded in paraffin. Embedded tissue was sectioned and
the paraffin removed from the sections (~10 µm) by
incubations in xylenes and ethanols. After re-hydration (30
min) in PBS (0.256 g/l NaH2PO4 H2O, 1.19 g/l Na2HPO4, 8.76
g/l NaCl, pH 7.4), and distilled water washes (3×5 min), the
tissue sections were blocked overnight at 4 °C in PBS + 1%
BSA +1% horse serum. The tissue sections were then rinsed
with PBS and distilled water (3×5 min), and incubated with
primary (1°) antibody at 4 °C, overnight and rinsed in PBS
(3×10 min) containing Tween-20 (0.1%). The tissue sections
were then incubated with secondary (2°) antibody (1 h, at
room temperature) and rinsed in PBS containing Tween-20
(0.1%, 3×10 min). The specimens were rinsed in PBS (3×10
min), distilled water (3×10 min), stained with 4’,6-diamino-2-
phenylindole (DAPI, 220 nM, 10 min) and were mounted
using FluorSave™ (Calbiochem, La Jolla, CA).

Cellular immunocytochemistry—Approximately
15,000 cells were plated on glass coverslips and cultured in
EpiLife® (Cascade Biologics Invitrogen). When the cultures
had stabilized, the coverslips were rinsed in PBS and fixed in
neutral formalin (4% in PBS, overnight at 4 °C). After re-
hydration in phosphate buffered saline (PBS, 0.256 g/l
NaH2PO4 H2O, 1.19 g/l Na2HPO4, 8.76 g/l NaCl, pH 7.4; for
30 min) and distilled water washes (3×), the cells were
blocked (overnight at 4 °C) in PBS + 1% BSA (BSA). The
cells were then rinsed with PBS and distilled water (3×) and
incubated with 1° antibody diluted in PBS at 4 °C overnight.
After rinsing in PBS, containing Tween-20 (0.1%; 3×10 min),
cells were incubated with 2° antibody at room temperature
(RT, 1.5 h) and rinsed in PBS + Tween-20 (0.1%, 3×10 min).
The specimens were rinsed in PBS (3×10 min), distilled water
(30 min), stained with DAPI (200nm, 10 min) and mounted
on glass slides (FluorSave™).
Antibodies and image acquisition: Primary antibodies for
NPR-A and NPR-B were used at 1:100 dilution. Conjugated
Alexa Fluor 594 nm goat anti-rabbit was used as the secondary

antibody at a concentration of 6 mg/ml of 1% BSA; secondary
antibodies were used at dilutions of 1:1,000. Negative controls
in all experiments were specimens labeled with 2° antibody
only and DAPI to show nuclei. Mounted specimens were
examined on Olympus AX70 (Olympus America, Inc., Center
Valley, PA,) fluorescent microscope using SPOT Twain
software (Microsoft, Issaquah, WA).
Western blot analysis: Cells were cultured as described above
and when near confluent were washed with PBS and treated
with lysis buffer (300 μl, 2.5 ml of 1 M TRIS buffer [pH 7.0],
1 g SDS, 2.5 g sucrose in 50 ml of distilled water) for 5 min
at room temperature. The genomic DNA was sheared by
several passes through a 22 gauge needle and samples were
stored at −20 °C until needed. BCA (bicinchoninic acid)
protein assays (Pierce, Rockford, IL) were performed to
determine protein concentrations and to ensure equal loading
of lanes. Protein lysates were mixed with 3 μl of loading buffer
and heat denatured for 5 min. Protein (30 μg) was loaded in
each lane of the denaturing SDS–PAGE (12% separating and
4% stacking), which was run at 150 V with Tris/glycine as the
running buffer. Protein bands were transferred on to the
nitrocellulose membrane (VWR International, Irving, TX) by
electro-blotting overnight (4 °C) at 10 V in Tris/Glycine buffer
with 20% methanol and confirming the transfer with Ponceau
Red of the membranes. After de-staining in distilled water the
membranes were incubated in blocking buffer (5% powdered
milk and 1% BSA in PBS) for 3 h at room temperature.
Membranes were then incubated for 30 min (RT), then
overnight (4 °C), and finally the following morning for 30 min
(RT) with primary antibodies against NPR-A and NPR-B
diluted to 1:1,500 and 1:3,000, respectively, in PBS
containing 0.1% Tween-20 (PBST) on a plate rocker. After
rinsing in PBST containing 0.1% Tween-20 (3×10 min), the
membranes were incubated with 2° antibody (anti rabbit IgG
from donkey HRP conjugated) dissolved at a dilution of
1:1,000 in PBST, for 1.5 h (RT). After washing with PBST
3×10 min, the membranes were developed by ECL (GE
Healthcare, Piscataway, NJ) chemiluminescence.
Measurement of GC activity in cultured cells: Cells were
seeded in 48 wells plates and upon reaching confluence they
were rinsed twice with 0.5 ml Dulbeco’s modified Eagle’s
medium (DMEM)/F-12. Cells were then pre-incubated for 20
min in the presence or absence of both NPR-A or NPR-B
antagonists in DMEM/F-12 containing 1.0 mM of the
phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine
(IBMX) at 23 °C. NPs were added at the end of this period,
and the reaction was allowed to proceed for another 15 min at
23 °C. After aspiration of the medium, ice-cold 0.1 M acetic
acid (150 μl, pH 3.5) was added to each well for the
termination of cGMP synthesis and cell lysis. Finally, ice-cold
0.1 M sodium acetate (220 μl, pH 11.5–12.0) was added to
neutralize the samples before analysis of cGMP produced by
an enzyme immunoassay kit (Amersham, Piscataway, NJ) as
recommended by the manufacturer and as previously
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described for cAMP and cGMP quantification in various
tissues/cell-types [20,29-31].

RESULTS
RT–PCR: mRNAs for NPR-A and NPR-B were shown to be
present in both p-CEPI and CEPI-17-CL4 cells (Figure 1).
Immunohisto- and immunocyto- chemistry: Expression of
NPR-A and NPR-B was observed in the epithelium of human
corneas and was particularly strong in the superficial layers
of the central region (Figure 2A-D). NPR-B appeared to be
expressed more strongly than NPR-A in the epithelium of the
limbus and the expression of both was confined to the
superficial layers. Similarly, immunocytochemical analysis of
the cultured cell monolayers showed what appeared be
cytoplasmic expression of both NPR-A and NPR-B (Figure
3).
Western blot analysis: Cellular NPR-A and NPR-B protein
expression was confirmed by western blot analysis of p-CEPI
and CEPI-17-CL4 cell lysates (Figure 4A,B). Some donor
variability was observed in the levels expressed by p-CEPI
cells. After normalization of expression to the house-keeping
enzyme gene (glycerol-3-phosphate dehydrogenase;
GAPDH), CEPI-17-CL4 cells were shown to have a higher
expression of NPR-B than p-CEPI cells (p<0.05), while the
latter cells had a higher expression of NPR-A than CEPI-17-
CL4 cells though this did not reach statistical significance
(p<0.1; Figure 4C). In addition, CEPI-17-CL4 cells expressed
a greater amount of NPR-B than the p-CEPI cells (p<0.05) but
this could have been a reflection of greater variability in the
isolated cells from human donor eyes.
Pharmacological characterization of NPRs in CEPI Cells: In
the presence of IBMX, activation of GC in the ocular cells by
NPs resulted in cGMP accumulation. Time-course studies
with CNP fragment (1 μM) revealed that for up to 25 min there
was a linear increase of cGMP production with a good signal-
to-noise ratio (Figure 5A). For convenience, a 15 min
stimulation time point was then applied to all other
pharmacological studies.

CNP, CNP fragment, BNP, and ANP stimulated the
production of cGMP in CEPI-17-CL4 cells in a concentration-

dependent manner with the first two peptides causing the
highest accumulation of cGMP (Figure 5B; Table 1). ANP
and BNP behaved as partial agonists relative to CNP and the
CNP fragment. The basal level of cGMP in cell lysates was
24±5 fmol/well (mean±SEM, n=24). Incubation of the cells
with 10 μM ANP for 15 min increased the accumulation of
cGMP sevenfold to 160±31 fmol/well (n=4). The
concentration-response curves for ANP yielded apparent
potency (EC50) of 97±25 nM (n=4) in these cells. The
stimulatory effect of BNP was 23 fold above the basal level,
with EC50s of 203±95 nM (n=4). In contrast, NPR-B receptor
subtype-selective agonist CNP, increased the accumulation of
cGMP 53 fold above the basal level to 1,271±133 fmol/well
(n=6) with EC50s of 7±2 nM (n=8). A 22-amino acid fragment
of CNP (CNP-F) increased the level of cGMP 47 fold above
the basal level to 1,135±96 fmol/well (n=5) with EC50s of
16±2 nM (n=5). The various NPs tested were all significantly
more potent (p<0.01) in the CEPI-17-CL4 cells than in the p-
CEPI cells (Table 1).

NPs were also effective in increasing cGMP
accumulation in p-CEPI, and as in the CEPI-17-CL4 cells, the
most efficacious and potent NPs were CNP and CNP fragment
(Figure 5C). The basal level of cGMP in p-CEPI cells was
7.8±1.5 (mean±SEM, n=10). Treatment of the p-CEPI cells
with 10 µM ANP increased the cGMP level threefold above
basal to 26±1 fmol/well (n=3). BNP was not as potent as ANP
and its maximal stimulation resulted in 31±1.5 fmol/well
(n=3) of cGMP. The EC50 of both ANP and BNP peptides was
>10,000 nM. Again, in contrast with ANP and BNP and
similar to it’s effect in CEPI-17-CL4 cells, CNP, the NPR-B
selective agonist was much more potent than ANP with the
mean EC50s of 24±5 nM (n=4) and 27 times more efficacious
than ANP yielding cGMP levels of 690±68 fmol/well (n=3).
CNP fragment was as efficacious as CNP and it increased the
accumulation of cGMP to 664±83 fmol/well (n=3) with
EC50s of 51±8 nM. As for CEPI-17-CL4 cells above, the
pharmacological profiles of these compounds suggested that
NPR-B was also the most prominent subtype of NPR in p-
CEPI cells (Figure 5C; Table 1).

Figure 1. Detection of NPR-A and NPR-B mRNAs in human p-CEPI and CEPI-17-CL4 cells by RT–PCR. Lanes 1 and 2: NPR-A in human
p-CEPI cells (donor ages 64 and 81); Lane 3: NPR-A in human CEPI-17-CL4 cells. The PCR product for NPR-A is equal to 179 bp. Lane 4:
NPR-B in human CEPI-17-CL4 cells. The PCR product for NPR-B is equal to 237 bp. Lanes 5 and 6: NPR-B in human p-CEPI cells (donor
ages 64 and 81).
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Figure 2. Expression of NPR-A and NPR-B in paraffin sections of formalin-fixed human corneas as determined by indirect
immunofluorescence. A, B: The presence of NPR-A in the epithelium of the central cornea. A shows stronger expression in the superficial
layers when compared with the control (B). C, D: C shows the presence of NPR-A primarily in the superficial layers of the limbal epithelium.
The control shows no expression (D). E, F: E shows strong expression of NPR-B primarily in the superficial cell layers of the central cornea
compared when compared with the control (F). G, H: G shows that NPR-B is very distinctly confined to the superficial epithelium of the
limbus compared with the control (H). All panels are at 10× magnification.
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To further characterize the pharmacological profile of the
NPRs in the CEPI cells, HS-142–1 was evaluated for its
antagonist activity. HS-142–1 inhibited CNP-induced cGMP

production in a concentration-dependent manner with the
inhibitory potency (Ki) of 0.25±0.05 µM (n=6) in CEPI-17-
CL4 (Figure 6), and with a Ki value of 0.44±0.09 µM (n=7)

Figure 3. The expression of NPR-A and NPR-B in formalin-fixed human p-CEPI and CEPI-17-CL4 cells by indirect immunofluorescence is
shown. A shows a strong expression of NPR-A in human p-CEPI cells, while B shows expression of NPR-A in CEPI-17-CL4 cells. C shows
expression of NPR-B in human p-CEPI cells while D shows expression of NPR-B in CEPI-17-CL4 cells. E and F are DAPI labeled controls
(treated with secondary antibody only) for human p-CEPI and CEPI-17-CL4 cells, respectively. Each panel is at 40× magnification.
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in p-CEPI cells. HS-142–1 was thus equieffective in both cell
types (p<0.1). Isatin (indole-2,3 dione), an NPR-A receptor
antagonist, partially inhibited CNP-induced cGMP
production, and was less potent (Ki=5.3±1.7 µM; n=7 in
CEPI-17-CL4, and Ki=7.8±4.5 µM; n=3 in p-CEPI cells) than
HS-142–1 (Figure 6).

DISCUSSION
As described in the Introduction, diseases or injuries of the
corneal epithelium compromise its functions and can, if left
untreated, result in loss of visual acuity and impair vision
[21,25]. For these and other reasons, we and others have been
involved in the study of ocular surface tissues and cells [21,
25-28,30,32-39].

Figure 4. Expression of NPR-A and
NPR-B in human p-CEPI cells and
CEPI-17-CL4 cells as determined by
western blot analysis. A: The presence
of NPR-A protein (band observed at 40–
55 kDa) in CEPI-17-CL4 and in human
p-CEPI cells (from 56, 53, and 56 year
old donors) is shown. B: The presence
of NPR-B protein (band observed at
24 kDa) is shown for three different
donors of human p-CEPI cells (ages 40,
53, and 56) cells and in CEPI-17-CL4
cells. C: The expression of NPR-A and
NPR-B in human p-CEPI and CEPI-17-
CL4 cells was normalized to GAPDH.
The figure shows an apparent lower
expression of NPR-A in CEPI-17-CL4
cells than in human p-CEPI cells
(p<0.1); the expression of NPR-B was
higher in CEPI-17-CL4 than that in
human p-CEPI cells (p<0.05). The
NPR-B expression was greater than
NPR-A expression in CEPI-17-CL4
cells (p<0.05). However, the both
receptor subtypes were expressed to the
same extent in the p-CEPI cells (p<0.1).

Figure 5. A: Time-course of increase in cGMP induced by CNP fragment in CEPI-17-CL4 cells is shown. Cyclic GMP concentration was
measured after the cells were treated with CNP fragment for the indicated period. Each symbol represents a single datum point determined in
duplicate. B and C: Effects of NPs on cGMP production in human p-CEPI and CEPI-17-CL4 cells are shown. Cyclic GMP concentration was
measured after the cells were treated with the indicated concentrations of various NPs for 15 min. Each symbol represents a single datum
point determined in duplicate. Results were obtained in 4 independent studies for CEPI-17-CL4 cells (B) and 3 independent studies for human
p-CEPI cells (C).
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Various pharmacologically important peptides and
proteins have been evaluated in the cornea and it is becoming
clear that in spite of its avascularity the corneal epithelium
responds to endogenous (from paracrine/ autocrine sources)
and exogenous biologically active peptides and cytokines
[23,26,27]. The presence of the natriuretic family of peptides
and their receptors have not been previously documented in
the human cornea. Since some of the functions of this peptide
family have been implicated in cell proliferation and
differentiation [5-7,24], which are the essential events in the
homeostasis and repair of the corneal epithelium [40], we
undertook the present study to demonstrate that their presence
might also be of physiologic and pharmacological
significance. We first showed the presence of mRNAs for
NPR-A and NPR-B indicating that in monolayer cellular
model of corneal epithelium (p-CEPI and CEPI-17-CL4 cells)
the genes are actively involved in the transcription process in
the cornea and that the cell-line CEPI-17-CL4 could be a good
model for in vitro cellular studies. Examination of tissue
sections of the human cornea showed that the epithelium is a
target for the NPs and that the NPR expression favors the
superficial epithelial cell layers, particularly in the limbus.
This seems reasonable since the tear film compartment is
known to harbor a variety of bioactive peptides [25,27,41] and
the ocular surface includes the conjunctiva, which is a
particular site for allergic and inflammatory reactions [26,
27,36,37,41-43]. The presence of NPR-A and NPR-B was

also shown by immunocytochemistry in p-CEPI and
CEPI-17-CL4 cells and confirmed by western blot protein
analysis. Although there was some donor variability in the
expression of NPR-A and NPR-B by p-CEPI cells, it was
interesting to observe that while p-CEPI cells expressed
higher levels of NPR-A, CEPI-17-CL4 cells favored NPR-B
expression. This difference suggests that as a prelude to in
vivo studies it is worthwhile to be aware of the possible
differences in responses between cell-line cells and primary
cells [26]. Thus, as it is demonstrated here, it is prudent to
include primary human cells in a multi-disciplinary approach
to studies of pharmacologically active agents [25-28].
Irrespective of the immunocytochemical observations,
however, the pharmacological data coupled with the
[cGMP]i production-response data indicated that the
functionally active subtype of the NPRs was the NPR-B in
both the p-CEPI and CEPI-17-CL4 cells. The apparent lower
expression level of NPR-A may have accounted for such a
difference in CEPI-17-CL4 cells (Figure 4B), however NPR-
B still functionally predominated in the p-CEPI cells where
the expression levels of NPR-A and NPR-B were very similar
(Figure 4B). Another interesting difference between the cell-
types was the fact that the various NPs studied currently were
more potent in the immortalized cells than in the p-CEPI cells
(Table 1; Figure 5B,C). This could be explained by the relative
homogeneity of the cell-line cell population, as compared the

TABLE 1. RELATIVE POTENCIES AND INTRINSIC ACTIVITIES OF VARIOUS NPS FOR THEIR ABILITY TO STIMULATE CGMP PRODUCTION IN HUMAN CEPI
CELLS COMPARED WITH OTHER HUMAN OCULAR CELL-TYPES.

Natriuretic peptide Potency (nM) and
intrinsic activity
(Emax) in p-CEPI

Cells

Potency (nM) and
intrinsic activity (Emax)
in CEPI-17-CL4 Cells

Potency in h-CM
cells (nM)#

Potency in h-
TM16 cells (nM)#

Potency in h-TM3
cells (nM)#

CNP (1–53 amino acids)

EC50 (nM) 24 ± 5 nM 7 ± 2 nM** 19 nM 10 nM 64 nM
Max. effect (%) 100% 100%    

CNP fragment (32–53 amino acids)

EC50 (nM) 51 ± 8 nM 16 ± 2 nM** nd nd nd
Max. effect (%) 96% 89%    

BNP (32 amino acids)
EC50 (nM) >10,000 nM 203 ± 95 nM** 35 nM 75 nM 398 nM

Max. effect (%) 4.5% 43%    

ANP (1–28 amino acids)

EC50 (nM) >10,000 nM 97 ± 25 nM** 102 nM 102 nM 478 nM
Max. effect (%) 3.8% 13%    

Concentration-response curves were generated for each of the NPs shown above using 6 concentrations of each peptide in each
experiment as shown in Figure 5B,C. Data shown above are mean±SEM from 3 to 4 experiments for human p-CEPI cells and
from 4 to 9 experiments for CEPI-17-CL4 cells. #=data from [18] for comparison. h-CM=human ciliary muscle cells; h-
TM=human trabecular meshwork cells; nd=not determined. **=p<0.01 relative to potency in p-CEPI cells by Student’s unpaired
t-test.
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heterogeneity of the isolated primary cells from various
human donor eyes.

Exposure of p-CEPI and CEPI-17-CL4 cells to various
NPs resulted in a concentration-dependent increase in
[cGMP]i indicating that these cells have the ability to translate
the mRNAs for NPRs into functionally active receptor
proteins. These results further supported the molecular
biologic and immunocytochemical data discussed above. In
view of the fact that CNP and CNP fragment exhibited the
highest potencies and intrinsic activities in elevating
[cGMP]i in p-CEPI and CEPI-17-CL4 cells, with both ANP
and BNP being much weaker, these findings indicated an
NPR-B pharmacology signature as previously documented
for cells derived from other tissues, including human TM and
CM cells [18]. Interestingly, the rank order and potency values
of CNP, BNP, and ANP in the current studies matched well
with those reported for h-CM and h-TM cells (Table 1) [18].
The fact that the agonist activity of CNP fragment was

relatively potently blocked by the NPR-B selective antagonist,
HS-142–1 [44-46], and weakly by isatin [47-49], an NPR-A
antagonist, confirmed the identity of the predominantly active
GC-activating NPR in p-CEPI and CEPI-17-CL4 cell-types
as the NPR-B sub-type. Additionally, the inhibitory potency
of HS-142–1 in these cells (Ki=0.25–0.44 µM) for blocking
the CNP fragment-induced [cGMP]i generation compared
well with its reported antagonist potency in numerous other
organ-derived cells-types (Ki=0.33–6.6 µM) [44-46]. Even
though isatin yielded a partial inhibition of CNP fragment-
induced [cGMP]i production in the CEPI cells, its potency was
similar to that previously reported for its inhibitory activity in
non-ocular cell-types (Ki=0.4 µM) [47-49]. Taken together,
the pharmacological profile of the NP agonist and antagonist
activities confirmed the predominance of a functionally active
NPR-B receptor sub-type in p-CEPI and CEPI-17-CL4 cells.

Even though it is now clear from our current studies that
CNP-sensitive NPR-B receptors are present on both p-CEPI

Figure 6. Inhibition of CNP fragment-
induced cGMP production in CEPI-17-
CL4 cells by two NP receptor
antagonists is shown. The effects of
HS-142–1 (10 nM to 10 µM; closed
square symbols) and isatin (0.3–100
µM; open circle symbols) on CNP
fragment (30 nM)-induced cGMP
generation were determined as
described in the methods section. Data
are mean±SEM from 6 to 7 experiments
for HS-142–1, and from 7 experiments
for isatin. Similar results were obtained
using p-CEPI cells. The antagonist
potencies of the two compounds in the
two cell-types are provided in the
Results section.
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and CEPI-17-CL4 cells and in the intact human corneal
epithelium, the potential physiologic relevance of these
findings have not been fully explored and warrant future
investigation. However, the fact that NPs are potent regulatory
mediators of secretory activity [5-7,50] in many epithelial
cell-types of the body, for instance leading to chloride
secretion [50], suggests that CNP may modulate electrolyte
composition of the tear film on the ocular surface by
influencing the activity of the NPR-B on the CEPI cells. Since
CNP upregulates aquaporin-4 [51], the water content of the
tear film may be directly regulated by corneal NPR-B
receptors. These combined effects of CNP on the corneal cells
in vivo may then regulate water and ion homeostasis [51,52]
on the ocular surface to maintain a stable environment for the
cornea and surrounding tissues. Furthermore, since CNP
inhibits leukocyte recruitment and platelet-leukocyte
interactions [53], the NPR-B receptors may participate in anti-
inflammatory effects of CNP on the ocular surface [53]. The
involvement of NP system in cell proliferation [4-7,24]
necessary for corneal wound healing [40] is also possible even
though ANP apparently inhibited cell proliferation induced by
epidermal growth factor (EGF) via the NPR-A subtype [24].
Unfortunately, the latter authors did not study the effects of
CNP on rabbit CEPI proliferation and thus the role of NPR-B
in this process remains undefined [24]. Our preliminary
studies have revealed that CNP fragment neither alone or in
combination with EGF or HS-142–1 influences CEPI cell
proliferation (data not shown) indicating that in human CEPI
cells NPR-B appear not to be involved in modulating cellular
growth.

Corneal epithelial cells, akin to other ocular epithelia
[52], express numerous ion-channels and a multitude of
receptors [25-28]. Since CNP increases cGMP via NPR-B, as
does carbon monoxide but via a soluble GC [54], and CNP
alters intracellular pH [55], the activation of K+-channels
[54] and inhibition of Na-K-ATPase [56] of the CEPI cells
may be also affected. The solitary or combined effects of
CNP’s activation of NPR-B to produce [cGMP]i may thus
have profound effects on the physiologic functions of the
corneal epithelial cells [40,50-57], including possible
homeostatic regulation of ocular surface osmolarity and/or
cell volume, and/or acting as mitochondrial protective agents
as it pertains to other ocular tissues [58].

In conclusion, a multidisciplinary approach allowed us to
probe the molecular biology and biochemical pharmacology
of the NPR system in the human corneal epithelium at the
cellular and tissue levels. Compelling data are presented here
that indicate the predominance of NPR-B whose activation
leads to the generation of [cGMP]i. The agonist profile of
activity of NPs in p-CEPI and CEPI-17-CL4 cells, coupled
with the antagonist profile obtained using HS-142–1 and
isatin, supported the immunohistochemical findings. It is
hoped that our collective data will stimulate further

investigations into determining the physiologic roles of the
NPR system in the human and animal corneal epithelium.
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