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Abstract: Background: Atrial fibrosis plays an important role in the genesis of heart failure and
atrial fibrillation. The left atrium (LA) exhibits a higher level of fibrosis than the right atrium (RA)
in heart failure and atrial arrhythmia. However, the mechanism for the high fibrogenic potential
of the LA fibroblasts remains unclear. Calcium (Ca2+) signaling contributes to the pro-fibrotic
activities of fibroblasts. This study investigated whether differences in Ca2+ homeostasis contribute
to differential fibrogenesis in LA and RA fibroblasts. Methods: Ca2+ imaging, a patch clamp assay and
Western blotting were performed in isolated rat LA and RA fibroblasts. Results: The LA fibroblasts
exhibited a higher Ca2+ entry and gadolinium-sensitive current compared with the RA fibroblasts.
The LA fibroblasts exhibited greater pro-collagen type I, type III, phosphorylated Ca2+/calmodulin-
dependent protein kinase II (CaMKII), phosphorylated phospholipase C (PLC), stromal interaction
molecule 1 (STIM1) and transient receptor potential canonical (TRPC) 3 protein expression compared
with RA fibroblasts. In the presence of 1 mmol/L ethylene glycol tetra-acetic acid (EGTA, Ca2+

chelator), the LA fibroblasts had similar pro-collagen type I, type III and phosphorylated CaMKII
expression compared with RA fibroblasts. Moreover, in the presence of KN93 (a CaMKII inhibitor,
10 µmol/L), the LA fibroblasts had similar pro-collagen type I and type III compared with RA
fibroblasts. Conclusion: The discrepancy of phosphorylated PLC signaling and gadolinium-sensitive
Ca2+ channels in LA and RA fibroblasts induces different levels of Ca2+ influx, phosphorylated
CaMKII expression and collagen production.

Keywords: fibroblasts; heart failure; left atrium; right atrium; Ca2+; CaMKII

1. Introduction

Atrial fibrosis contributes to the genesis of atrial arrhythmia and is the main manifes-
tation of most cardiovascular diseases [1]. A higher level of atrial fibrosis was reported in
patients with atrial myopathy or atrial arrhythmia or heart failure (HF) [1,2]. Left atrium
(LA) fibrosis is a predictor in patients with atrial fibrillation (AF) [3]. The treatment of
atrial fibrosis has been proven to decrease new-onset AF [4]. The LA and right atrium
(RA) develop from different embryonic origins and exhibit dissimilar patterns of gene
expression with different histological and immunohistochemical properties, which provide
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multiple clues and targets for disease management [5,6]. The LA exhibits more advanced
fibrosis than the RA in patients with atrial arrhythmia [7]. Compared with the RA, the
LA exhibited a higher level of pro-fibrotic transcription factors and metalloproteinases in
response to angiotensin II treatment [8–10]. The gene expression of Smad 6, which is an
inhibitory messenger of pro-fibrotic cytokine signaling, is more highly expressed in RA
than in LA tissues [11,12]. Our previous study revealed a higher collagen production in
isolated rat LA fibroblasts than in their RA counterparts. Moreover, the LA had a higher
level of fibrosis than the RA in rats with HF [13]. However, the underlying mechanism of
the diverse response to pro-fibrotic signaling between LA and RA fibroblasts has not been
fully elucidated.

Calcium (Ca2+) signaling has been demonstrated to be downstream of multiple pro-
fibrotic cytokines [14,15]. Human LA tissue exhibits higher Pitx2c expression as compared
with RA tissue [16]. Pitx2c knockdown induces higher Ca2+ influx and fibroblast activity in
human atrial fibroblasts [17]. Soluble guanylyl cyclase, a messenger that can decrease colla-
gen production and Ca2+ entry, is highly expressed in RA tissues but markedly reduced
or absent in LA tissues [18–20]. Compared with RA fibroblasts, LA fibroblasts produce
a higher level of oxidative stress, which has been found to induce Ca2+ entry [13,21].
Increased intracellular Ca2+ is mainly derived either from extracellular Ca2+ entry or
from endoplasmic reticulum (ER) Ca2+ release. Extracellular Ca2+ can enter cells through
(1) voltage-operated Ca2+ channels, (2) transient receptor potential (TRP) channels and
(3) Orai channels. Patients with AF had a higher expression of TRP channels. In addition,
pro-fibrotic cytokines exert their pro-fibrotic effects on atrial fibroblasts through the activa-
tion of the TRP channels [22]. TRP canonical (TRPC) 3 and TRPC6 channel-induced Ca2+

influx makes a significant contribution to the pathogenesis of fibrosis [23,24]. TRPC3 and
TRPC6 are mainly activated by phosphorylated phospholipase C (PLC)-induced diacyl-
glycerol (DAG) [25,26]. PLC also activates inositol trisphosphate (IP3) signaling, inducing
Ca2+ release from the endoplasmic reticulum (ER) [27,28].

The emptying of Ca2+ from the ER can be sensed by a stromal interaction molecule
(STIM), a single-pass membrane protein in the ER membrane, thereby activating the
store-operated Ca2+ entry [29]. Two kinds of STIM (STIM1, STIM2) were discovered in
2000–2001 [30,31]. Sensitized STIM1 clusters transform their conformation and are domi-
nantly conjugated with the surface Orai protein, thereby inducing Ca2+ release-activated
Ca2+ currents [32]. STIM1 has been found to play an important role in cardiac fibrogene-
sis [33]. STIM2 shares a 61% homology with STIM1 but exhibits different affinities with Ca2+

compared with STIM1 and acts as a regulator of the basal intracellular Ca2+ level [32,34,35].
The role of STIM2 on cardiac fibrogenesis has not been fully elucidated. However, the
diversity of Ca2+ entry and the function and expression levels of these Ca2+ channels and
the regulatory protein between LA and RA fibroblasts have not been fully elucidated.
Increasing the Ca2+ influx enhances the collagen production capability of fibroblasts [36].
The purpose of the current study was to clarify whether Ca2+ signaling contributes to the
differences in the collagen production capability between LA and RA fibroblasts.

In the present study, we investigated the Ca2+ influx and the membrane Ca2+ currents
of LA and RA fibroblasts. We evaluated the role of extracellular Ca2+ influx and the
downstream messenger on the diversity of pro-fibrotic cellular activities and compared the
expressions of Ca2+ channels and regulatory proteins between LA and RA fibroblasts.

2. Materials and Methods
2.1. Isolation of LA and RA Cardiac Fibroblasts from Healthy Rats

The study was approved on 8 May 2018 by Laboratory Animal Committee of Taipei
Medical University (approval number: LAC-2017-0383). LA and RA cardiac fibroblasts
were isolated from male Sprague–Dawley (SD) rats (weighing 300–350 g) by using a mod-
ified protocol [13]. Briefly, after the animals were euthanized, the hearts were rapidly
mounted on a Langendorff apparatus and perfused with phosphate-buffered saline con-
taining 25 U/mL type 2 collagenase (Sigma, St. Louis, MO, USA) at 37 ◦C for 35 min.
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LA and RA tissues were chopped and shaken in phosphate-buffered saline until single
fibroblasts were obtained. The cells were filtered through a 40 µm cell strainer and then
centrifuged at 300× g for 10 min. Isolated atrial fibroblasts were cultured in 6 cm dishes in
Dulbecco’s modified Eagle’s medium (Gibco, Paisley, UK) supplemented with 10% fetal
bovine serum (Hyclone, Logan, UT, USA) and 100 U/mL penicillin-streptomycin (Gibco).
After removing the pre-seeding medium containing the cardiomyocytes, the cells were
incubated at 37 ◦C in the presence of 5% CO2 for 48 h and were designated as passage
0 (P0) atrial fibroblasts. The cells were grown to confluence and sub-cultured to passage
1 (P1). P0 and P1 cells were positive for vimentin but negative for CD31 under immunoflu-
orescence microscopy. α-smooth muscle actin was expressed in P1 cells but less in P0 cells
(Supplementary Figure S1). P1 atrial fibroblasts, seeded at a density of 3 × 105 cells/cm2

on culture dishes, were used in subsequent experiments and incubated in a serum-free
medium for 24 h before each assay. P1 cells were used for Western blotting as more cells
were required for the experiments.

2.2. Intracellular Ca2+ Imaging

Ca2+ imaging was performed as described previously [37]. The P0 atrial fibroblasts on
3 cm glass-bottom chamber slides were loaded with fura-2-acetoxymethyl ester (5 µmol/L;
Invitrogen, Carlsbad, CA, USA) and Pluronic F-127 (20% solution in DMSO, 2.5 µg/mL)
in a Ca2+-free solution containing (in mmol/L) NaCl 120, KCl 5.4, KH2PO4 1.2, MgSO4
1.2, glucose 10, HEPES 6 and Taurine 8 (pH 7.40) for 30 min at 36 ◦C in a humidified
incubator with 5% CO2. Fura-2 fluorescence images were acquired using a Polychrome
V (Till Photonics, Munich, Germany) monochromator mounted on an upright Leica DMI
3000B microscope with dual excitation wavelengths of 340 and 380 nm and an emission
wavelength of 510 nm. The fura-2 images were analyzed using MetaFluor software version
7.7.6.0 (Molecular Devices, Sunnyvale, CA, USA). The ratio of F340 to F380 was used as a
marker for the relative level of intracellular Ca2+. To measure Ca2+ entry, the cells were
first exposed to the Ca2+-free solution for 8 min. The extracellular Ca2+ concentration was
then increased to 10 mmol/L to measure Ca2+ entry through the store-operated channels
activated by the Ca2+-store depletion. The intracellular Ca2+ was measured from the
average of F340/F380 during 300–400 s under an extracellular-free Ca2+ solution (F340/F380-
free Ca2+). The final peak of intracellular Ca2+ was measured from the average of F340/F380
during 2300–2400 s under 10 mmol/L Ca2+ solution (F340/F380 10 mmol/L Ca2+). The
change (∆ F340/F380) between (F340/F380-free Ca2+) and (F340/F380 10 mmol/L Ca2+) was
used to represent the Ca2+ entry of each cell.

2.3. Patch Clamp Experiments

Subsequent to a gigaseal (seal resistance between 1–4 GΩ), a whole-cell patch clamp
was performed on detached single P0 fibroblasts using an Axopatch 1D amplifier (Axon
Instruments, Foster City, CA, USA) as described previously [24]. The area under the capac-
itive current was activated using a small hyperpolarizing step from a holding potential of
−50 mV to a test potential of −55 mV for 80 milliseconds. The measured membrane resis-
tance for P0 atrial fibroblasts was 0.49 ± 0.05 GΩ. When measuring gadolinium-sensitive
currents, the detached fibroblasts were superfused with a Tyrode solution containing
(mmol/L): NaCl 140, TEA-Cl 5.4, MgCl 1.0, CaCl2 2.0, glucose 10 and HEPES 10 with pH:
7.4 adjusted using CsOH. The pipette solution contained (mmol/L): CsCl2 135, CaCl2 0.1,
EGTA 10, Mg-ATP 4.0, MgCl2 1.0, HEPES 10, Na-GTP 0.3, Na2-phosphocreatine 6.6 with
pH: 7.4 adjusted with CsOH. The currents were the differences before and after gadolinium
(100 µmol/L, Sigma-Aldrich, St. Louis, MO, USA) recorded by a voltage ramps for 3 s
ranging from −110 mV to +100 mV (0.07 mV/ms, 0.1 Hz) at 37 ◦C. Nifedipine (5 µmol/L)
was used in the external solution to block any L-type Ca2+ current.
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2.4. Western Blotting

Western blotting was performed as described previously [13]. In brief, P1 LA and
RA fibroblasts treated with or without ethylene glycol tetra-acetic acid (EGTA, 1 mmol/L,
Sigma-Aldrich) or a Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor
(KN93, 10 µmol/L, Sigma-Aldrich) were lysed in a radioimmunoprecipitation assay buffer
containing 150 mmol/L NaCl, 0.5% sodium deoxycholate, 1% NP40, 50 mmol/L Tris pH
7.4, 0.1% sodium dodecyl sulfate (SDS) and protease inhibitor cocktails (Sigma). The pro-
teins were fractionated using 10% SDS-polyacrylamide gel electrophoresis and transferred
onto an equilibrated polyvinylidene difluoride membrane (Amersham Biosciences, Buck-
inghamshire, UK). The membranes were then incubated with primary antibodies against
pro-collagen type III (1:3000, monoclonal, clone number: FH-7A, Abcam, Cambridge, UK);
pro-collagen type IA1 (1:500, monoclonal, clone number: 3G3, Santa-Cruz Biotechnology,
Santa Cruz, CA, USA); PLC-γ1 (1:500, polyclonal, Cell Signaling Technology, Beverly,
MA, USA); STIM1 (1:2000, monoclonal, clone number: 44, BD Transduction Laboratories,
San Diego, CA, USA); phosphorylated CaMKII (1:3000, polyclonal, Abcam); Orai (1:2000,
polyclonal, PROSCI, Poway, CA, USA); TRPC3 (1:1000, polyclonal, Abcam); and TRPC6
(1:3000, polyclonal, Alomone Labs, Jerusalem, Israel) and secondary antibodies. The bound
antibodies were visualized using an ECL detection system (Millipore, Darmstadt, Germany)
and analyzed with AlphaEaseFC software version 4.0.0 (Alpha Innotech, San Leandro, CA,
USA). GAPDH (Sigma) was used as the loading control and normalized to the value of LA
control fibroblasts.

2.5. Induction of Heart Failure

The induction of heart failure was performed as described previously [13]. Whole
HF was induced in male Sprague–Dawley rats (weighing 300–350 g) by a subcutaneous
injection of a high dose of isoproterenol (100 mg/kg). HF rats were euthanized 12 days
after the isoproterenol injection for HF LA and RA fibroblast isolation.

2.6. Statistical Analysis

All quantitative data are expressed as a mean ± standard error of the mean. The
differences between LA and RA cardiac fibroblasts were compared using the unpaired
t-test, paired t-test, Mann–Whitney rank-sum test or Wilcoxon signed-rank test depending
on the outcome of the normality test. The differences between the different groups were
compared by a two-way repeated ANOVA test with a post hoc of a Fisher LSD test. A
p value of <0.05 was considered statistically significant.

3. Results

3.1. Diversity in Ca2+ Entry Between Isolated P0 LA and RA Fibroblasts from Healthy Rats

To evaluate the Ca2+ entry diversity between LA and RA P0 fibroblasts, these cells
were first incubated with a Ca2+-free extracellular solution to deplete the Ca2+ stores. Ca2+

entry was induced after increasing extracellular Ca2+ to 10 mmol/L. A fura-2 fluorescence
image revealed that P0 LA fibroblasts exhibited a higher Ca2+ entry compared with P0 RA
fibroblasts in healthy rats (Figure 1). Gadolinium has been considered as a non-specific
TRP channel inhibitor [24]. We evaluated a gadolinium-sensitive cation current in the patch
clamp experiments to study the role of the TRP channels in the diversity of Ca2+ entry
between LA and RA fibroblasts. We found that P0 LA fibroblasts from healthy rats showed
higher gadolinium-sensitive currents compared with P0 RA fibroblasts (Figure 2).
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Figure 1. Ca2+ entry in the isolated passage 0 (P0) left atrium (LA) and right atrium (RA) fibroblasts 
from healthy rats. Left panels represent intracellular Ca2+ tracing from the LA fibroblasts (upper 
tracing, n = 18 LA fibroblasts from four rats) and RA fibroblasts (lower tracing, n = 17 RA fibroblasts 
from four rats). The cells were first incubated with a Ca2+-free extracellular solution to deplete the 
Ca2+ stores. Ca2+ entry was induced after increasing extracellular Ca2+ to 10 mmol/L. Right panels 
show the change in intracellular Ca2+ from a Ca2+-free solution to a 10 mmol/L Ca2+ solution 
(∆F340/F380). *** p < 0.005. 

3.2. Differences in Ca2+ Signaling between Cultured P1 LA and RA Fibroblasts from Healthy Rats 
LA fibroblasts exhibited higher pro-collagen type I, type III and phosphorylated 

CaMKII expressions compared with RA fibroblasts. EGTA is an extracellular Ca2+ chelator 
and has been used to evaluate the role of extracellular Ca2+ on Ca2+ entry in various cellular 
activities [38]. In the present study, EGTA (1 mmol/L) treatment reduced pro-collagen 
type I, type III and phosphorylated CaMKII expressions in LA fibroblasts. EGTA treat-
ment reduced phosphorylated CaMKII but not the pro-collagen type I and type III expres-
sions in RA fibroblasts. Furthermore, in the presence of EGTA (1 mmol/L), LA and RA 
fibroblasts had similar pro-collagen type I, type III and phosphorylated CaMKII expres-
sions suggesting that differential pro-fibrotic activity between the primary isolated LA 
and RA fibroblasts was endogenously regulated by Ca2+ entry (Figure 3). We studied the 
molecular expression of PLC in LA and RA fibroblasts and found that LA fibroblasts had 
a greater phosphorylated PLC level (Figure 4). Moreover, LA fibroblasts also showed a 
greater STIM1 expression suggesting that LA fibroblasts may have upregulated the store-
operated Ca2+ entry compared with RA fibroblasts (Figure 4). To evaluate the downstream 
signaling of PLC, we studied the expression levels of TRPC3 and TRPC6 and found that 
LA fibroblasts expressed a higher TRPC3 compared with RA fibroblasts. However, LA 
and RA fibroblasts exhibited similar levels of Orai and TRPC6 expressions (Figure 4). 

We used KN93 (10 μmol/L, a CaMKII inhibitor) to evaluate the role of higher phos-
phorylated CaMKII in the LA fibroblasts and found that the LA and RA fibroblasts exhib-
ited similar pro-collagen type I and type III levels in the presence of KN93 (Figure 4) sug-
gesting that CaMKII phosphorylation regulated the diversity of the collagen production 
between LA and RA fibroblasts. 

Figure 1. Ca2+ entry in the isolated passage 0 (P0) left atrium (LA) and right atrium (RA) fibroblasts from healthy rats. Left
panels represent intracellular Ca2+ tracing from the LA fibroblasts (upper tracing, n = 18 LA fibroblasts from four rats)
and RA fibroblasts (lower tracing, n = 17 RA fibroblasts from four rats). The cells were first incubated with a Ca2+-free
extracellular solution to deplete the Ca2+ stores. Ca2+ entry was induced after increasing extracellular Ca2+ to 10 mmol/L.
Right panels show the change in intracellular Ca2+ from a Ca2+-free solution to a 10 mmol/L Ca2+ solution (∆F340/F380).
*** p < 0.005.

3.2. Differences in Ca2+ Signaling between Cultured P1 LA and RA Fibroblasts from Healthy Rats

LA fibroblasts exhibited higher pro-collagen type I, type III and phosphorylated
CaMKII expressions compared with RA fibroblasts. EGTA is an extracellular Ca2+ chelator
and has been used to evaluate the role of extracellular Ca2+ on Ca2+ entry in various
cellular activities [38]. In the present study, EGTA (1 mmol/L) treatment reduced pro-
collagen type I, type III and phosphorylated CaMKII expressions in LA fibroblasts. EGTA
treatment reduced phosphorylated CaMKII but not the pro-collagen type I and type III
expressions in RA fibroblasts. Furthermore, in the presence of EGTA (1 mmol/L), LA
and RA fibroblasts had similar pro-collagen type I, type III and phosphorylated CaMKII
expressions suggesting that differential pro-fibrotic activity between the primary isolated
LA and RA fibroblasts was endogenously regulated by Ca2+ entry (Figure 3). We studied
the molecular expression of PLC in LA and RA fibroblasts and found that LA fibroblasts
had a greater phosphorylated PLC level (Figure 4). Moreover, LA fibroblasts also showed a
greater STIM1 expression suggesting that LA fibroblasts may have upregulated the store-
operated Ca2+ entry compared with RA fibroblasts (Figure 4). To evaluate the downstream
signaling of PLC, we studied the expression levels of TRPC3 and TRPC6 and found that
LA fibroblasts expressed a higher TRPC3 compared with RA fibroblasts. However, LA and
RA fibroblasts exhibited similar levels of Orai and TRPC6 expressions (Figure 4).
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Figure 2. Membrane gadolinium (Gd3+)-sensitive currents in isolated passage 0 (P0) left atrium (LA) and right atrium (RA) 
fibroblasts from healthy rats. Left panels reveal tracings of the Gd3+ (100 μmol/L)-sensitive non-selective cation current 
from LA fibroblasts (n = 10 from five rats) and RA fibroblasts (n = 10 from five rats). Right panels reveal the current/voltage 
(I/V) relationship of the Gd3+-sensitive non-selective cation current. * p < 0.05, ** p < 0.01, *** p < 0.005. The insets in the 
current traces show the various clamp protocols. 

  

Figure 2. Membrane gadolinium (Gd3+)-sensitive currents in isolated passage 0 (P0) left atrium (LA) and right atrium (RA)
fibroblasts from healthy rats. Left panels reveal tracings of the Gd3+ (100 µmol/L)-sensitive non-selective cation current
from LA fibroblasts (n = 10 from five rats) and RA fibroblasts (n = 10 from five rats). Right panels reveal the current/voltage
(I/V) relationship of the Gd3+-sensitive non-selective cation current. * p < 0.05, ** p < 0.01, *** p < 0.005. The insets in the
current traces show the various clamp protocols.
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right atrium (RA) fibroblasts from healthy rats. Photographs and averaged data of the pro-collagen type I (n = 6 independ-
ent experiments), pro-collagen type III (n = 6 independent experiments) and phosphorylated Ca2+/calmodulin-dependent 
protein kinase II (pCaMKII, n = 6 independent experiments) expression in LA and RA fibroblasts with or without 1 mmol/L 
ethylene glycol tetra-acetic acid (EGTA, an extracellular Ca2+ chelator) for 48 h. GAPDH was used as a loading control. * p 
< 0.05, *** p < 0.005. 

3.3. Differences in Gadolinium-Sensitive Currents between Isolated P0 LA and RA Fibroblasts 
from HF Rats 

In our previous study [13], we found that in HF rats, LA tissues expressed higher 
fibrotic levels compared with RA tissues. We evaluated the diversity of Ca2+ homeostasis 
between HF LA and HF RA fibroblasts. We found that P0 LA fibroblasts from HF rats showed 
higher gadolinium-sensitive currents compared with P0 RA fibroblasts (Figure 5). Moreover, 
compared to healthy P0 LA fibroblasts, HF P0 LA fibroblasts exhibited higher gadolin-
ium-sensitive currents (Supplementary Figure S2), which was comparable with the find-
ings of previous studies that HF fibroblasts exhibited upregulated currents through TRP 
channels compared with fibroblasts from healthy subjects [24,39]. However, HF RA and 
healthy RA fibroblasts had similar gadolinium-sensitive currents. 

Figure 3. Ca2+ entry on the diversity of the collagen production ability in the cultured passage 1 (P1) left atrium (LA) and
right atrium (RA) fibroblasts from healthy rats. Photographs and averaged data of the pro-collagen type I (n = 6 independent
experiments), pro-collagen type III (n = 6 independent experiments) and phosphorylated Ca2+/calmodulin-dependent
protein kinase II (pCaMKII, n = 6 independent experiments) expression in LA and RA fibroblasts with or without 1 mmol/L
ethylene glycol tetra-acetic acid (EGTA, an extracellular Ca2+ chelator) for 48 h. GAPDH was used as a loading control.
* p < 0.05, *** p < 0.005.

We used KN93 (10 µmol/L, a CaMKII inhibitor) to evaluate the role of higher phospho-
rylated CaMKII in the LA fibroblasts and found that the LA and RA fibroblasts exhibited
similar pro-collagen type I and type III levels in the presence of KN93 (Figure 4) suggesting
that CaMKII phosphorylation regulated the diversity of the collagen production between
LA and RA fibroblasts.

3.3. Differences in Gadolinium-Sensitive Currents between Isolated P0 LA and RA Fibroblasts
from HF Rats

In our previous study [13], we found that in HF rats, LA tissues expressed higher
fibrotic levels compared with RA tissues. We evaluated the diversity of Ca2+ homeostasis
between HF LA and HF RA fibroblasts. We found that P0 LA fibroblasts from HF rats
showed higher gadolinium-sensitive currents compared with P0 RA fibroblasts (Figure 5).
Moreover, compared to healthy P0 LA fibroblasts, HF P0 LA fibroblasts exhibited higher
gadolinium-sensitive currents (Supplementary Figure S2), which was comparable with the
findings of previous studies that HF fibroblasts exhibited upregulated currents through
TRP channels compared with fibroblasts from healthy subjects [24,39]. However, HF RA
and healthy RA fibroblasts had similar gadolinium-sensitive currents.
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Figure 4. Ca2+ signaling pathway on the diversity of the collagen production capability between the cultured passage 1 
(P1) left atrial (LA) and right atrial (RA) fibroblasts from healthy rats. (A) Photographs and averaged data of the phos-
phorylated phospholipase C (pPLC, n = 5 independent experiments), stromal interaction molecule 1 (STIM1, n = 5 inde-
pendent experiments) and Orai (n = 5 independent experiments) expression of LA and RA fibroblasts. (B) Photographs 
and averaged data of the transient receptor potential canonical (TRPC) 3 (TRPC3, n = 5 independent experiments) and 
TRPC6 (n = 5 independent experiments) expression of LA and RA fibroblasts. (C) Photographs and averaged data of the 
pro-collagen type I (n = 5 independent experiments) and pro-collagen type III (n = 5 independent experiments) expression 
of LA and RA fibroblasts with or without a Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor (KN93, 10 
μmol/L) for 48 h. GAPDH was used as a loading control. * p < 0.05, ** p < 0.01, *** p < 0.005. 

Figure 4. Ca2+ signaling pathway on the diversity of the collagen production capability between the cultured passage 1 (P1)
left atrial (LA) and right atrial (RA) fibroblasts from healthy rats. (A) Photographs and averaged data of the phosphorylated
phospholipase C (pPLC, n = 5 independent experiments), stromal interaction molecule 1 (STIM1, n = 5 independent
experiments) and Orai (n = 5 independent experiments) expression of LA and RA fibroblasts. (B) Photographs and averaged
data of the transient receptor potential canonical (TRPC) 3 (TRPC3, n = 5 independent experiments) and TRPC6 (n = 5
independent experiments) expression of LA and RA fibroblasts. (C) Photographs and averaged data of the pro-collagen
type I (n = 5 independent experiments) and pro-collagen type III (n = 5 independent experiments) expression of LA and RA
fibroblasts with or without a Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor (KN93, 10 µmol/L) for 48 h.
GAPDH was used as a loading control. * p < 0.05, ** p < 0.01, *** p < 0.005.
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Figure 5. Membrane gadolinium (Gd3+)-sensitive currents in isolated passage 0 (P0) left atrium (LA) and right atrium (RA) 
fibroblasts from heart failure (HF) rats. Left panels reveal tracings of the Gd3+ (100 μmol/L)-sensitive non-selective cation 
current from HF LA fibroblasts (n = 10 from six rats), HF RA fibroblasts (n = 10 from five rats). Right panels reveal the 
current/voltage (I/V) relationship of the Gd3+-sensitive non-selective cation current. * p < 0.05, ** p < 0.01, *** p < 0.005. The 
insets in the current traces show the various clamp protocols. 

Figure 5. Membrane gadolinium (Gd3+)-sensitive currents in isolated passage 0 (P0) left atrium (LA) and right atrium (RA)
fibroblasts from heart failure (HF) rats. Left panels reveal tracings of the Gd3+ (100 µmol/L)-sensitive non-selective cation
current from HF LA fibroblasts (n = 10 from six rats), HF RA fibroblasts (n = 10 from five rats). Right panels reveal the
current/voltage (I/V) relationship of the Gd3+-sensitive non-selective cation current. * p < 0.05, ** p < 0.01, *** p < 0.005. The
insets in the current traces show the various clamp protocols.
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4. Discussion

A higher degree of fibrosis in the LA than the RA has been found in various cardiovas-
cular diseases [13,40]. The Ca2+ signaling pathway plays an important role in pro-fibrotic
cellular activities. However, whether Ca2+ homeostasis contributes to the diversity be-
tween LA and RA fibroblasts remains unclear. Here we have shown, for the first time,
that a difference in the Ca2+ signaling induced the collagen production between LA and
RA fibroblasts. We found that the Ca2+ entry capability was greater in isolated rat LA
fibroblasts than in their RA counterparts from healthy rats. In addition, EGTA-treated LA
and RA fibroblasts exhibited a similar collagen production ability, indicating that the Ca2+

influx activated the augmented pro-fibrotic activities in LA fibroblasts. Ca2+ influx has
been the target of treatment for various fibrotic diseases. Fibroblasts isolated from patients
with systemic sclerosis exerted their activated pro-fibrotic cellular activities through a Ca2+

influx [41]. Transforming growth factor (TGF)-β augmented collagen production through
promoting Ca2+ entry whereas EGTA attenuated TGF-β-mediated collagen production
in renal fibroblasts [42]. A platelet-derived growth factor (PDGF) evoked a Ca2+ influx
thereby inducing the collagen production of lung fibroblasts [15]. Compared with RA
tissue, LA tissue exhibited higher levels of calcitonin gene-related peptide, which is a car-
diovascular neurotransmitter that can increase the intracellular Ca2+ amount through Ca2+

entry [43,44]. In addition, a pro-fibrotic protease chymase, which is highly expressed in LA
tissues but not in RA tissues, can induce Ca2+ entry [45–47]. Accordingly, LA fibroblasts
may constitutionally exhibit a higher Ca2+ influx capability compared with RA fibroblasts.

Pro-fibrotic cytokines such as TGF-β or PDGF induce an extracellular matrix pro-
duction through the PLC signaling pathway [15,48]. The inhibition of phospholipase C
signaling can decrease the collagen production capabilities of lung fibroblasts [49]. Studies
have evaluated the differences between the LA and the RA. A genomic study revealed
that the gene expression in LA tissue had a greater involvement in Wnt signaling com-
pared with RA tissue in patients with AF [50]. The non-canonical Wnt signaling pathway
activates phosphorylated PLC, thereby increasing IP3 production and inducing Ca2+ home-
ostasis [51]. The gene expression of aldose reductase, which is a protein that can activate
the PLC signaling pathway and enhance Ca2+ influx, is more highly expressed in LA
than in RA tissues [11,52,53]. Moreover, the activation of the Notch signaling pathway
was found in the LA but not in the RA in patients with atrial arrhythmia [54]. Notch
activation can upregulate STIM1 expression and activate store-operated Ca2+ entry [55,56].
The present study showed that LA fibroblasts expressed a higher level of phosphorylated
PLC and STIM1 compared with RA fibroblasts. Our findings suggested a high propensity
for Ca2+ homeostasis in LA fibroblasts, which might contribute to a higher fibrogenesis in
LA fibroblasts compared with their RA counterparts. The expression of the STIM1/Orai
conjugation was positively correlated with a greater collagen production capability in
cardiac fibroblasts [57]. The different levels of STIM1 in LA and RA fibroblasts may also
contribute to the diversity of collagen production via the activation of the Orai channel.
However, as we studied atrial fibrogenesis using healthy cells taken from healthy tissues it
is not clear whether these findings can be translated to pathological conditions.

We found that the gadolinium-sensitive current was higher in LA fibroblasts than
RA fibroblasts isolated from healthy rats. Compared with RA fibroblasts, LA fibroblasts
exhibited higher expression levels of TRPC3 but not TRPC6. Genetically knocking out
TRPC3 attenuated myocardial fibrosis in pressure-overloaded HF mice [58]. Our findings
suggested that the higher gadolinium-sensitive current in LA fibroblasts might be related to
the TPRC3 channel. The diversities in the electrophysiologic characteristics between LA and
RA tissues have been studied [59]. LA tissues exhibited a higher inward-rectifier potassium
channel gene expression compared with RA tissues [60]. Differences in electrophysiologic
currents have been found between the LA and left ventricular fibroblasts [61]. Moreover,
we found that in rats with HF, isolated LA fibroblasts also exhibited higher gadolinium-
sensitive currents compared with isolated RA fibroblasts. Accordingly, we may speculate
that, compared with RA fibroblasts, LA fibroblasts exhibited more currents through TRPC3,
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thereby exhibiting a greater collagen production capability. However, gadolinium has been
proven to inhibit currents through Orai channels [62,63]. Gadolinium-sensitive currents
could also be the result of STIM-Orai-dependent store-operated calcium entry.

CaMKII, triggered by Ca2+/calmodulin-induced auto-phosphorylation, is a down-
stream messenger of the Ca2+ signaling pathway [64]. CaMKII activation contributes to
pathological cardiac remodeling as the expression is upregulated in patients with AF or
HF [65,66]. CaMKII activation augments the collagen production in cardiac fibroblasts [67].
Moreover, genetically knocking-down CaMKII or a treatment with KN93 was shown
to reduce myocardial fibrosis in mice with pathological remodeling [68,69]. KN93 can
also inhibit the proliferation, collagen production and pro-fibrotic cytokine production
capability of cardiac fibroblasts [67]. Our study showed that EGTA-treated LA and RA
fibroblasts had similar levels of phosphorylated CaMKII. LA and RA fibroblasts had a
similar collagen production capability upon KN93 treatment suggesting that a higher Ca2+

influx induced the CaMKII signaling pathway further, thereby activating the augmented
pro-fibrotic cellular activity of LA fibroblasts. Figure 6 shows the proposed mechanism
that contributed to the differential collagen production in LA and RA fibroblasts. The
diversities of phosphorylated PLC signaling and the expression of TRPC3 and STIM1
activated different levels of Ca2+ influx resulting in a different phosphorylated CaMKII
expression and collagen production between LA and RA fibroblasts.
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Figure 6. Illustration of the proposed mechanism that contributes to the differential collagen pro-
duction in left atrium (LA) and right atrium (RA) fibroblasts. The diversities of the phosphorylated
phospholipase C (pPLC) signaling and the expression of transient receptor potential canonical (TRPC)
3 Ca2+ channels activate different levels of Ca2+ influx, which may induce a different phosphorylated
Ca2+/calmodulin-dependent protein kinase II (CaMKII) expression and collagen production between
LA and RA fibroblasts. The different levels of stromal interaction molecule 1(STIM1) in LA and RA
fibroblasts may also contribute to the diversity of collagen production via the activation of the Orai
channel. IP3: Inositol trisphosphate.

There were a few limitations in this study. Although gadolinium has been used as a
non-specific TRP channel blocker for years [70,71], gadolinium can also indirectly inhibit
ATP-gated P2X receptor cation (P2X) or chloride channels [72,73]. Hence, it is not clear
whether P2X or chloride channels contributed to the diversity of the Ca2+ influx [74,75]. In
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addition, this study found a different constitutive discrepancy in the Ca2+ currents between
LA and RA fibroblasts but the displayed currents were unspecific due to no activation
stimulus (receptor stimulation, direct agonists, etc.) being applied. Moreover, the cells were
incubated in a nominal calcium-free solution [24], which might be insufficient to induce
a proper calcium store depletion. The addition of EGTA to the extracellular solution and
the inhibition of the SERCA pumps with cyclopiazonic acid or thapsigargin is regularly
used to empty calcium stores. However, this study did not use this method to avoid ER
stress-induced fibroblast death [76] as the cells were primarily isolated and invulnerable
to this treatment. Therefore, our findings might underestimate the differences of LA and
RA fibroblasts on ER Ca2+ release. Finally, part of the diversity of the Ca2+ level at the end
of Ca2+ imaging might be also due to the differences in the cytosolic calcium clearance
between LA and RA fibroblasts as our study did not clarify the role of the SERCA pump
and plasma membrane Ca2+ ATPase (PMCA) pump in the Ca2+ imaging.

In conclusion, the discrepancy of phosphorylated PLC signaling and gadolinium-
sensitive Ca2+ channels in LA and RA fibroblasts induced different levels of Ca2+ influx,
phosphorylated CaMKII expression and collagen production.
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