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Abstract 
Single-cell sequencing transformed biology and medicine, providing an unprecedented high-resolution view at the cellular 

level. However, the vast variability inherent in single-cell sequencing data impedes its utility for in-depth downstream analysis. 

Inspired by the foundation models in natural language processing, recent advancements have led to the development of single-

cell Large Language Models (scLLMs). These models are designed to discern universal patterns across diverse single-cell 

datasets, thereby enhancing the signal-to-noise ratio. Despite their potential, multiple studies indicate existing scLLMs do not 

perform well in zero-short settings, highlighting a pressing need for more effective adaptation techniques. This research 

proposes several adaptation techniques for scLLMs by preserving the original model parameters while selectively updating 

newly introduced tensors. This approach aims to overcome the limitations associated with traditional fine-tuning practices, 

such as catastrophic forgetting and computational inefficiencies. We introduce two Parameter-Efficient Fine-Tuning (PEFT) 

strategies specifically tailored to refine scLLMs for cell type identification. Our investigations utilizing scGPT demonstrate that 

PEFT can enhance performance, with the added benefit of up to a 90% reduction in parameter training compared to 

conventional fine-tuning methodologies. This work paves the way for a new direction in leveraging single-cell models with 

greater efficiency and efficacy in single-cell biology.

Key words: Single cell, Foundation model, PEFT, Cell type 

identification 

Introduction 
Single-cell sequencing has significantly advanced the fields of biology and 

medicine by providing high-resolution insights at the cellular level. This 

technology offers valuable understanding of the roles and relationships of 

different cell types within their native environments, shedding light on 

complex tissues and biological systems where cell-to-cell variation plays a 

critical role[1]. Diseases such as cancer involve subsets of cells that diverge 

genetically and behaviorally from normal cells. Single-cell sequencing has 

the capacity to reveal these subtle yet crucial differences, offering a 

detailed view of the cellular composition of tumors or the diversity of 

immune cells in response to infection or treatment, thereby paving the way 

for personalized medicine[2]. However, single-cell sequencing is 

accompanied by several technical challenges and limitations, including 

batch effects[3], uneven coverage[4], dropout[5], potential cellular 

damage[6], and the introduction of bias and artifacts in the data. These 

factors complicate downstream analyses and interpretation. 

The success of foundation models in natural language processing (NLP) 

and computer vision (CV)[7][8] provides strong evidence that foundation 

models can capture universal patterns in data for various downstream 

analyses. These models boast a massive number of parameters and are 

pretrained on large datasets, allowing them to focus on understanding 

broad regularities in the data rather than any specific end-task. The 

patterns they capture often represent high-level features common across 

different data types, enabling easy transfer to specific domains and 

resulting in improved performance on multiple tasks compared to task-

specific models trained from scratch[9]. Motivated by these benefits, 

emerging research has begun to explore the potential of foundation models 

in single-cell biology, particularly in single-cell transcriptomics. This 

includes models such as scBERT[10], Genefomer[11], scGPT[12], 

scFoundation[13], SCimilarity[14], GeneCompass[15], and scTab[16], 

which aim to pretrain foundation models on large-scale single-cell atlases 

to yield universal patterns that embed the biological essence of single-cell 

data and overcome technical issues.  

These models, collectively referred to as single-cell large language models 

(scLLMs), have attracted significant attention and subsequent 

research[17-24], which has investigated their reusability, extendibility, and 

applicability. For example, Kasia Z. Kedzierska et al.[17] benchmarked 

scGPT and Geneformer in zero-shot settings and found that these models 

did not perform well in such scenarios. Similarly, Boiarsky et al. observed 

similar results when benchmarking scGPT and scBERT[18]. These findings 

indicate that the current scLLMs have not yet demonstrated emerging 

intelligence. Therefore, adapting current scLLMs is crucial for complex 
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tasks, such as cell type identification and gene expression prediction. 

When Alsabbagh et al.[19] and Kedzierska et al. finetuned scGPT and 

Geneformer on a small amount of additional training data for 

benchmarking, they both observed that scGPT outperformed Geneformer 

in cell type annotation. However, Liu et al. reached the opposite 

conclusion[20] when finetuning scGPT and Geneformer. These 

inconsistent results from the same scLLMs highlight the importance of a 

proper adaptation approach for maximizing the benefits of scLLMs.  

The adaptation approaches for scLLMs have been relatively underexplored, 

with existing works predominantly relying on the traditional fine-tuning 

approach. However, traditional fine-tuning of large models can lead to the 

overwriting of original model parameters on narrow, task-specific datasets, 

potentially resulting in the loss of broader pre-learned knowledge and the 

phenomenon known as catastrophic forgetting. This, in turn, can lead to a 

reduction in adaptability and an increased risk of overfitting to the limited 

training data. Additionally, the resource-intensive nature of fine-tuning 

large models further exacerbates these challenges. In this study, our 

primary hypothesis is that a more effective adaptation approach for 

scLLMs involves retaining the original model parameters to preserve pre-

learned knowledge, while adjusting specific additional tensors or layers to 

cater to new downstream tasks.  

Drawing from studies on large language models (LLMs), various 

Parameter-Efficient Fine-Tuning (PEFT) techniques, such as prefix prompt 

tuning[25] and LoRA[26], have been proposed to address the issues of 

catastrophic forgetting and the impractical computational cost associated 

with fine-tuning. Our goal in this paper is to explore the application of PEFT 

in scLLMs to enhance their adaptability and effectiveness in the context of 

cell type identification, a fundamental task in single-cell biology. To achieve 

this, we initially benchmark current open-sourced finetunable scLLMs, 

including scBERT, GeneFormer and scGPT to identify the need for 

adaptation and select the best-performing model, scGPT, for further 

investigation of PEFT strategies. Subsequently, we design two specific 

tunable prompts for scLLMs and demonstrate their benefits for cell type 

identification through comparisons with traditional fine-tuning, prefix 

prompt tuning, and LoRA in the context of NLP foundation models. To the 

best of our knowledge, this study represents the first expLoRAtion of PEFT 

in scLLMs and offers a pathway to leverage scLLMs efficiently and 

effectively in single-cell biology. 

 

An overview of current scLLMs 
At present, scLLMs conceptualize single-cell expression profiles as a form 

of biological language. This approach treats the cell expression as a 

sentence, with each gene describing the cell serving as a word. To extract 

biological meaning from these "cell sentences," scLLMs incorporate 

tokenizer, encoder, and pre-trainer modules similar to those found in LLMs, 

but they are customized to suit the specific characteristics of single-cell 

expression profiles.   

 

 

 

Figure1. Overview of the two proposed PEFT strategies. (a) A typical scLLM’s architecture covers a tokenizer to encode gene name and gene 

expression value from a cell to yield gene token embedding, a transformer-based encoder to learn gene relationships across all genes in a cell, and a 

classifier to decode the gene embedding from encoder to a specific cell type. (b) Gene token prompt: An encoder-decoder configuration adapter that 

processes the input gene expression profile. During training process, only the adapter undergoes update, while the pretrained scLLM is fixed. (c) Gene 

encoder prompt: adjustable scale and adapter modules to encoder for adapting gene embedding in gene relationship modeling. Only the parameters of 

the adapters are updated in training while keeping scGPT parameters frozen. 

 

Tokenizer: Similar to LLMs, current scLLMs require tokenization of 

biological words, which involves converting genes into vectors for 

subsequent learning. However, the key distinction lies in the fact that the 

tokenizer of scLLMs needs to combine the gene name and its 

corresponding expression value. Each scLLM maintains a gene vocabulary 

to assign a unique integer identifier, 𝑖𝑑(𝑔𝑗), to each gene 𝑔𝑗 in an input cell 

𝑖. Consequently, the gene token for cell 𝑖 is represented by a vector, 𝑡𝑔
(𝑖)
, as 

follows: 

𝑡𝑔
(𝑖)

= [𝑖𝑑(𝑔1
(𝑖)

) , 𝑖𝑑(𝑔2
(𝑖)

) , ⋯ ⋯ , 𝑖𝑑(𝑔𝑀
(𝑖)

) ]  (1) 

Here, we assume that each input cell comprises M genes. Various scLLMs 

develop their own vocabulary based on their training corpus. In cases 

where input genes do not align with the predefined vocabulary, scLLMs 
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handle them by utilizing a special padding token to ignore them. Unlike 

traditional LLMs, scLLMs also need to incorporate each gene’s expression 

value into gene tokens. A prevalent approach, utilized by scBERT and scGPT, 

involves categorizing the raw or normalized expression data 𝑋𝑖,𝑗  of cell 𝑖 

into k discrete bins as 

𝑥(𝑖) =  [𝑥1
(𝑖)

, 𝑥2
(𝑖)

, ⋯ ⋯ , 𝑥𝑀
(𝑖)

]   (2) 

where 

𝑥𝑗
(𝑖)

=  {
𝑘, 𝑖𝑓𝑋𝑖,𝑗 > 0 𝑎𝑛𝑑 𝑋𝑖,𝑗 ∈ [𝑏𝑘, 𝑏𝑘+1] 

0, 𝑖𝑓 𝑋𝑖,𝑗 = 0                   
 (3) 

Then, two embedding layers, denoted as 𝑒𝑚𝑏𝑔  and 𝑒𝑚𝑏𝑣 , are utilized to 

embed the gene names and gene expression values, respectively, as below 

ℎ(𝑖) = 𝑒𝑚𝑏𝑔(𝑡𝑔
(𝑖)

) + 𝑒𝑚𝑏𝑣(𝑥𝑣
(𝑖)

)  (4) 

In an exceptional approach, Geneformer ranks genes in descending order 

according to their expression levels and utilizes positional encoding, as 

described in reference[27] for LLMs, to embed gene expression values 

instead.  

Encoder: The current scLLMs utilize the Transformer architecture to 

encode gene relationships, drawing on its success in LLMs. This 

architecture involves stacking n transformer blocks[28] (n = 6 in scBERT, n 

= 6/12 in Geneformer and n = 12 in scGPT), each comprising a self-

attention layer, layer normalization, and a Multilayer Perceptron (MLP). 

This setup is designed to capture interrelated gene patterns, allowing the 

learned gene embedding ℎ𝑙
(𝑖)
 to be computed as follows, 

ℎ0
(𝑖)

= ℎ(𝑖)    (5) 

ℎ𝑙
(𝑖)

= 𝑀𝐿𝑃(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝐴𝑡𝑡𝑒𝑛(ℎ𝑙−1
(𝑖)

))) ∀𝑙 ∈ [1, 𝑛]   (6) 

The representation of a cell, treated as a sequence of genes, is generated by 

pooling all learned gene-level representations ℎ𝑙
(𝑖)
  in scBERT and 

Geneformer. In the case of scGPT, a special gene-level token < cls > is placed 

as ℎ(𝑖+1), allowing the models to learn an adaptive gene pooling operation 

through the self-attention mechanism[28] in transformer blocks.  

Pretrainer: scLLMs pretrain their models using the Masked Language 

Model (MLM) objective to encourage the learning of gene contextual 

features. This objective involves randomly masking certain non-zero gene 

tokens and predicting the original tokens based on the context provided by 

the non-masked gene tokens. Typically, a Multilayer Perceptron (MLP) is 

employed as a decoder to yield the estimated gene tokens. The learning 

objective can be defined as follows:  

𝐿 =  
1

|𝑈𝑚𝑎𝑠𝑘|
∑ 𝑙𝑜𝑠𝑠(𝑀𝐿𝑃(ℎ𝑛

(𝑖)
)  − 𝑥𝑗

(𝑖)
)𝑗∈𝑈𝑚𝑎𝑠𝑘

  (7) 

In the equation, 𝑈𝑚𝑎𝑠𝑘 represents the set of masked non-zero genes, and 

𝑥𝑗
(𝑖)
  denotes their actual gene expression values. Optional loss functions 

include Cross Entropy[29], Mean Square Error[29], and Mean Absolute 

Error[29], among others. The pretraining process involves utilizing 

multiple single-cell atlases to support these large models. For example, 

scGPT was trained on 33 million cells across various tissues collected from 

CELLxGENE[30]; scBERT is grounded in the diverse PanglaoDB[31] with 

over 1.1 million cells; and Geneformer relies on 29.9 million 

transcriptomes from the Genecorpus-30M[11]. 

 

Proposed PEFT strategies for scLLMs 

Gene token prompt 
In scLLMs, gene tokens encompass not only gene names but also gene 

expression values, which can vary across different datasets due to batch 

effects, leading to out-of-distribution issues. To address this, we have 

developed a tunable prompt to align the distributions of query and 

pretrained cell expressions, enabling the projection of all gene embeddings 

into an optimal format within the tokenizer. The gene token prompt 

functions as an autoencoder-like adapter layer positioned on top of the 

gene expression embedding layer. This layer employs a combination of an 

MLP and a Rectified Linear Unit (RELU) activation to compress d-

dimensional gene embeddings into a more compact s-dimensional format 

(s << d). Subsequently, another MLP is utilized to recover this into an 

adaptive d-dimensional gene embedding. As a result, equation (4) is 

modified as follows: 

ℎ̃(𝑖) = 𝑒𝑚𝑏𝑔(𝑡𝑔
(𝑖)

) + 𝐴𝑑𝑎𝑝𝑡𝑒𝑟(𝑒𝑚𝑏𝑣(𝑥𝑣
(𝑖)

))  (8) 

The output gene embedding ℎ̃(𝑖)  is then fed into the subsequent 

Transformer-based gene relationship encoder. Throughout training, 

modifications are applied to this adapter layer while maintaining the 

native scLLM unchanged. This adapter layer, designed to improve the 

compatibility of gene tokens, is denoted as the 'Gene token prompt,' as 

illustrated in Figure 1a. 

 

Gene encoder prompt 
Expanding on a strategy influenced by Wu et al.[32], we incorporated two 

adapters within the Transformer layers in the targeted scLLM, as depicted 

in Figure 1b. These adapter layers serve to align the acquired gene 

relationships from the query data with pretrained universal patterns, 

thereby inheriting the pretrained knowledge and averting catastrophic 

forgetting. Additionally, the adapters utilize an autoencoder structure, 

functioning as a Gene encoder prompt to project the gene embeddings 

from native Transformers to adaptive subspaces and subsequently 

reconstruct an optimal gene embedding within those subspaces. 

Consequently, Equation (6) is revised as: 

ℎ̃𝑙
(𝑖)′

= 𝐴𝑑𝑎𝑝𝑡𝑒𝑟𝑙−1 (𝐴𝑡𝑡𝑒𝑛𝑙−1(ℎ𝑙−1
(𝑖)

))      (9) 

ℎ𝑙
(𝑖)

= 𝑀𝐿𝑃𝑙−1(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (ℎ̃𝑙
(𝑖)′

)) + 𝛼 ∙ 𝐴𝑑𝑎𝑝𝑡𝑒𝑟𝑙−1
′ (ℎ̃𝑙

(𝑖)′
) ∀𝑙 ∈ [1, 𝑛]   

(10) 

Here, 𝛼 represents a scale factor (in our study, we set 𝛼 = 0.5 by default). 

We have termed this the "Gene encoder prompt" because it customizes 

gene context embeddings in the gene encoder section for specific tasks. 

Throughout the training process, only the adapters will be updated. 

 

Finetuning and evaluation settings  
When we customized scLLMs by traditional finetuning or proposed PEFT 

strategies, we employed the Adam optimizer[33], initializing with a 

learning rate of 10-5. As our objective function, we adopted the widely 

accepted cross entropy loss[29]. As the training process progresses and the 

loss diminishes, the learning rate is adaptively decreased, minimizing the 

risk of bypassing the global optimum. We specified the maximum number 

of training epochs at 100. Among all epochs, the checkpoint exhibiting the 

minimal loss on the validation set was retained as the fine-tuned model. 

When incorporating prompt-based learning, all scLLM model parameters 

were frozen; only the additional tunable tensors were adjusted in response 

to the gradient of the loss function. 

Once the model finished customization, considering the nature of 

imbalanced cell type distribution, we calculated the metrics including 

accuracy, precision, recall and weighted F1 score[34] to assess the 

performance of different approaches. When comparing the power of 

different finetuning strategies, we further export cell embeddings from 

tuned scLLMs and compute their Silhouette index to indicate the quality of 

cell embeddings generated by these strategies. 

 

Data preparation 
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Table 1. Overview of Datasets involving our evaluation.  

Dataset Source Condition # of genes per cell # of cells # of cell types Data Partition  

M.S. Brain tissue Disease and control 3,000 21,312 18 
Provided by 

scGPT[12] 

Zheng68k 
Peripheral blood 

mononuclear cells 
normal 19,379 68,450 11 

Provided by 

scBERT[10] 

NSCLC lung cancer cells disease 17,022 77,030 14 Split by patients 

COVID-19 Blood cells  disease 18,823 88,374 16 Split by patients  

Four datasets were included in our evaluation for fair comparisons as 

shown in Table 1. These datasets were not involved in the pretraining of 

current scLLMs. Among them, M.S.[12] and Zheng68k[35] were used to 

evaluate scGPT and scBERT papers, respectively. We reused them in our 

evaluation to investigate the reproducibility of the involving scLLMs. 

Hence, we kept the normalized gene expression profiles, highly variable 

gene filtering, and data split made by scGPT and scBERT. Also, compared 

to most native scLLMs pretraining on data from healthy humans, these two 

datasets cover healthy and diseased conditions suitable for examining the 

adaptability from different PEFT strategies. Besides, two additional 

datasets NSCLC[36] and COVID-19[37] from independent studies were 

employed into our further evaluation. These datasets were all collected 

from patients with high sequencing genes and diverse cell types, offering 

clear annotations for our experiments. 

To conduct fair evaluation, we randomly split training and testing sets from 

these datasets by 8:2 of patient samples and further left one patient out 

from training set as validation data when training the model. Before 

training, we applied log1p normalization to their expression values and 

selected top 2000 highly variable genes as input to keep consistent with 

the most widely used Seurat protocol[38].  

 

Results 

Comparison of native scLLMs on cell type identification  
In our investigation, we initiated a comparative analysis between scLLMs 

and two conventional cell type annotation tools, SingleR and Seurat. These 

conventional tools function by mapping cell types from an annotated 

reference set to a query set based on raw expression profiles, typically 

favoring cells with high similarity. In parallel, we applied a similar mapping 

strategy using generative embeddings from open-sourced scLLMs, 

including scGPT, Geneformer, and scBERT, to perform cell type 

identification in a zero-shot setting. For a fair comparison, we designated 

split training sets as references and testing sets as queries, running all 

experiments using the default parameters provided by each method.     

Among the five methods evaluated, Seurat demonstrated robust 

performance across three datasets, evidenced by its high precision and 

recall, signifying its capacity to account for the biological variability 

present in raw single-cell data. Conversely, SingleR exhibited limitations in 

precision and recall on datasets M.S, Zheng68k, and NSCLC, suggesting its 

potential needs of denoising preprocessing steps. Notably, the native 

representations derived from scLLMs were outperformed by these 

conventional tools except for scGPT's performance on the NSCLC dataset. 

This suggests that the intrinsic representations of scLLMs lack the 

discerning power for cell type labeling, potentially because these datasets 

encompass diseased samples, which exhibit a distributional shift 

compared to the pretraining data derived from normal conditions. 

Furthermore, their pretraining objectives were not explicitly oriented 

towards cell type identification. Consequently, these models' 

representations are not inherently task-specific, necessitating further 

adaptation for downstream tasks, a finding that is corroborated by existing 

literature[17-18]. 

Among the scLLMs, scGPT showed enhanced robustness across the four 

datasets compared to scBERT and GeneFormer, which may be attributed 

to its larger model size and extensive pretraining data. This observation 

aligns with that larger architectures generally possess greater capacity. 

However, the escalation in model size imposes a significant computational 

burden, particularly for large-scale single-cell analyses. These constraints 

motevated our pursuit of developing efficient adaptation approaches that 

could facilitate scLLMs in single-cell biology. With scGPT emerging as the 

most capable model among the three scLLMs, we selected it to 

demonstrate the efficacy of our proposed PEFT strategies in the following 

experiments. 

 

Table 2. Performance of cell type identification using native scLLMs 

and popular tools. Bold value represents the highest score among the 

methods 

Dataset Method Accuracy Precision Recall F1-Score 

M.S. 

SingleR 0.580 0.776 0.663 0.615 

Seurat 0.686 0.820 0.812 0.805 

scGPT 0.595 0.777 0.728 0.734 

Geneformer 0.283 0.235 0.532 0.388 

scBERT 0.534 0.742 0.641 0.663 

Zheng68k 

SingleR 0.543 0.571 0.377 0.398 

Seurat 0.553 0.674 0.662 0.645 

scGPT 0.525 0.632 0.639 0.625 

Geneformer 0.447 0.512 0.588 0.561 

scBERT 0.452 0.580 0.569 0.549 

NSCLC 

SingleR 0.693 0.670 0.669 0.649 

Seurat 0.691 0.678 0.767 0.718 

scGPT 0.639 0.762 0.771 0.759 

Geneformer 0.545 0.701 0.645 0.679 

scBERT 0.583 0.736 0.735 0.718 

COVID-19 

SingleR 0.909 0.928 0.921 0.922 

Seurat 0.913 0.935 0.935 0.934 

scGPT 0.832 0.875 0.864 0.866 

Geneformer 0.684 0.769 0.732 0.752 

scBERT 0.735 0.855 0.839 0.837 
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Figure 2. UMAP visualizations of embeddings from scLLMs on (a) M.S., 

(b) NSCLC, (c) Zheng68k, and (s) COVID-19 dataset. Bold silhouette 

scores are the best ones across the three scLLMs. 

 

To further evaluate the representational capabilities of the three scLLMs, 

we employed Uniform Manifold Approximation and Projection (UMAP) to 

translate their high-dimensional embeddings into a two-dimensional 

space, subsequently color-coding the resulting plots by cell type. We also 

computed silhouette scores as a quantitative measure of the quality of the 

scLLM representations, where values range from -1 to 1 with higher scores 

indicating more distinct clustering of cell types. 

The UMAP projections and corresponding silhouette scores revealed that 

scGPT produced varied cluster densities and degrees of separation. In 

certain instances, distinct cell types were more delineated, suggesting a 

comparatively superior representational capability. While scGPT's 

silhouette scores were relatively higher, indicating some promise, they did 

not reach a level of satisfaction. The UMAP plots for scBERT demonstrated 

a degree of distinctiveness, despite of less pronounced than that of scGPT, 

as reflected by its lower silhouette scores. Conversely, Geneformer's UMAP 

visualizations and silhouette scores did not exhibit a discernible clustering 

pattern among different cell types, consistent with its performance metrics. 

These UMAP analyses collectively highlight the existing limitations of the 

three scLLMs in zero-shot cell type annotation, underscoring the need for 

further refinement to enhance their discriminative capacity in this 

application.  

Table 3. Performance of scGPT with proposed PEFT strategies and other adaptation approaches. Italic values denote the best performance from 

Table 2 as baseline. Bold values represent the best metric values across all involved approaches.

Dataset Method Trainable  

Parameters 

Accuracy Precision Recall F1-Score 

 

 

 

M.S. 

Seurat N/A 0.686 0.820 0.812 0.805 

Native scGPT N/A 0.595 0.777 0.728 0.734 

Full finetune 51M  0.708 0.857   0.848  0.845 

Finetune classifier 0.53M  0.650 0.806  0.801 0.797 

Prefix prompt 0.92M 0.743 0.815 0.797 0.802 

LoRA prompt 1.27M  0.747 0.830  0.817  0.821 

Gene token prompt 0.66M  0.790  0.875 0.842 0.852 

Gene encoder prompt 2.11M 0.795 0.884 0.870 0.874 

 

 

 

 

Zheng68k 

Seurat N/A 0.553 0.674 0.662 0.645 

Native scGPT N/A 0.525 0.632 0.639 0.625 

Full finetune 51M 0.681 0.771  0.654 0.679 

Finetune classifier 0.53M 0.546 0.681 0.677 0.656 

Prefix prompt 0.92M 0.590 0.735 0.484 0.528 

LoRA prompt 1.27M  0.582 0.730  0.499  0.545 

Gene token prompt 0.66M  0.678 0.791  0.682  0.708 

Gene encoder prompt 2.11M  0.696 0.809 0.811 0.807 

 

 

 

 

NSCLC 

Seurat N/A 0.691 0.678 0.767 0.718 

Native scGPT N/A 0.639 0.762 0.771 0.759 

Full finetune 51M 0.772 0.873 0.872 0.873 

Finetune classifier 0.53M 0.712 0.813 0.816 0.812 

Prefix prompt 0.92M 0.773 0.802 0.759 0.769 

LoRA prompt 1.27M  0.746 0.809 0.779  0.786 

Gene token prompt 0.66M 0.886 0.878  0.869 0.871 

Gene encoder prompt 2.11M 0.883 0.884  0.874  0.876 

 

 

 

 

COVID-19 

Seurat N/A 0.913 0.935 0.935 0.934 

Native scGPT N/A 0.832 0.875 0.864 0.866 

Full finetune 51M 0.921 0.939 0.935 0.936 

Finetune classifier 0.53M 0.833 0.915 0.916 0.915 

Prefix prompt 0.92M 0.914 0.916 0.906 0.909 

LoRA prompt 1.27M 0.911 0.912 0.906 0.908 

Gene token prompt 0.66M 0.950 0.947 0.944 0.945 

Gene encoder prompt 2.11M 0.957 0.949 0.946 0.947 
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Comparison of proposed PEFT strategies and other 
finetuning approaches   
We then integrated our innovative Parameter-Efficient Fine-Tuning (PEFT) 

strategies to fine-tune scGPT using identical training data, subsequently 

evaluating the tuned models on the test set. For benchmarking purposes, we 

juxtaposed our PEFT strategies against the conventional fine-tuning approach, 

which encompasses a comprehensive update of the encoder and classifier, as 

well as an alternative approach that fine-tunes the classifier only, leaving the 

encoder unchanged. While the former represents the standard yet resource-

intensive method in deep learning, its feasibility diminishes with increasing 

model sizes. The latter, conversely, stands as the least computationally 

demanding refinement technique. In addition to these, we examined our PEFT 

strategies alongside two prevalent prompt-based learning techniques: prefix 

prompting and LoRa. We summarized the comparative performance across all 

cell types in Table 3, with detailed results for individual cell types provided in 

Supplementary Tables 13-36. It is important to note that we explored multiple 

hyperparameter configurations for our PEFT strategies and competing 

approaches, with a comprehensive account of these variations detailed in 

Supplementary Tables 37-39. The results reported in Table 3 reflect the 

outcomes from the optimally performing hyperparameter sets. 

The results display a marked enhancement in model performance post-fine-

tuning compared to their native counterparts, underlining the critical role of 

model adaptation in cell type identification using scGPT. However, full fine-

tuning, despite its effectiveness, is computationally exhaustive, necessitating 

updates across all transformer blocks, encompassing over 50 million 

parameters—a scale that is impractible for routine single-cell analysis. The 

classifier-only fine-tuning approach, while resource-conservative, fails to 

adequately adapt the scLLMs as evidenced by its relatively poorer performance 

metrics. 

Our PEFT strategies, by fine-tuning a subset of newly added parameters, 

adeptly capture task-specific information within scGPT, leading to consistently 

superior performance across a spectrum of metrics, including Accuracy, 

Precision, Recall, and F1-score. These strategies operate at the tokenizer and 

encoder levels, tuning raw input gene expression values and the learned gene 

relationships from the Transformer blocks to fit the task-specific demands. 

Consequently, not only do they enhance performance relative to Seurat and 

native scGPT, but they also outstrip the full fine-tuning approach while saving 

up to 90% trainable parameters. Between our two PEFT strategies, the Gene 

token prompt slightly trails the Gene encoder prompt, yet it offers a further 

reduction of trainable parameters by one-third. Despite their popularity in NLP 

models, the prefix prompt and LoRa prompt did not fare as well in our 

experiments. The prefix prompt, which appends pseudo tokens to the input, 

potentially disrupts the biological signal within the gene expression data. 

LoRa's requirement for a sufficiently large rank number to capture complex 

biological patterns also appeared to be a limiting factor in our context. 

 

 

 

 

 
Figure 3. UMAP visualizations of scGPT with different adaptation 

approaches on (A) M.S., (B) NSCLC, (C) Zheng68k, and (D) COVID-19 

Datasets.  

 

Figure 3 presents the UMAP visualizations derived from the various adaptation 

approaches, showcasing the enhanced delineation of cell representations 

achieved by the fine-tuned scGPT. It is apparent from the visualizations that all 

adaptation methods yield representations that are superior to those generated 

by the native scGPT model. Notably, our PEFT strategies outperform the 

alternatives, producing more cohesive clustering as evidenced by UMAP 

visualizations and higher Silhouette scores. This underscores the efficacy of 

the PEFT-induced prompts in fostering a refined predictive capability for cell 

type identification. In contrast, the prefix prompt approach appears to falter in 

generating effective cell representations. Meanwhile, LoRA prompts, though 

not as effective as PEFT strategies, still deliver relatively promising 

representation quality. 

 

Performance of proposed PEFT strategies and other 
finetuning approaches on challenging cell types 
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Table 4.  Comparison of scGPT with different adaptation approaches on the rare cell type from the M.S. dataset. Bold values represent the best 

metric values across all involved approaches. 

Cell type Support Method Accuracy Precision Recall F1-score 

 

 

cortical layer 

2-3 excitatory 

neuron A 

 

 

 

314 

SingleR 0.0489 0.3000 0.0382 0.0678 

Seurat 0.5809 0.3014 0.8408 0.4437 

Native scGPT 0.3300 0.1345 0.6401 0.2223 

Full Finetune 0.4841 0.3101 0.5955 0.4079 

Prefix prompt 0.3165 0.2408 0.3535 0.2865 

LoRA prompt 0.4173 0.3500 0.4459 0.3922 

Gene token prompt 0.5491 0.3052 0.7484 0.4336 

Gene encoder prompt 0.5620 0.3739 0.6752 0.4813 

 

 

 

phagocyte 

 

 

 

82 

SingleR 0.0478 0.6000 0.0366 0.0690 

Seurat 0.0160 0.2500 0.0122 0.0233 

Native scGPT 0.0000 0.0000 0.0000 0.0000 

Full Finetune 0.0000 0.0000 0.0000 0.0000 

Prefix prompt 0.4737 0.6207 0.4390 0.5143 

LoRA prompt 0.5195 0.6452 0.4878 0.5556 

Gene token prompt 0.5217 0.7358 0.4756 0.5778 

Gene encoder prompt 0.3986 0.8000 0.3415 0.4786 

 

Table 5.  Comparison of scGPT with different adaptation approaches on the ambiguous cell type from the Zheng68k dataset. Bold values 

represent the best metric values across all involved approaches. 

Cell type Support Method Accuracy Precision Recall F1-score 

 

 

 

CD4+/CD45R

A+/CD25- 

Naive T 

 

 

 

 

1095 

SingleR 0.2120 0.0651 0.8557 0.1210 

Seurat 0.0072 0.1333 0.0055 0.0105 

Native scGPT 0.0128 0.0809 0.0100 0.0179 

Finetune classifier 0.0000 0.0000 0.0000 0.0000 

Full Finetune 0.3472 0.1444 0.6530 0.2365 

Prefix prompt 0.2214 0.0708 0.7616 0.1296 

LoRA prompt 0.2507 0.0889 0.6374 0.1561 

Gene token prompt 0.3272 0.1390 0.5963 0.2255 

Gene encoder prompt 0.3262 0.5096 0.2913 0.3707 

 

 

 

 

CD4+/CD45R

O+ Memory 

 

 

 

 

1769 

SingleR 0.3709 0.1405 0.8180 0.2397 

Seurat 0.1450 0.2633 0.1261 0.1705 

Native scGPT 0.1475 0.2305 0.1317 0.1676 

Finetune classifier 0.0724 0.3741 0.0571 0.0991 

Full Finetune 0.4930 0.2647 0.4822 0.3866 

Prefix prompt 0.3886 0.1961 0.5777 0.2928 

LoRA prompt 0.4523 0.2596 0.6009 0.3626 

Gene token prompt 0.5023 0.5285 0.7168 0.5043 

Gene encoder prompt 0.5277 0.3164 0.6789 0.4316 

 

Table 6.  Comparison of scGPT with different adaptation approaches on the rare cell type from the NSCLC dataset. Bold values represent the best 

metric values across all involved approaches. 

Cell type Support Method Accuracy Precision Recall F1-score 

 

 

 

 

XCL1 

 

 

 

 

52 

SingleR 0.0768 0.0240 0.2885 0.0442 

Seurat 0.0250 0.2500 0.0192 0.035 

Native scGPT 0.0000 0.0000 0.0000 0.0000 

Finetune classifier 0.0000 0.0000 0.0000 0.0000 

Full Finetune 0.0000 0.0000 0.0000 0.0000 

prefix prompt 0.0987 0.0302 0.4038 0.0561 

LoRA prompt 0.3357 0.1341 0.6731 0.2236 

Gene token prompt 0.5926 0.3121 0.8462 0.4560 

Gene encoder prompt 0.5839 0.3390 0.7692 0.4706 
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In cell type identification task, addressing "hard cases" – cell types that are 

challenging to classify due to rarity and overshadowing by dominant 

populations – is vital for understanding cellular diversity, especially in 

complex diseases like cancer. These hard cases, exemplified by Naive T 

(CD4+/CD45RA+/CD25-) and Memory T (CD4+/CD45RO+) cells in the 

Zheng68k dataset, pose challenges as traditional feature extraction often 

fails to capture the subtle differences between closely related subtypes. 

This challenge is primarily attributed to the potential inadequacy of 

features extracted from the data, which may not sufficiently represent the 

nuanced differences between these T cell subtypes.  

Our study conducts a comprehensive comparative analysis on datasets 

such as M.S., focusing on these elusive cell types. The results, highlighted 

in Table 6, reveal the significant efficacy of the Gene encoder prompt in 

improving classification. This PEFT approach effectively tailors the model 

to capture specific data traits, such as unique gene expression patterns, 

enhancing the model's precision in identifying hard-to-classify cell types 

and underscoring the importance of methodological innovation in single-

cell genomics. 

 

Conclusion and Discussion 
In this study, we proposed two PEFT strategies for enhancing the 

adaptability of scLLMs. Our approach introduces a novel concept of 

tunable Gene token and Gene encoder prompts within scLLMs, while 

maintaining the integrity of the original model parameters during their 

adaptation to specific downstream tasks. Through rigorous evaluation 

using scGPT across four benchmark datasets for cell type identification, 

our strategies have demonstrated improvements in accuracy, precision, 

recall, and F1 score, achieved with substantially lower computational 

demands. Notably, our PEFT strategies have shown marked enhancements 

in identifying rare cell types and complex cell types on these datasets, 

thereby revealing the power of scLLMs in such critical scenarios. 

As an initial investigation into the benefits of PEFT approaches applied to 

scLLMs for single-cell analysis, this work has exclusively utilized scGPT as 

the representative scLLM. Further research is warranted to establish a 

comprehensive benchmark across additional open-sourced scLLMs, such 

as scBERT and Genefomer, to assess the robustness of these strategies. 

Moreover, future endeavors will aim to expand the application of PEFT 

techniques beyond cell type identification to other fundamental single-cell 

tasks, including batch correction, perturbation response analysis, and 

gene marker detection, thus enhancing the utility of scLLMs in the single-

cell community. 

Additionally, the development of a dedicated PEFT toolkit for emerging 

scLLMs stands as an objective to facilitate and streamline research 

endeavors involving scLLMs and PEFT strategies in single-cell biology. 

Exploring the combination of various PEFT strategies may yield a 

comprehensive solution for scLLMs, particularly for complex tasks such as 

network inference. Inspired by the 'chain of thoughts' methodology in 

LLMs, these intricate tasks could be deconstructed into sequential 

subtasks—ranging from cell type to network identification—and tackled 

using targeted prompts to effectively harness the power of scLLMs. 

Lastly, the pursuit of integrating scLLMs with large foundational models 

from disparate modalities, such as imaging or proteomics, is expected. The 

aim is to cultivate a more holistic understanding of cellular behaviors and 

interactions at a multimodal scale, which remains a promising yet 

challenging frontier in the field. 

 

Data and code availability 
All data used in this study are publicly available. The published Zheng68k

 dataset was downloaded at https://support.10xgenomics.com/single-cel

l-gene-expression/datasets(SRP073767)[35]. The published M.S. dataset

s were downloaded from Github at https://github.com/bowang-lab/scGP

T/tree/main/data/. The NSCLC dataset was downloaded from https://w

ww.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE179994. The COVID-19 

dataset was downloaded https://doi.org/10.6084/m9.figshare.1692246

7.v1. The source code is freely available on Github (https://github.com/la

olintou/scPEFT.git) 
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