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Vertebral fractures (VFs) cause serious problems, such as substantial functional loss and a high 
mortality rate, and a delayed diagnosis may further worsen the prognosis. Plain thoracolumbar 
radiography (PTLR) is an essential method for the evaluation of VFs. Therefore, minimizing the 
diagnostic errors of VFs on PTLR is crucial. Image identification based on a deep convolutional neural 
network (DCNN) has been recognized to be potentially effective as a diagnostic strategy; however, 
the accuracy for detecting VFs has not been fully investigated. A DCNN was trained with PTLR images 
of 300 patients (150 patients with and 150 without VFs). The accuracy, sensitivity, and specificity of 
diagnosis of the model were calculated and compared with those of orthopedic residents, orthopedic 
surgeons, and spine surgeons. The DCNN achieved accuracy, sensitivity, and specificity rates of 86.0% 
[95% confidence interval (CI) 82.0–90.0%], 84.7% (95% CI 78.8–90.5%), and 87.3% (95% CI 81.9–
92.7%), respectively. Both the accuracy and sensitivity of the model were suggested to be noninferior 
to those of orthopedic surgeons. The DCNN can assist clinicians in the early identification of VFs and in 
managing patients, to prevent further invasive interventions and a decreased quality of life.

Thoracolumbar vertebral fractures (VFs) occur very frequently in blunt traumas, and the accurate detection of 
VFs is crucial for the evaluation of patients with low back pain in primary care medicine. The mortality rate of 
patients with VFs is estimated to be 10–30% in the subsequent 1 year1–3. Substantial functional loss may occur 
after a VF4,5, and a delayed diagnosis may worsen the prognosis or may require invasive salvage surgery6,7. These 
individual issues associated with VFs may result in substantial economic burden to society8. Therefore, early 
diagnosis and treatment are essential for the prevention of not only functional loss but also the reduced quality 
of life of patients. Plain thoracolumbar radiography (PTLR) is an essential and widely used tool for the image 
evaluation of VFs. However, the sensitivity of PTLR for assessing VFs is not optimal. Errors and discrepancies 
with the results of radiology are estimated to be 10–30%9–11. Therefore, in clinical practice, clinical examination 
together with imaging analysis, such as computed tomography (CT) or magnetic resonance imaging (MRI) is 
used12. However, these evaluation methods are time-consuming or costly, and are not always available in the pri-
mary care setting, which is where most patients with low back pain are initially examined. Therefore, minimizing 
the diagnostic errors of VFs on PTLR, to prevent potential catastrophic results is of great importance. In light of 
these points, digital imaging systems may be useful not only for immediate and remote access13, but also for the 
possibility of automatic diagnostic procedures made by a deep convolutional neural network (DCNN)14. Image 
identification based on deep learning has been recognized to be a potentially effective diagnostic strategy, and 
has already become feasible15. The application of DCNN in medical image identification is expected to spread 
widely and rapidly; however, the accuracy of using DCNN for detecting VFs has not been fully investigated. In 
this study, we hence analyzed an automated VF diagnosis algorithm trained based on the DCNN, and investigated 
its performance compared with that of orthopedic surgeons, to test the hypothesis that DCNN is an adequate 
tool for the screening of VFs.
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Materials and methods
The collection and evaluation of patient image was made based on the latest Declaration of Helsinki, and also 
followed the ethical guidelines for clinical trials and the ethical guidelines for human-related medical research 
(Japanese Ministry of Health, Labor and Welfare). This study was approved by the Ethics Review Committee of 
Tokyo Medical University Hospital. Informed consent was obtained in the form of opt-out on the web-site of 
our department. Those who rejected were excluded.

Study population.  This was a retrospective study performed at a single medical center, which was a level 
3 trauma center. After obtaining institutional review board approval, the data of demographic profiles, medical 
data, and medical imaging findings stored in a computerized database of patients who presented to our depart-
ment with thoracolumbar VF from 2015 to 2018 were analyzed. Patients with low back pain or lumbar spinal 
canal stenosis without a past history of VF were also included as negative controls.

Plain thoracolumbar radiography (PTLR) dataset.  A total of 300 patients in the registry (150 patients 
with VF and 150 without VF) were included in the study. The demographic data of patients in the dataset are 
shown in Table 1. VF was diagnosed using the PTLR and MRI stored in a picture archiving and communication 
system (PACS). PTLR were obtained using BENEO-Fx (system number: MP95A9482001, Fujifilm co., Tokyo, 
Japan). The images used for diagnosis were obtained within 1 month after onset of symptoms. The size of the 
stored images of computed radiographs (CR) obtained from PACS as JPEG sized 960 × 720 pixels, and the color 
was 24-bit grayscale. Each patients was assigned a serial number and deidentified in both the images and regis-
try. Patients with a VF of grade 1 using the semiquantitative grading method16 were excluded, because grade 1 
VF is considered to be difficult to distinguish from vertebral deformities17,18. Patients with 2 or more VFs were 
also excluded. After the PTLR datasets were established, images were initially labeled as a VF or negative by 
spine surgeons, where the patients were diagnosed as having a VF if both vertebral collapse on PTLR and typical 
signal changes on MRI of low T1, high T2, and high short-tau inversion recovery were observed. Each image was 
reviewed by a registered spine surgeon for the preciseness of the labeling and quality of the images and put into 
DCNN described below without any processing.

Development of the algorithm.  DCNNs are widely used in medical image recognition19. DCNNs are 
machine-learning algorithms used by artificial intelligence. The basic concept is to use pixel values from a digital 
image as inputs, using techniques such as convolution and pooling on each layer, and to adjust the weights in 
the neural network according to the difference between the output and true label. After a significant amount of 
imaging input is used as training material, the weights in the neural network are adjusted to fit the problem. The 
tools of Classify Images of Watson Studio based on free account of Visual Recognition V3 imported into Watson 
Studio published on IBM cloud was used as the structure of the neural network in this study (https​://www.ibm.
com/jp-ja/cloud​) (Fig. 1). The input images were tested as the set of the antero-posterior and lateral PTLR on the 
JPEG file for each patient, and resized to 512 × 512 pixels with an 8-bit grayscale color to reduce the complexity 
and computation (Figs. 2, 3, 4, 5). K-fold cross validation (k = 5) was used for the evaluation of VFs. The hyper-
parameters such as batch size and optimized epochs were assigned automatically by Visual Recognition V3.

Algorithm evaluation.  The trained model was tested to analyze its accuracy in identifying VFs. The prob-
ability generated by the VF model was analyzed using a receiver operating characteristic (ROC) curve and the 
area under the curve (AUC). A confusion matrix was also calculated using a cutoff level of probability of 0.80 
for VFs20, in which 0.80 was also predicted using the ROC table. In addition, orthopedic doctors were divided 
into 3 groups, i.e., orthopedic residents (n = 20), board certified orthopedic surgeons (n = 24), and board certified 
spine surgeons (n = 9). The diagnosis made by each orthopedic doctor was retrieved from the medical records. 
Therefore, the diagnosis of the physician was made not only by image diagnosis of PTLR but also by physical 
findings. Gold Standards of diagnosis of VF was determined by spine surgeons with the findings of typical signal 
changes on MRI of low T1, high T2, and high short-tau inversion recovery.

Statistical analysis and software.  All statistical analyses were performed using JMP 14.0 (SAS Institute, 
Inc., Cary, NC, USA). Continuous variables were analyzed using the Student t-test after determining that the 
data followed a parametric distribution using the Shapiro–Wilk normality test (in which p > 0.05 suggested that 
the data was from a normal distribution), and categorical variables were analyzed using the Fisher exact test. 
We compared the trained models and orthopedic doctors using the accuracy, sensitivity, specificity, and 95% 
confidence intervals (CIs) of each parameter. The McNemar test was used to evaluate the noninferiority of the 
accuracy, sensitivity, and specificity of the DCNN compared with orthopedic residents, orthopedic surgeons, 

Table 1.   Demographic data of the patients. VF vertebral fracture.

VF Without VF p value

Number of patients 150 150

Age (years) 69.1 ± 1.4 65.4 ± 1.4 0.73

Sex, female (%) 92 (61.3%) 91 (60.7%) 0.96

https://www.ibm.com/jp-ja/cloud
https://www.ibm.com/jp-ja/cloud
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and spine surgeons21. The kappa coefficient was calculated between the diagnosis made by the DCNN and the 
physicians.

Results
The accuracy, sensitivity, and specificity of the models are shown in Table 2. The ROC curve of prediction prob-
ability is shown in Fig. 6. The model achieved an AUC of 0.91 (95% CI 0.96–1.00).

The overall accuracy, sensitivity, and specificity of orthopedic residents, orthopedic surgeons, and spine sur-
geons are shown in Table 2. The McNemar test demonstrated that the DCNN had higher sensitivity compared 
with orthopedic residents (p = 0.02), but that accuracy, sensitivity of DCNN was not statistically significant 
compared with orthopedic surgeons (p = 0.72, p = 0.31, respectively). The performance of spine surgeons was 
significantly higher in accuracy, sensitivity, and specificity than the DCNN. The kappa coefficient of DCNN was 
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Figure 1.   Representative of Visual Recognition V3 model.

Figure 2.   Representative of antero-posterior view of PTLR of a patient with VF. The image shows VF on L3 
(arrow).
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Figure 3.   Representative of lateral view of PTLR of a patient with VF. The image shows VF on L3 (arrow).

Figure 4.   Representative of antero-posterior view of PTLR of a patient without VF.
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calculated as 0.36 (p = 0.01) for orthopedic residents, 0.48 (p < 0.01) for orthopedic surgeons, and 0.66 (p < 0.01) 
for spine surgeons.

Twenty-seven out of the 300 patients (26 patients with VF, 1 patient without VF) were misdiagnosed by the 
physicians. In these cases, DCNN successfully diagnosed VF or not except in 1 patient with VF. There was only 
1 case with VF that was misdiagnosed by both the DCNN and the physicians.

Discussion
Our results demonstrated that a DCNN can be trained to identify VFs within image datasets with high sensitivity 
(84.7%) and specificity (87.3%). At present, although VFs are common, their diagnosis and treatment may be 
difficult, particularly in some clinical situations, such as in primary care, emergency medicine, or remote rural 

Figure 5.   Representative of lateral view of PTLR of a patient without VF.

Table 2.   Predictive values for the diagnosis of VF. DCNN deep convolutional neural network, VF vertebral 
fracture, 95% CI 95% confidence interval.

Value (%) 95% CI p value

DCNN

Accuracy 86.0 82.0–90.0 1.00

Sensitivity 84.7 78.8–90.5 1.00

Specificity 87.3 81.9–92.7 1.00

Orthopedic residents

Accuracy 77.5 64.7–90.3 0.08

Sensitivity 72.4 56.7–88.1 0.02

Specificity 90.9 70.7–100 0.56

Orthopedic surgeons

Accuracy 88.0 82.3–93.6 0.72

Sensitivity 77.5 67.8–87.1 0.31

Specificity 100 100 –

Spine surgeons

Accuracy 98.4 95.5–100  < 0.01

Sensitivity 96.0 89.1–100 0.01

Specificity 100 100 –
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areas22–24. With the assistance of the DCNN, VFs can be detected immediately with a high accuracy rate (86.0%), 
which may be as high as the detection accuracy of expert’s clinical diagnosis. This DCNN may help primary 
physicians to avoid misdiagnoses, as well as subsequent unfavorable events: Missed fractures required surgery 
in 50% patients25. Early detection and treatment are crucial for patient survival and the preservation of spinal 
function. The delayed diagnosis of VF may result in a poor prognosis and even an increased risk of death after 
a few years26–28. Therefore, the accurate and immediate detection of VF is crucial for preventing mortalities and 
for favorable medical outcomes.

DCNN for image diagnosis in orthopedics is becoming widely used with its advancements. The ability to 
immediately classify a radiograph will most likely have a major effect on clinical orthopedic image diagnoses. 
Some previous studies have reported the possibility of DCNN in detecting bone fractures29,30. These findings shed 
light on the possibility of the clinical use of DCNN in orthopedics. However, the actual outcome of detecting 
a fracture still remains unknown, because most of the available fracture classifications lack prognostic value31.

In this study, DCNN detected VFs with a satisfactory accuracy. One of the strengths of our model may be the 
nature of using PTLR. There have been various techniques of the diagnosis of VF, but a gold standard has yet to 
be established32–34. The correct diagnosis rate for incident vertebral fractures by PTLR was estimated significantly 
low35,36, and inferior compared to that of CT37. However, PTLR is economic examination, which cost one fourth 
of MRI in our country. Furthermore, estimated figures for radiation dose for CT are 19.4 mSV for thoracolumbar 
spine CT, on the other hand, that of PTLR are 1.0–6.6 mSV38,39. These issue may shed light on the efficiency of 
DCNN. However, DCNN was unable to identify VFs in 21 patients in this study, and several misdiagnoses are 
considered owing to this simple preparation without clinical information. A large number of cases will simply 
improve the sensitivity of DCNN; however, there is expected to be both cases that are suitable for learning and 
those that are not, and future studies should be performed to solve this issue. In addition, we excluded old VFs 
in this study. In the clinical situation, some radiological VFs can be diagnosed as old VFs, from findings such as 
fused vertebrae, a bridging callus, or a vertebral cleft; however, we also encountered cases of radiological VFs, in 
which it was difficult to determine whether they were fresh or old. This exclusion is considered to be a limitation 
of our model, and hence the specificity might be increased in the clinical diagnosis made by physicians. In the 
progressive algorithms, these old VF should be included in anticipation of the clinical use. However, the deep 
learning algorithm is considered to be sufficient to achieve an accuracy level that is compatible with the accuracy 
of clinical diagnosis made by physicians to date.

This study has several limitations. One fundamental limitation is that we did not evaluate the functional 
prognosis of the VFs. Owing to the nature of DCNNs providing binary classification, the neural network pro-
vided only an image diagnosis with or without VF where level of fracture or instability of fracture were not 
evaluated. This issue might be similar to the limitation of diagnostic value of PTLR where CT or MRI might 
provide more valuable information to determine the need for surgical intervention40. Therefore, the diagnosis 
made by DCNN should be re-evaluated by surgeons, to confirm the diagnosis or to determine the treatment 
suitable for the patient. On the other hand, the diagnosis made by physicians were retrieved from the medical 
records, which included important information regarding the decision-making process, such as pathological 
onset, degree of pain, present history, medical background, and physical examination, and such information 
contributed to the high specificity rate of the physicians. The lack of such information in the DCNN may be 
unfavorable for decision-making. This disadvantage appears to emphasize the importance of the diagnosis by 
DCNN. The second limitation is the process of diagnosis. The process used by DCNN to learn the features of VF 
remains unknown. It hence remains unclear as to what properties and dataset volume are suitable for analysis. 
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Figure 6.   ROC curve of the model. The ROC curve of the prediction probability is shown as a black line. A 
yellow line shows the tangent line of the curve. The model achieved an AUC of 0.91 (95% CI 0.96–1.00).
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Features that were most useful for DCNN might be those previously unknown to or ignored by humans. This 
fact is confusing in regard to the authenticity of the diagnosis. However, DCNN may also be more efficient in its 
combined recognition of bone morphology, comminution, and bone quality, apart from traditional orthopedic 
measures. In addition, the detection of other lesions on the image such as coincidental tumor, which is essential 
for routine diagnosis, was not included in this study. And the insufficient fractures related to osteoporosis and 
pathological fractures secondary to metastasis were not present in the training set. These detection of traumatic 
VFs is not sufficient for clinical use, because there are red flags of low back pain other than VFs. Despite these 
limitations, we consider our diagnosis method to be useful for future practical applications. Our present results 
may be useful in the primary care setting as a method for the fast screening of VFs, even in situations in which 
experts are not available.

Conclusion
To identify VFs on PTLR, an algorithm trained by a DCNN achieved excellent performance, with high accu-
racy and sensitivity. DCNN may have a potential for expansion as a screening tool to assist clinical physicians 
in identifying VFs. Further investigations with heterogenous cohort such as healthy controls or osteoporotic 
subjects are needed for the advancement of the model.
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