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Abstract: Asthma is a common chronic respiratory disorder with relatively good outcomes in the
majority of patients with appropriate maintenance therapy. However, in a small minority, patients
can experience severe asthma with respiratory failure and hypercapnia, necessitating intensive care
unit admission. Hypercapnia occurs due to alveolar hypoventilation and insufficient removal of
carbon dioxide (CO2) from the blood. Although mild hypercapnia is generally well tolerated in patients
with asthma, there is accumulating evidence that elevated levels of CO2 can act as a gaso-signaling
molecule, triggering deleterious effects in various organs such as the lung, skeletal muscles and
the innate immune system. Here, we review recent advances on pathophysiological response to
hypercapnia and discuss potential detrimental effects of hypercapnia in patients with asthma.
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1. Introduction

Asthma is a chronic disease characterized by reversible airway obstruction caused by bronchial
smooth muscle contraction, airway inflammation and increased secretions, and is currently estimated
that more than 330 million people are afflicted with this disease worldwide [1,2]. The natural history
of asthma is punctuated by acute exacerbations, most of which respond to conventional treatment
using inhaled bronchodilators and corticosteroids, and oxygen. However, deterioration or failure to
respond to these measures sometimes leads to severe respiratory failure. Approximately 5 to 10%
of asthmatic patients experience a severe asthma attack each year and, of those who are admitted
to hospital, 10% require intensive care unit (ICU) admission [3]. Ten to twenty-six percent of cases with
acute severe asthma present to the emergency department with hypercapnia [3]. In-hospital mortality
rates for patients with severe asthma who require ICU admission is 3.2 to 9.8%, with higher mortality
rates seen in those patients who require invasive ventilation [4]. Hypercapnia is associated with the
institution of mechanical ventilation and greater risk for in-hospital death in acute severe asthma [5,6].

Hypercapnia, an elevation in the arterial carbon dioxide (CO2) tension, is a complication of
inadequate alveolar gas exchange in patients with severe acute and chronic lung diseases [7] including
asthma [5,6,8–17]. It has been initially reported that hypercapnia was innocuous or even protective in
mechanically ventilated patients with severe asthma [9,10], acute lung injury and acute respiratory
distress syndrome (ARDS) [18–21], where the concepts of “permissive” and even “therapeutic”
hypercapnia have been proposed for the mechanically ventilated patients. The lower tidal volumes
during protective ventilation can lead to hypercapnia and an associated drop in pH resulting in
hypercapnic respiratory acidosis that has been reported as a protective effect via the inhibition
of the nuclear factor-κB (NF-κB) pathway, a pivotal transcription activator in inflammation and
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injury [7,22]. However, in recent years, it has become increasingly evident that elevated CO2 acts as a
gaso-signaling molecule, resulting in deleterious effects in various organs such as the lung [23–29] and
skeletal muscles [30–32] as well as innate immunity system [25,29,33–37]. In the lung, recent studies
reported that high levels of CO2 activate specific gene expression [26,38–40] and signal transduction
pathways with adverse consequences on alveolar fluid clearance through Na, K-ATPase endocytosis
via intracellular calcium- or extracellular signal-regulated kinase (ERK)-mediated AMP-activated
protein kinase (AMPK)/protein kinase C-ζ/c-Jun-N-Terminal Kinase (JNK) signaling or soluble adenylyl
cyclase-mediated protein kinase A-Iα signaling [24,41–46] and epithelial cell repair via AMPK-mediated
Rac1-GTPase signaling, NF-κB pathways or miR-183-regulated mitochondrial dysfunction [28,47–49].
In addition, a secondary analysis of three prospective non-interventional cohort studies of ARDS
patients receiving mechanically ventilation reported that severe hypercapnia was independently
associated with higher ICU mortality [23]. These recent reports have led to the re-evaluation of the
potential complexity of hypercapnia effects, and are stimulating more research to better understand
its biologic effects. Here, we review recent advances on pathophysiological response to hypercapnia;
CO2 sensing, CO2-dependent regulation of respiration and signaling events initiated by hypercapnia,
and discuss the relevance of these data to patients with asthma and hypercapnia.

2. CO2 Sensing and Respiration

Cells possess the ability to sense and respond to changes in concentration of gaseous molecules
through evolutionarily conserved pathways [50]. CO2 is a small non-polar molecule and produced
in the mitochondria of eukaryotic cells during oxidative phosphorylation and its physiological
levels in mammalian tissues (~5%) [7] are significantly higher than those found in the atmosphere
(~0.04%) [51,52]. CO2 is thought to traverse biological cell membranes via passive diffusion, depending
upon the transmembrane concentration gradient of CO2 and the lipid/water partition behavior of
the gas [53]. However, the discovery of the effect of cholesterol on CO2 permeability and of protein
channels used by CO2 to cross membranes such as aquaporins (AQPs) [54,55] and rhesus proteins [56]
has challenged this view. Functionally, AQP1, AQP4-M23, AQP5 and AQP6 seem to effect high
permeability for CO2 [55]. In the lung, AQP1 is expressed in microvascular endothelia, AQP3 and
AQP4 in airway epithelia, and AQP5 in type I alveolar epithelial cells and a subset of airway epithelial
cells [54]. Once inside the cell, CO2 very rapidly equilibrates with its hydrated form, H2CO3, which in
turn dissociates into H+ and HCO3

− catalyzed by carbonic anhydrases [57].

CO2 + H2O
 H2CO3 
 H+ + HCO3
−

Increased partial pressure CO2 (pCO2) in the blood, which occurs due to insufficient removal of
CO2 (alveolar hypoventilation), can give rise to elevated pCO2 in the cerebrospinal fluid and result in
elevated H+ concentrations, cerebrospinal fluid acidification. Multiple sites within the central nervous
system are capable of sensing and eliciting rapid adaptive responses to these changes, which results in
alteration in the rate and depth of breathing.

2.1. Central CO2 Chemosensing

Acute chemosensing of CO2 is a complex process involving integration of multiple brain
regions, effector channels and molecules. Neurons detect changes in CO2/H+ and modulate the
CO2-chemosensory regulation of respiration. Several regions in the brain, particularly medulla
oblongata, medullary raphe and cerebellum in the brain stem, have been described as potential area of
interest [58–62]. A recent report suggests important crosstalk between the carotid body and central
chemosensing regions of the brain that determines the respiratory response to altered CO2 level [63].
Much of the work in this area has been reviewed by Cummins et al. [50]. Here, we review key
molecular mechanisms of the brain that are involved in CO2 chemosensitivity to elicit the change in
respiratory rate.



J. Clin. Med. 2020, 9, 3207 3 of 15

2.1.1. pH-Sensitive Ion Channel

The ability to acutely sense and respond to elevated CO2 levels occurs via a physiological
adaptation to reflect acid/base balance in the blood. The pH is a major effector of CO2-dependent
signaling in the brain. The Twik-related acid-sensing potassium (K+) (TASK) channels are members
of the background K2P channel family that facilitate selective K+ leak and contribute to the negative
resting membrane potential in cells [64]. TASK-1, -2 and -3 channels play a role in CO2-dependent
regulation of breathing. TASK-1 and -3 channels display acid sensitivity and are widely expressed in
known chemosensing regions in the brain [65]. Catecholaminergic neurons in the locus coeuruleus
have also been proposed to contribute to the ventilatory response to hypercapnia [66]. Specifically,
several of transient receptor potential channels (TRPC), in particular TRPC 5, are sensitive to pH and
enriched in chemosensory regions of the brain.

2.1.2. CO2-Sensitive Connexin Protein

Huckstepp et al., reported adenosine triphosphate (ATP) released from brain slices derived from
the ventral surface of the medulla oblongata in response to elevated CO2 levels, independently of
extracellular acidification [67]. Connexin hemi-channels including connexin 26 in the medulla oblongata
were also reported as contributing to the ATP release in known chemosensory regions. Subsequent
studies revealed a role for inward rectifying K+ channels [67], participating in hyperpolarization of
excitable cells and CO2-dependent inhibition during hypercapnia. A recent study reported that the
chemo-sensitivity of connexin 26 linked directly to a CO2-dependent posttranslational modification of
the channel, independently of pH changes [68]. Molecular CO2 can bind to Lys125 on connexin 26
forming a carbamate bridge between Lys125 and a neighboring residue, Arg104. The CO2-dependent
modification causes a structural change in the gap junction, which facilitates altered connexin-dependent
signaling (e.g., ATP release). This study identified central chemo-sensitivity to elevated CO2 mediated
not only by indirect changes in pH but directly by high CO2-dependent modifications.

3. Hypercapnia in Asthmatic Patients

The pH-modulating effects of hypercapnia can be attenuated via bicarbonate reabsorption by
the kidneys [69]. However, during acute hypercapnia, the buffering capacity of the blood is not
sufficient to handle the excess CO2, resulting in acute respiratory acidosis (pH < 7.35). Levels of
partial pressure of CO2 in arterial blood (PaCO2) among asthmatic patients experiencing severe
exacerbations varies considerably. Scala reported that hypercapnia occurred in 10 to 26% of cases
presenting to the emergency department with greater airway obstruction, higher respiratory rate and
pulsus paradoxus [3]. The medical literature reports cases of severe hypercapnia in asthmatic patients
with values of PaCO2 reaching 202 and 218 mmHg (pH value, 6.68 and 6.90, respectively) in two 24
and 28 year-old women during severe status asthmaticus [12], 208 mmHg (pH = 6.73) in a 35 year-old
woman during an episode of near fatal asthma [13] and 175 mmHg (pH = 6.99) in a 33 year-old woman
during severe status asthma [17]. Pediatric reports are scarce, but an eight year-old boy during an
episode of near fatal asthma had PaCO2 values of 293 mmHg (pH = 6.77) [14], a two year-old girl with
status asthmaticus had the values of 238 mmHg (pH = 6.71) [16] and an eleven year-old boy with
status asthmaticus with 187 mmHg and pH of 6.84 [15].

In patients with asthma, the presence of hypercapnia reflects more severe airflow obstruction and
more severe chronic asthma conditions [8,11]. Mountain et al., reported that acute asthmatic patients
with hypercapnia (mean PaCO2 value, 53.6 mmHg) were more likely to require maintenance therapy
with β-adrenergic agents and corticosteroids, and were less likely to have been discharged from an
emergency room visit [11]. In a secondary analysis of data from a clinical database, the Intensive
Care National Audit and Research Centre (ICNARC), hypercapnia was shown to be associated
with severe asthmatic patients requiring mechanical ventilation and greater risk for in-hospital
death after adjusting for Acute Physiology and Chronic Health Evaluation (APACHE) II score [5].
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Stow et al., reported that in asthmatic patients admitted to Australian ICUs from 1996 to 2003
non-survivors who were not ventilated in the first 24 h had a higher PaCO2 level, but no difference
of arterial oxygen tension, than those who did survive (mean PaCO2 value, 74.1 vs. 54.3 mmHg) [6].
Asthmatic patients presenting with worsening hypercapnia and respiratory acidosis require intubation
and the need for ventilatory assistance. In mechanically ventilated patients with asthma, “permissive”
hypercapnia is the currently recommended strategy for severe asthma with the goals of minimizing
barotrauma/volutrauma [9,10,70,71]. Elsayegh et al., reported that the peak value of PaCO2 on the first
day of mechanical ventilation with the “permissive” hypercapnia averaged 67 mm Hg and exceeded
100 mmHg in 12% of cases (the highest PaCO2 value, 159 mmHg) [72]. With this approach, decreasing
the respiratory rate and tidal volume as well as increasing the inspiratory flow rate leads to an increase
in expiratory time and decrease of the dynamic hyperinflation.

4. Detrimental Effects of Hypercapnia in Asthma

The symptoms and physiologic consequences of hypercapnia are significant. A series of adaptive
mechanisms are activated in vital organs such as brain and heart to preserve tissue oxygenation
and perfusion, in particular by preservation and defense of intracellular pH. The injurious effects of
hypercapnia on the central nervous and cardiovascular systems are well documented [70]. Hypercapnia
results in cerebrovascular vasodilatation leading to an increase in intracranial pressure by increasing the
blood volume in the brain [70,73]. There have been reports in patients with severe asthma developing
cerebral edema and subarachnoid hemorrhage as a complication of hypercapnia or “permissive
hypercapnia” [15,17,74]. The myocardial response to hypercapnia is characterized by impairment in
contractility due to acute respiratory acidosis, which is reversible [70,75]. Accumulating scientific
evidence points to the role of high CO2 on the lung airways, innate immunity and adipogenesis,
which could contribute to the disease pathogenesis and progression of asthma.

4.1. Lung Airways

The predominant feature of asthma is shortness of breath or dyspnea due to the excessive
constriction of the airway smooth muscles. As such, relieving airway smooth muscle constriction is
a therapeutic target of asthma management. Elevated CO2 levels are reported to modulate the tone
of lung airways, which is in a dynamic equilibrium between excitatory and inhibitory mechanisms.
Lung airway cells sense and respond to changes in CO2 levels via specific mechanisms of the vagus
reflexes, molecular CO2 and pH effects. The effects of hypercapnia on the airways and airway smooth
muscle is complicated. There are reports attesting to it causing increased airway contractility [26,76–85]
or airway relaxation [86–97]. We review recent advances in our understanding of how elevated CO2

conditions modulate the airway tone, focusing on the effects of hypercapnia and respiratory acidosis.

4.1.1. Hypercapnia

Airway tone is regulated by interaction of the sympathetic and parasympathetic pathways [82,98]
where the stimulation of vagal efferent nerves can increase bronchoconstriction [82,98–100]. Evidence
suggesting that changes in CO2 levels in the blood affect the airway tone was first reported in
1892 [76]. Einthoven described that inhalation of high concentrations of carbonic acid (CO2-rich
mixtures) caused bronchoconstriction in dogs, which was confirmed in various models of normoxic
hypercapnia-exposed dogs [77–81] and cats [82,83]. The hypercapnia-induced bronchoconstriction
was abolished by blocking the vagus nerve and understood to be dependent on the integrity of vagal
conduction [76–80,82,83]. In healthy human volunteers, it has been reported that inhalation of high CO2

concentrations decreases specific airway or pulmonary conductance [84,85]. The increases in airway
resistance during high CO2 exposure were initially interpreted as extrathoracic airway narrowing [84]
such as larynx narrowing [85], because the hypercapnic effect was not blocked by atropine or β1/β2

adrenergic receptor agonists. However, the direct studies of laryngeal resistance during high CO2

exposure indicated no change in animal models [101] and normal human subjects [102]. Furthermore,
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several reports of bronchoconstriction in the hypercapnia-exposed animal models [78,80,82] revealed
that the blockage of the vagus nerve did not entirely abolish the bronchoconstrictor response to the
high CO2 exposure, suggesting that other mechanisms contribute to the hypercapnia-mediated airway
constriction. More recently, we have reported that high CO2 acts as a signaling molecule to increase
smooth muscle contraction in mouse and human airway smooth muscle cells [26]. We found that high
concentrations of CO2, independently of hypoxia and extracellular pH, increased acetylcholine-induced
cell contraction dependent on CO2 dose and exposure time in cell culture systems. In a murine model,
the exposure to normoxic hypercapnia increased acetylcholine-induced airway contraction in precision
lung cut slices as well as airway resistance. Furthermore, we found that, in a small cohort of patients
with chronic obstructive pulmonary disease (COPD), patients with hypercapnia (PaCO2 > 45 mmHg)
had higher airway resistance, which improved after correction of hypercapnia (Figure 1).
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Figure 1. Hypercapnia increases airway and respiratory resistance in patients with chronic obstructive
pulmonary disease (COPD). (A) Comparison of airway resistance (sRtot) measured by plethysmographic
assessment between normocapnic and hypercapnic patients. (B) Comparison of respiratory resistance
measured by impulse oscillometry (IOS) between normocapnic and hypercapnic patients. Values
of R5, R20, and R5-R20 indicate total, proximal, and peripheral respiratory resistance, respectively.
(C) Changes of respiratory resistance in hypercapnic patients. Reproduced from [26]. Copyright ©
2018 American Association for the Advancement of Science.

Our study also provided insights into the molecular mechanisms by which high CO2 levels
promote airway smooth muscle cell contractility via calcium-calpain signaling. The signaling was
mediated by caspase-7, which by cleaving the transcription factor myocyte-specific enhancer factor 2D
(MEF2D), leads to downregulation of the microRNA-133a (miR-133a) and consequent upregulation
of Ras homolog family member (Rho) A and myosin light-chain (MLC) phosphorylation. Our data
suggest that elevated CO2 levels activate specific signal transduction pathways in airway smooth
muscle cells, which results in deleterious effects on the airway tone, leading to bronchoconstriction.
Taken together, these more recent reports suggest that hypercapnia promotes airway constriction by
activating the vagus nerve and high CO2-responsive signal transduction pathways to worsen airway
obstruction in patients with severe asthma.
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4.1.2. Respiratory Acidosis

Hypercapnia has been also reported to lead to airway relaxation [86–97]. Inhalation of high
CO2 concentrations initially decreased airway constriction as well as the isolated bronchial ring
tension caused by drugs such as 5-hydroxytryptamine [88–90]. It also reversed the airway constriction
associated with pulmonary artery occlusion in ventilated animal models [86,88]. In humans, the
administration of high CO2 relaxed the constriction of airways in a patient with unilateral pulmonary
artery occlusion [87] and young asthmatic adults with hyperventilation [91] or exercise-induced
bronchoconstriction [91,92]. These effects of hypercapnia were not mediated by the nerve reflexes
and are understood to be due to changes in extracellular/intracellular pH levels, possibly acute
respiratory acidosis in airway smooth muscle cells. Several in vitro studies reported that respiratory
or normocapnic (metabolic) acidosis caused a reversible reduction in active tension of bronchial
rings [89,90,93,94]. Extracellular pH can alter airway smooth muscle tone by changing the levels of
intracellular pH and calcium (Ca2+) [94,95,103]. Intracellular acidification has been reported to decrease
intracellular Ca2+ levels through voltage-dependent Ca2+ channels in the K+-induced contractile model,
thereby inhibiting airway smooth muscle cell contraction [96]. We have reported that airway smooth
muscle relaxation occurred during acute hypercapnia, but it was early, modest and transient [26].
As such, we reason that elevated CO2 levels may have a transient relaxing effect on contracted airways
due to the decrease in pH, i.e., respiratory acidosis. There are no reports describing that hypercapnia
and acute respiratory acidosis improved airway contractility or obstruction during acute exacerbation
in patients with severe asthma.

4.2. Innate Immunity

Respiratory infection is one of the risk factors for development and exacerbation in patients with
asthma [104–107]. Recent studies have reported that viral and/or bacterial infections were observed
in 70% of adult inpatients with an asthma exacerbation [106]. Viral and bacterial super-infection is
an important determinant of severe acute exacerbations and was more likely to result in hospital
readmission following severe acute exacerbation [104]. Hypercapnia has been reported to be associated
with increased mortality in hospitalized patients with community-acquired pneumonia [108] and
in patients with cystic fibrosis awaiting lung transplantation [109]. In transcriptomic analyses of
hypercapnia in model organisms, exposure to normoxic hypercapnia altered the expression of innate
immune system genes in Caenorhabditis elegans [110] and Drosophila melanogaster [111]. In adult flies and
the Drosophila S2 cell line, hypercapnia suppressed induction of genes involved in specific antimicrobial
peptides such as diptericin that are regulated by Relish, an orthologue of the mammalian transcription
factor NF-κB [111]. Transcriptomic studies in mouse neonatal lung tissue and human bronchial
epithelial cells reported that hypercapnia altered the expression of components of the innate immune
system [38,39]. It downregulated the expression of inflammatory mediator genes including interferons,
interleukins, chemokines and tumor necrosis factor (TNF) in the neonatal lung [38]. In human bronchial
epithelial cells, hypercapnic respiratory acidosis resulted in downregulation of genes related to the
interleukin 6 (IL-6) receptor and chemokines [39]. Hypercapnia selectively inhibited the expression of
IL-6 and TNF, and decreased phagocytosis in human and mouse alveolar macrophages [33]. Fitzpatrick
et al., reported that in patients with moderate and severe asthma alveolar macrophage phagocytosis
was decreased by more than 50% compared with that seen in control subjects and the impairment
of phagocytosis was associated with poorly controlled asthma [112]. Hypercapnia also inhibited
Beclin 1 activity by increases in Bcl-2 and Bcl-xL expression, and prevented autophagy and bacterial
killing in human macrophages [36]. Furthermore, hypercapnia led to inhibition of the canonical NF-κB
pathway while promoting activation of the noncanonical NF-κB component IKKα/RelB/p100, whose
function is largely anti-inflammatory and immunosuppressive [34,35,113]. In these in vitro studies,
the high CO2-induced inhibitions of cytokine gene expression, phagocytosis, autophagy and NF-κB
signaling was independent of pH effects. Contrastingly, acidosis is known to impair the function of
immune cells [114], including alveolar macrophages [115]. Thus, hypercapnia might modulate innate
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immunity and host defense via pH-independent or -dependent mechanisms. In mice exposed to
normoxic hypercapnia, high CO2 levels decreased IL-6 and TNF expression in the lung during the early
phase of Pseudomonas aeruginosa infection, and inhibited the phagocytosis of bacteria and generation of
reactive oxygen species by lung neutrophils, resulting in increased burden of Pseudomonas aeruginosa
in the lungs and other organs and higher mortality [25]. More recently, Casalino-Matsuda et al., has
reported that hypercapnia increased virus-induced lung injury and mortality in mice infected with
influenza A virus and hypercapnia [29]. They observed that elevated CO2 levels increased influenza A
virus replication and inhibited antiviral gene and protein expression in macrophages. Interestingly,
both in vivo studies showed similar reversibility of hypercapnia-induced defects in antiviral and
antibacterial immunity [25,29]. There have been several reports suggesting that hypercapnia activates
the renin-angiotensin system and angiotensin-converting enzyme 2 (ACE2) expression [116–118],
which is identified as a receptor for the spike protein of SARS-CoV-2 and facilitating the viral entry
into target cells [118]. It has not yet been reported that hypercapnia affects the pathogenesis of
SARS-CoV-2 infection, but these findings in the studies of hypercapnia may also provide new insights
into the understanding of the SARS-CoV-2 infection mechanisms. Elevated CO2 level should be
taken into consideration as a potential risk factor to cause and worsen any infections in patients with
severe asthma.

4.3. Adipogenesis

Asthma and obstructive sleep apnea (OSA) have been reported to coexist and contribute to an
overlap syndrome where a bidirectional relationship may negatively affect the other condition [119–121].
A recent meta-analysis has revealed that the prevalence of OSA and OSA risk in adult asthmatic
patients is 50% and 27.5%, respectively, and the odds of having OSA or OSA risk is 2.64 and 3.73
times higher in asthmatic patients than in non-asthmatic patients [122]. Asthmatic patients with OSA
had significantly higher body mass index (BMI) in comparison with non-asthmatic patients [122].
Redline et al., reported that a 1 kg/m2 increase in BMI above the mean for age and sex translated to
a 12% increase in risk of OSA [123], suggesting that OSA is related to obesity which is known to be
prevalent in patients with severe asthma [124–126]. Obese patients with asthma have more severe
disease with increased medication use [126] and a 4.6-fold higher risk of hospitalization as compared to
the non-obese patients with asthma [127]. Obesity exacerbates OSA via several mechanisms; (1) neck
adiposity decreases the size of the upper airway lumen, (2) abdominal adiposity decreases lung
volumes and chest wall compliance, and increases airway resistance, (3) obesity-associated leptin
resistance decreases ventilatory drive and response to hypercapnia [128,129]. Recently, Kikuchi et al.,
reported that either intermittent or sustained exposure to hypercapnia, independently of acidosis
and oxygenation levels, promoted adipogenesis in visceral and subcutaneous preadipocytes [130].
The mechanisms by which hypercapnia induced adipogenesis lead to increased production of cyclic
adenosine monophosphate (cAMP) via soluble adenylyl cyclase and activation of protein kinase A
and exchanger protein directly activated by cAMP (EPAC). This, in turn, activates proadipogenic
transcription factors, such as cAMP response element binding protein (CREB), CCAAT/enhancer
binding protein β (C/EBP-β), and peroxisome proliferator–activated receptor γ (PPAR-γ). In addition,
plasma leptin levels contribute to an aberrant hypercapnic ventilatory response in obese patients.
Leptin is produced by adipocytes and its levels in serum correlate positively with total body fat
mass [131]. In animal models, it has been reported that leptin-deficient mice show a blunted ventilator
response to hypercapnia, suggesting that leptin can act as the respiratory stimulus [132,133]. In contrast,
obese patients show a relative deficiency of leptin in the cerebrospinal fluid as compared with lean
controls [134], suggesting a failure of central feedback mechanisms, “leptin resistance”. These data
are supported by evidence linking hyperleptinemia and reduced respiratory drive and hypercapnic
response to leptin resistance of the respiratory center [135]. Collectively, these reports suggest a
maladaptive cycle between hypoventilation, hypercapnia and increased fat mass, leading to the
progression of obesity and OSA, thus contributing to asthma severity.
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5. Conclusions

Hypercapnic respiratory failure is a hallmark of severe asthma. As reviewed above, elevated CO2

levels are rapidly sensed by chemosensing regions of the brain that regulate the respiratory drive,
however, there are many reports suggesting that hypercapnia is also sensed by non-excitable cells and
has significant effects on cellular and tissue functions. Recent discoveries suggest that hypercapnia
increases airway contractility, impairs the innate immune response, and promotes adipogenesis, which
likely underlies, at least in part, the negative effects of elevated CO2 in patients with asthma (Figure 2).
Mechanical ventilation with “permissive hypercapnia” for severe asthma is currently an accepted
therapeutic strategy [22,70]. The “permissive hypercapnia” approach is based on observational
reports from the 1980s to 1990s [9,10,18,21] and is generally well tolerated for short periods of time if
oxygenation is preserved and severe respiratory acidosis is avoided [70]. However, more recent studies
challenge the “permissive hypercapnia” approach in view of new evidence suggesting that hypercapnia
is harmful [23,26,27,136,137]. In recent years, noninvasive positive pressure ventilation (NPPV) aimed
at correcting elevated PaCO2 values has been shown to be beneficial in patients with obstructive lung
diseases and hypercapnia [26,136–139]. The institution of NPPV in hypercapnic patients with COPD
improved outcomes: mortality, pulmonary function and health related quality of life [26,136,137].
In patients with asthma, a recent analysis of a national database documented increasing use of NPPV
for life-threatening asthma and a concomitant decrease in use of invasive mechanical ventilation [140].
There is growing evidence reporting beneficial effects of NPPV by reducing hypercapnia, which is
associated with improved pulmonary function and reduction in in-hospital mortality in asthmatic
patients [138,139]. Recent preclinical and clinical studies of hypercapnia describe the mechanisms that
underlie the benefits of reducing hypercapnia. Our review has summarized the data that could provide
a guidance for re-assessment of the current paradigms of treatment and management in patients with
asthma and hypercapnia.
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