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Abstract

Background: Recent technological advances have resulted in an unprecedented increase in publicly available biomedical
data, yet the reuse of the data is often precluded by experimental bias and a lack of annotation depth and consistency.
Missing annotations makes it impossible for researchers to find datasets specific to their needs. Findings: Here, we
investigate RNA-sequencing metadata prediction based on gene expression values. We present a deep-learning–based
domain adaptation algorithm for the automatic annotation of RNA-sequencing metadata. We show, in multiple
experiments, that our model is better at integrating heterogeneous training data compared with existing linear
regression–based approaches, resulting in improved tissue type classification. By using a model architecture similar to
Siamese networks, the algorithm can learn biases from datasets with few samples. Conclusion: Using our novel domain
adaptation approach, we achieved metadata annotation accuracies up to 15.7% better than a previously published method.
Using the best model, we provide a list of >10,000 novel tissue and sex label annotations for 8,495 unique SRA samples. Our
approach has the potential to revive idle datasets by automated annotation making them more searchable.
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Introduction

Next-generation RNA-sequencing (RNA-seq) has been a pillar of
biomedical research for many years [1, 2]. It allows researchers to
simultaneously quantify and compare the expression of tens of
thousands of genomic transcripts. A continuous decrease in cost
makes RNA-seq a widely available method of choice to uncover
the molecular basis of biological development and diseases [3,
4]. As a result, recent years have seen a strong growth in pub-
licly accessible RNA-seq data. The actual reuse and integration
of this data, however, have been largely limited by the lack of
consistent metadata annotation and individual dataset bias [5,
6]. The lack of metadata annotation for RNA-seq samples, such
as tissue of origin, disease, or sex phenotype, prohibits exper-
imenters from finding data that are relevant to their research.
Moreover, dataset biases [7] due to differences in protocols and
technologies [8] or of a biological nature hinder integration and
comparative analysis.

To allow for efficient data reuse, publicly available data have
to be harmonized and well annotated with standardized meta-
data and subsequently be made accessible (and searchable)
[9]; this practice is followed by the Genotype-Tissue Expression
Project (GTEx) [10] and The Cancer Genome Atlas (TCGA). Nev-
ertheless, the primary database for next-generation sequencing
projects, the SRA [11], stores raw sequencing information that
lacks rigorous standards of curation, which limits the reusabil-
ity of its data.

Efforts to predict missing or sparse metadata in public RNA-
seq resources have shown promising results. For instance, re-
cently published studies used text mining approaches to retrieve
missing annotation from associated abstracts or free text anno-
tations in the data sources [12–14]. Others have used RNA-seq
expression values for phenotype prediction. For example, ma-
chine learning (ML) has successfully been applied to disease and
cell type classification [15, 16] or survival outcomes on TCGA
data [17]. Others have taken advantage of prior domain knowl-

Received: 16 December 2020; Revised: 11 June 2021; Accepted: 1 September 2021

C© The Author(s) 2021. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any
medium, provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0003-4344-7024
http://orcid.org/0000-0003-4366-5662
mailto:sbonn@uke.de
http://orcid.org/0000-0003-4366-5662
http://orcid.org/0000-0003-4366-5662
http://creativecommons.org/licenses/by/4.0/


2 Bias-invariant RNA-sequencing metadata annotation

edge such as gene regulatory networks for enhanced feature se-
lection [18, 19]. Recently a linear regression model fitted to GTEx
data has been presented for the prediction of tissue, sex, and
other phenotypes of SRA and TCGA samples [20]. These efforts
provide evidence that missing RNA-seq metadata can be suc-
cessfully predicted on the basis of genomic expression values
using ML approaches.

Artificial neural networks (ANNs) in their various forms
and functions consistently outperform classical ML approaches
in a large variety of biological tasks, including classification,
data generation, and segmentation [21–24]. Given large training
datasets, these algorithms can learn complex representations of
data by automatically weighting and combining features non-
linearly. This has led us to hypothesize that ANN-based models
could increase the performance in metadata prediction beyond
that of classical ML approaches such as linear regression. Of spe-
cial interest in this context is domain adaptation (DA) [25], a sub-
field of ML that aims to specifically alleviate problems conferred
by dataset bias [26]. The aim of DA is to build and train ANNs on
a source domain in such a way that the model performs well on
a biased target domain.

Here, we present a DA approach capable of leveraging a num-
ber of dataset biases, boosting generalizability of phenotype pre-
diction. We developed the model using 3 data sources (GTEx,
TCGA, and SRA) of different size and with a different degree of
bias. To validate our approach we compare it to a previously sug-
gested linear model (LIN) [20], as well as a standard supervised
multi-layer perceptron (MLP) for prediction of tissue of origin,
sex, and sample source. Importantly, we find that our DA net-
work is able to integrate heterogeneous training data such that
classification accuracy is up to 15.7% higher for tissue classifi-
cation compared to the supervised LIN model. We subsequently
apply trained models to generate and make available new meta-
data for 8,495 unique SRA samples.

Methods
Data acquisition

To train and test models we gathered data from 3 different
sources (i.e., GTEx, TCGA, and SRA), each with a different level of
heterogeneity (Supplementary Fig. S1). We measure data source
heterogeneity by the number of unique datasets (or studies) in
the source. Each dataset (or study) is believed to have a unique
bias. Biases stem from the unique circumstances, protocols, and
reagents used, as well as biological factors of the study [7, 8].
Here we define a dataset as all the RNA-seq samples from 1 study
on the basis of the assumption that they were obtained and pro-
cessed under equal conditions. To avoid additional biases by
the use of different bioinformatic alignment pipelines [27] all
data were downloaded from recount2 (release 13.09.19) [28]. Re-
count2 aggregates raw RNA-seq data from different sources and
reruns the data through the Rail-RNA alignment pipeline [29].
The RSE V2 files of all available RNA-seq projects (n = 2,036)
from recount2 were downloaded using the recount R package
(v 1.11.13). The downloaded data were separated into 3 differ-
ent data sources according to their origin. Figure 1A gives a gen-
eral overview of the data obtained, the pre-processing steps, and
dataset preparation.

GTEx
GTEx (v6) comprises 9,662 samples from 554 healthy donors
across 31 tissues. GTEx strives to build a highly homogeneous
dataset with strict guidelines on donor selection, biopsy, and se-

quencing methodology [31]. We considered the GTEx data source
to have a single dataset bias.

SRA
From the SRA, a total of 2,034 studies containing a total of 49,657
samples were downloaded from recount2. Every SRA study was
potentially processed at a different site by a different techni-
cian following different standards. In addition, the underlying
biological condition of the samples is often unclear. We assume
each study to have a unique dataset bias, which makes the SRA
a highly heterogeneous data source. In addition, data annota-
tion is not standardized, resulting in sparse metadata with low
fidelity.

TCGA
RNA-seq data for TCGA were downloaded, consisting of 11,284
samples spanning 26 tissues. While there are 740 samples of
healthy donors across 20 tissues, >90% of the samples are tumor
biopsies from different tissues and different stages of tumor pro-
gression. TCGA accepts sequence data from different locations
using different sequencing technologies. Despite the high level
of standardization and reliability of metadata information, het-
erogeneity is also inherent to the TCGA dataset due to the bio-
logical context (cancers, stages) albeit not as pronounced as in
the SRA.

Pre-processing of SRA data source

In this study, we focus on bulk mRNA-seq data because they
are by far the most frequent RNA type in each of the 3 data
sources used. The following approaches were used to remove
data from single-cell and small RNA-seq studies from further
analysis: First, we identified small RNA-seq data on the basis
of the total fraction of small RNA counts and protein coding
RNAs. Specifically, we considered a subset of the Gencode gene
types (i.e., protein coding and processed pseudogene vs riboso-
mal RNA, microRNA, misc RNA, small nuclear RNA, and long in-
tervening noncoding RNA). Every sample that had its maximum
total count fraction not allocated to either protein coding or pro-
cessed pseudogene was removed from further analysis (Supple-
mentary Fig. S2). Second, we removed single-cell RNA-seq stud-
ies by scanning titles and abstracts for variations of the words
“single cell” and manually validated and excluded the identi-
fied samples. In addition to this semi-automatic validation step,
we manually validated the 50 largest projects within the SRA
data source and removed samples that did not qualify as bulk
RNA-seq data. Most importantly, we noticed numerous techni-
cal replicates in the remaining SRA data. Using technical repli-
cates to train and test a classification model inflates the reported
metrics. Therefore, only samples with a unique experiment ac-
cession (SRX) were retained. From the 49,657 SRA samples down-
loaded initially, 29,685 samples and 1,833 unique studies passed
our pre-processing steps.

Metadata

We considered 3 different phenotypes for expression-based pre-
diction. Explicitly, we predicted the tissue of origin of a biopsy
(e.g., heart, lung, kidney, ovary), the patient’s sex, and sample
source (denoting whether the sample was from a patient biopsy
or a laboratory-grown cell line) (Fig. 1A).

https://jhubiostatistics.shinyapps.io/recount/
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Figure 1: Study overview. (A) All data available on recount2 were downloaded and split into 3 data sources: (i) GTEx, (ii) TCGA, and (iii) SRA. Single-cell and small

RNA samples as well as technical replicates were removed from the SRA data. Protein-coding genes were selected from the gene count tables and TPM normalized.
Metadata for tissue of origin (e.g., heart), source (e.g., biopsy), and sex phenotype were collected, if available. A subset of 17 tissues (common to GTEx, TCGA, and
SRA) was selected and filtered for class size, resulting in 16 tissue classes. For sample source, the 2 largest classes in SRA were selected. Samples were subsequently

annotated and training and testing datasets were created. GTEx was only used for model training unless stated otherwise. TCGA was only used for model testing. SRA
was split such that samples from 1 study are exclusively in the train or test set. (B) We compare 3 models: LIN (linear model), MLP (multi-layer perceptron), and DA
(novel domain adaptation algorithm). Experiments are different combinations of models and data sources. Here, an exhaustive list of experiments for tissue and sex
classification tested on SRA data is depicted. Each configuration (dashed box) is made up of a model and training data. The previously published LIN model served

as a benchmark for our MLP and DA model. Each model configuration was trained 10 times with different seeds to give an estimation of uncertainty. The best model
(orange star) was chosen by comparing average performance across all seeds. After determination of the best model, all available data were used for model training.
Previously unlabeled SRA data were automatically annotated with the appropriate metadata. A list of all new metadata can be downloaded with the Supplementary
Material [30].

GTEx and TCGA
Tissue and sex annotation for GTEx were extracted from
the official sample annotation table as provided by GTEx
(GTEx Data V6 Annotations SampleAttributesDS.txt, from
https://gtexportal.org/ [31]). An annotation file for TCGA
was provided by recount2. For tissue and sex annota-
tion we took columns gdc cases.project.primary site and
gdc cases.demographic.gender, respectively. Sample source
was assumed to be of type biopsy for all GTEx (n = 9,662) and
TCGA (n = 11,284) samples.

SRA
For the SRA samples, we relied on normalized metadata pro-
vided by MetaSRA [14]. Available SRA identifiers were down-

loaded through the GUI on http://metasra.biostat.wisc.edu by
searching for all 31 GTEx tissues (site accessed on 9 Novem-
ber 2019). Supplementary Table S1 lists assumed mappings
from GTEx tissue names to MetaSRA tissue names where no
direct mapping was available. Of the 31 tissues available for
GTEx we were able to identify samples for 26 in MetaSRA,
resulting in 6,183 annotated SRA samples. Sample identifiers
for sex were accessed through the same GUI by searching
for male organism and female organism + Homo sapiens cell
line, which resulted in 3,240 annotated SRA samples. Sam-
ple source was determined using the sqlite file provided by
MetaSRA (metasra.v1-5.sqlite, [32], column sample type), re-
sulting in 28,043 annotated samples across 6 sample source
categories.

https://storage.googleapis.com/gtex_analysis_v6/annotations
http://metasra.biostat.wisc.edu
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Tissue label harmonization
GTEx, TCGA, and SRA have 17 common tissue types (Supple-
mentary Fig. S3). Bladder was removed owing to its small sample
size (GTEx n = 11). We kept samples of comparable size in SRA
(adrenal gland n = 14, testis n = 14, pancreas n = 17 in the SRA
training data) because the SRA training data are mainly used for
bias injection, such that size was not considered an exclusion
criterion. This resulted in 5,480, 8,624, and 3,252 tissue anno-
tated samples across 16 tissues for GTEx, TCGA, and SRA, re-
spectively (Supplementary Tables S2 and S3).

Dimensionality reduction and normalization

The downloaded gene count table provided counts for 58,037
genes (Gencode v25, GRCh38, 07.2016). First standard log2 tran-
script per million (TPM) normalization was applied to normalize
for gene length (Gencode v25, GRCh38, 07.2016) and library size.
We next reduced the number of input features (genes), aiming
to keep features that contain information and removing poten-
tially uninformative features. First, all non-protein-coding genes
were removed, reducing the gene set by 65.5% to 19,950 genes.
For sex classification, only protein-coding genes on the X and Y
chromosome (n = 913) were selected. For retaining only genes
that show significant dispersion across tissues, we computed
the Gini coefficient [15, 33, 34] for all remaining genes across
all GTEx samples. Housekeeping genes, for example, are known
to be expressed similarly across tissues and would score a low
Gini coefficient (i.e., high dispersion). Low and high cut-offs were
applied during hyperparameter optimization. For tissue classi-
fication, genes with Gini coefficients g between 0.5 and 1 were
retained, resulting in a feature space of dimension d = 6,974. For
sex classification, genes with 0.4 < g < 0.7 were used (d = 190).
Sample source classification included genes with 0.3 < g < 0.8 (d
= 8,679) (Supplementary Table S2, list of input features in Sup-
plementary Material [30]).

Dataset preparation

Phenotype classification experiments
Tissue: To ensure that dataset biases are not shared between
training and test sets, SRA data were always split on the study
level. For tissue of origin prediction, the 2 largest SRA studies per
class were put in the training set. This ensured maximal bias
variability in the remaining test data, ensuring a realistic test
score. Of the 178 SRA studies containing tissue annotated sam-
ples, 30 studies were selected for the training set (n = 1,721) and
148 studies for the test set (n = 1,531) (Supplementary Tables S2
and S3).

Sex: We noticed SRA samples identified as female by
MetaSRA to have a significant amount of reads mapped to chrY
(Supplementary Fig. S4). All samples labeled as female with a
total normalized count ≥2 and all samples labeled male with
a total normalized count <2 were removed. In total, 149 SRA
studies contained samples annotated with male and or female
by MetaSRA. These studies were combined into the training set
(studies = 73, n = 2,017) and test set (studies = 76, n = 791) (Sup-
plementary Tables S2 and S3). For model validation, GTEx was
randomly split into training and test sets with an 80:20 ratio for
both sex and tissue classification.

Sample Source: A confidence cut-off of ≥0.7 was applied (pro-
vided by MetaSRA), reducing the total amount of annotated sam-
ples for SRA from 23,651 to 17,343. MetaSRA provided 6 different
types of sample source. The 2 largest classes, TISSUE and CELL
LINE, were selected. In this study we renamed the MetaSRA la-

bel TISSUE to biopsy to avoid confusion with the phenotype tis-
sue (e.g., heart, lung, skin). For each of the 2 selected categories
we sorted all available studies by number of samples, placed the
first third of studies into the training (studies = 420, n = 12,725),
the second third into the test (studies = 422, n = 3,144), and the
last third into the SRA validation set (studies = 418, n = 1,124)
(Supplementary Tables S2 and S3). A list of the sample IDs and
corresponding labels is available in the Supplementary Material
[30].

Metadata annotation
After determining the best model for each phenotype, we re-
trained the models for automated metadata annotation. The
same datasets as defined above were used for the sex metadata
annotation. Tissue: We followed the same pipeline as described
above. Samples from a tissue class other than the original 16
classes were pooled together into a “catch-all” class, resulting in
17 classes. In total, 44 SRA studies were selected for the training
set (n = 3,370) and 203 studies for the test set (n = 2,813). Sam-
ple Source: Contrary to before, for metadata annotation we used
all available classes in the SRA data source. All classes that are
not of type biopsy were grouped into a single “catch-all” class,
while the same cut-off as before was applied. The training set
(n = 16,463) is made up of 974 SRA studies and the test set (n =
3,707) of 492 studies.

Multilayer perceptron

MLPs use fully connected neural network layers to learn non-
linear features from a raw input space [35] and constitute the
most basic form of ANNs. All our ANN-based models were devel-
oped and trained on tf.keras (Tensorflow 2.1). The hyperparam-
eters for each prediction task were determined using exhaustive
iterative random search (keras tuner 1.0.1) (Supplementary Table
S4). In case of approximately equal accuracy on the validation
set, the least complex model was chosen. A single hidden layer
was used in each case with 128, 128, and 32 nodes for tissue,
sample source, and sex prediction, respectively (Supplementary
Table S5, Supplementary Fig. S5). Each network was trained for
10 epochs with a batch size of 64. Performance was quantified
by mean sample accuracy and mean class accuracy and subse-
quently used to benchmark our DA approach.

Domain adaptation model

Many DA models correct bias between 2 domains, a source and
a target domain. In biological research, however, one is often
confronted with many small datasets, each potentially with its
unique dataset bias. Therefore, we specifically designed our DA
model to be able to learn from very few data by using a Siamese
network architecture [36]. The Siamese network learns bias from
pairs or triplets of training samples by exposing each sample in
multiple relationships to the model. We distinguished 3 differ-
ent types of input data for our model. The source domain is a
large single-bias dataset used to learn the feature embedding
for the classification task (in our case: GTEx). The bias domain
contains labeled samples from multiple smaller datasets (in our
case: SRA) each with its own bias. The target domain refers to
unlabeled and biased datasets that we want to classify (unla-
beled SRA or TCGA data).

Model architecture
Our DA architecture is based on the Siamese network architec-
ture. A Siamese network usually shares the weights between 2
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equal networks. Here, however, we do not use weight sharing.
Weight sharing and other types of architecture did not prove
to be applicable to this problem (see Methods section Other
Models). It consists of 3 modules: A source mapper (SM) and
bias mapper (BM), which correspond to the Siamese part of the
model, as well as a classification layer (CL). These modules give
rise to 3 different configurations, i.e., 2 training cycles and a pre-
diction configuration (see Supplementary Fig. S6 for a brief illus-
tration). In the first training cycle, the SM and the CL are com-
bined to form an MLP (Fig. 2A). The task of the SM is to learn
a mapping from the input space to an embedding space from
which the CL can predict phenotype classes. The SM-CL module
is trained with a batch size of 64 for 10 epochs. Because the SM-
CL MLP is trained on a large single-bias dataset, it will likely over-
fit and thus not readily generalize to other datasets (Fig. 2B). For
the second training cycle, the SM and the CL are separated and
their weights frozen. Frozen weights are not updated during the
second training cycle. The bias mapper is created by copying the
architecture and weights of the trained source mapper. SM and
BM are trained on triplets drawn from the source and the bias
domain (Fig. 2C). Samples from the source domain are passed
through the SM, and samples from the bias domain through the
BM at the same time. Each triplet is made up of an anchor (a)
sampled from the bias domain, and a positive (p) and a negative
sample (n) from the source domain. The anchor and the positive
sample have equal class labels, whereas the negative sample is
from a randomly selected different class. The triplet loss func-
tion [37] was used to optimize the model during training:

L = max(d(a, p) − d(a, n) + m, 0),

where d(i, j) are the distances between the constricted embed-
ding space of the SM and the bias mapping into that space of
the BM on samples i and j. For improved training time and ro-
bustness, our model is trained on semi-hard triplets [37]

d(a, p) < d(a, n) < d(a, p) + m,

with a margin parameter m. The distances are defined as Eu-
clidean distances in embedding space:

d(a, p) = ∥
∥σ (BM(a)) − σ (SM(p))

∥
∥

d(a, n) = ∥
∥σ (BM(a)) − σ (SM(n))

∥
∥

σ is the sigmoid activation function for the embedding vec-
tor. Triplets are mined online, meaning that they are newly gen-
erated for each batch [37]. The SM-BM module was trained for
10 epochs with a batch size of 64. Hyperparameters were de-
termined as described above (Supplementary Table S5, Supple-
mentary Fig. S5). As this training cycle proceeds, the BM learns
to map its output onto the SM embedding space. After training,
the bias mapper and the classification layer are combined to a
BM-CL MLP and can be used for prediction of the target domain
(Fig. 2D). The source code as well as an example are available at
the project Git repository [38].

Linear regression model

We used the metadata prediction performance of the LIN model
described in Ellis et al. [20] as a point of reference. The LIN model
was optimized on the same data as all other models (see Data
section of Methods). For each experimental set-up, the following

steps were conducted in R version 3.6.3 in order to build the cor-
responding phenotype predictor and evaluate its accuracy based
on the test data:

(1) calculating the coverage matrix for the training samples
based on the regions reported in Ellis et al. [20] by us-
ing the function “coverage matrix bwtool” (R package re-
count.bwtool version 0.99.31).

(2) building the model by running “filter regions” and
“build predictor” (R package phenopredict version 0.99.0)
with the same parameters used in Ellis et al. [20]

(3) testing the model on the test samples with “extract data,”
“predict pheno,” “test predictor” (R package phenopredict
version 0.99.0)

Notably, our experiments differ from the original work [20]
solely by applying additional pre-processing steps to the sam-
ples (see Methods), which may be responsible for observed small
differences in performance. For implementation details and
code examples for the aforementioned functions, see the doc-
umentation [39].

Nomenclature of experiments

Each experiment was named after the model, the training, and
the test data used. The possible models are LIN (linear model
[20]), MLP (multi-layer perceptron), and DA (novel DA approach).
The data sources are named G (GTEx), T (TCGA), and S (SRA). If
only the SRA training data are used (i.e., if the model is evaluated
on the SRA test data), we write Ssmall. If the SRA train and test
sets are combined for training, we write Slarge. For instance, an
experiment using an MLP, trained on a mix of GTEx and SRA and
evaluating on SRA data, would be named MLP G+Ssmall-S.

Impact of data diversity and quantity on model
performance

To analyze the effect of training data diversity on prediction ac-
curacy, the following experiments were designed. First, MLP S-S
models for sample source prediction were trained with an in-
creasing number of unique SRA studies in the training data, sys-
tematically increasing bias diversity. Only SRA studies contain-
ing >100 samples for either class were considered. To control for
training set size, each SRA study was subsampled to 50 samples
before training. Six iterations of this training process were con-
ducted, starting with 1 study (i.e., 1 bias) per class (biopsy vs cell
line). At each step 1 additional SRA study per class was subsam-
pled, ending with 6 SRA biases and 350 samples in the training
set per class. As a control experiment, we chose the largest SRA
study available for each class to create a training set with a sin-
gle bias per class. Starting with 50 samples per class in 6 iter-
ations, we subsampled an additional 50 samples, ending with
350 samples, thereby assessing the effect on performance that
can be attributed to the dataset size. Subsampling and random
selection of SRA studies were repeated 10 times with different
seeds, and each configuration was trained on 10 different seeds,
yielding an estimate of uncertainty.

Test for overfitting

We have identified mislabeled samples for the sex phenotype
(see Methods). The following experiment was designed to test
the ANN-based model’s susceptibility to overfitting on misla-
beled training data. An MLP model was trained on GTEx data on
4 tissue classes (i.e., brain, esophagus, lung, and skin). A range of
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Figure 2: Overview of domain adaptation model. Illustration of our DA model architecture and training. Shapes of (hypothetical) data points represent classes; colors
are datasets with unique biases. Source mapper (SM), bias mapper (BM), and classifier layer (CL) are ANN modules. (A) First training cycle: The SM is trained on a single
bias dataset, the source domain (SD). In this step, the SM learns a feature embedding. The CL learns how to partition this embedding space into classifiable regions and

draws decision boundaries (black lines). (B) For biased test data (colored sample data points), the same classes may occupy distinct regions in input space. In this case,
the source mapper may not be able to map the samples to the correct region of embedding space, compromising classification performance of the CL. (C) To learn the
mapping of different biases to the embedding learned in A, a BM is created by copying the SM, and trained weights of the SM are fixed. In this second training cycle,

triplets of samples are passed through the SM-BM configuration, consisting of an anchor from the bias domain and 2 samples from the source domain, 1 of them with
a matching label. The triplet loss function is defined to minimize distance of like labels in embedding space and to maximize distance of opposite labels. This process
is repeated until the SM has learned to map all known biases into the previously learned embedding space. (D) The BM is now able to map data points from previously
unseen datasets into the embedding space, where the CL can classify them.

fractions of the brain samples were randomly assigned to skin
tissue (i.e., 0.01, 0.025, 0.05, 0.1, 0.20, 0.5, and 0.8). The model was
then trained on GTEx samples of the 4 classes, including the mis-
labeled brain samples. We tested the model’s overfitting capabil-
ities by letting it predict the label of the mislabelled brain sam-
ples. If the model overfits, these samples should be predicted to
be from skin tissue. The same experiment was conducted for the
sex phenotype by mislabeling male samples as female.

Metrics

We report micro and macro accuracy, which are equivalent to
mean sample accuracy (msa) and mean class accuracy (mca),
respectively. Sample accuracy is a measure of absolute perfor-
mance on the test data. It reports the fraction of correctly clas-
sified samples over all classes:

msa =
∑N

i 1yi (ŷi )
N

,

where N is the number of samples, y the true label, and ŷ the
predicted label, and 1 is the indicator function. Given the large
class imbalance in some of our experiments, an increase in ac-
curacy in a small class will not be captured by this metric. Aver-
age class accuracy, on the other hand, reports the average sam-
ple accuracy per class, weighing each class equally and thereby
capturing local improvements of the models:

mca =
∑C

j=1
1

Mj

∑Mj

i=1 1yi j (ŷi j )

C
.

Here, C is the number of classes, Mj is the number of samples for
class j, and yij and ŷi j are the true and predicted values, and 1 is
the indicator function.

Statistical tests

Accuracy distributions were tested for significance us-
ing the non-parametric Mann-Whitney U test (scipy.stats.
mannwhitneyu v 1.3.1).

Other models

While developing our DA model, we did a thorough literature
search and implemented and tested multiple architectures and
strategies. Here, we give a brief overview of the models that we
found not suitable for the problem of bias-invariant RNA-seq
metadata annotation. The first strategy that was tested was in-
terpolation between source and target domain by training fea-
ture extractors on an increasing ratio of target to source domain
data [40]. The second strategy was adversarial training by ap-
plying 2 loss functions. The first loss function forces the model
to learn weights for the class prediction task, while the sec-
ond forces the model to learn to ignore differences between the
source and target domain [41]. We also implemented the adap-
tation of this idea by Tzeng et al. [42], proposing a model using
a separate source and target encoder, using them as “real” and
generator input for a generative adversarial network [43] that
is capable of ignoring bias. These models ultimately failed ow-
ing to the hundreds of dataset biases in the SRA data and their
relatively small sample size (data not shown). For the case of
scarce target data, an approach was previously proposed using
Siamese networks [36, 44]. The trained model achieved msa of
0.83 and mca of 0.79 for tissue classification on SRA data. The
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mca achieved is comparable to the results of the MLP model,
however, the msa score is 6% lower than even the LIN model.
The more challenging task of learning to map the bias embed-
ding into the pre-learned class embedding, as presented in this
article, finally resulted in the desired outcome.

Results
Experimental set-up

This study aims to find the best model for RNA-seq metadata an-
notation based on gene expression. Three different data sources
were selected for which phenotype data were available (Fig. 1A).
Each of the 3 data sources comes with a different number of
dataset biases. Briefly, GTEx is a large homogeneous dataset
containing healthy samples following a strict centralized stan-
dard protocol. TCGA contains pooled samples from different
cancers, disease stages, and sequencing centers. Our SRA data
comprise hundreds of individual studies following no central-
ized standard, resulting in the largest number of biases of all
3 data sources. Bias in a test dataset that has not been learned
by a model can severely compromise performance. We hypothe-
sized that exposing classification models to a sufficient number
of dataset biases will enable them to learn a generalized internal
feature representation. Such a model would be able to classify
data with previously unseen biases. To test and benchmark our
models we selected the classification tasks of (i) tissue of ori-
gin of a given RNA-seq sample, (ii) biopsy vs cell line origin of a
sample (i.e., sample source), and (iii) sample sex (Fig. 1A).

Three different ML models were compared (Fig. 1B). First, a
fully connected ANN (MLP) was tested because of its capability
to create novel latent features (see Methods for model details).
Second, we developed a DA approach (Fig. 2), a subfield of ML
dealing with dataset biases. Last, the LIN model trained on GTEx
data, proposed in Ellis et al. [20], was used as the baseline for all
tissue and sex classification experiments.

Models were trained on either GTEx or a mix of GTEx and
SRA data and tested on TCGA and SRA data. Uncertainties for
MLP and DA models were estimated from 10 training runs with
different random seeds (Fig. 1B).

Domain adaptation outperforms other models on
tissue classification

We first tested the performance of the LIN, MLP, and DA algo-
rithms to predict the tissue of origin on GTEx (n = 5,480), TCGA
(n = 8,624), and SRA (train n = 1,721, test n = 1,531) datasets.
A subset of 16 tissue labels was chosen that is common to all 3
data sources (see Methods, Supplementary Fig. S3, Supplemen-
tary Table S3). First, we conducted a single-bias experiment, i.e.,
MLP G-G (see Nomenclature of Experiments in Methods). The
nearly perfect score of msa 0.996 and mca 0.99 (data not shown)
confirmed that the MLP yielded highly accurate results when
trained and tested on a single-bias dataset (for details on model
training, validation, and testing see Methods).

Prediction of SRA tissue
Metadata prediction on SRA was the most challenging and in-
teresting task owing to the potentially large number of differ-
ent biases in the data source. We retrained and tested LIN G-
S on our datasets and achieved msa of 0.893 and mca of 0.765
for the 16 tissues (Fig. 3A). Of note is the significantly higher ac-
curacy achieved with LIN G-S compared to that reported by El-
lis et al. [20] (0.519 msa). MLP G-S (msa: 0.872, mca: 0.77) had a

higher mca but a lower msa than the corresponding LIN model
(Fig. 3A). In the next step we investigated the effect of adding
bias to the training dataset on prediction performance. In par-
ticular, we first predicted SRA tissue from Ssmall data. MLP Ssmall-
S (msa: 0.894, mca: 0.746) matched the base model’s msa score
but performed slightly worse using the mca metric. Similarly,
the LIN Ssmall-S model matched the msa of LIN G-S but showed
an increased performance for mca (msa: 0.893, mca: 0.795). No-
tably, by only using the small SRA training dataset, we lose the
advantage of the large sample size of GTEx. Based on this, we
hypothesized that by combining SRA and GTEx in the training
data, we may be able to leverage both sample size and diversity.

The LIN G+Ssmall-S model increased its msa to 0.908 and mca
to 0.785, which in turn is 1% lower than the LIN Ssmall-S model.
The 2 best performing models were MLP G+Ssmall-S and DA
G+Ssmall-S, outperforming LIN G-S on msa by 2.5% and mca 5.5%
(MLP G+Ssmall-S msa: 0.915, mca: 0.817 and DA G+Ssmall-S msa:
0.922, mca: 0.821). No significant difference in the mean perfor-
mance was detected between these 2 models (msa P > 0.02, mca
P > 0.4, Mann-Whitney). Crucially, however, DA G+Ssmall-S exhib-
ited the lowest standard deviation (std = 0.003 for msa and std =
0.009 for mca) of all models tested (Supplementary Table S6). For
this reason, DA G+Ssmall-S was considered the best model for the
prediction of tissue on the highly heterogeneous SRA test data.
The best model increased the msa score by 3.6% compared to LIN
G+Ssmall-S and mca by 5.6% compared to the baseline LIN Ssmall-
S, the best performing linear models for the respective metrics.

Prediction of TCGA tissue
Next, model performance on TCGA data was assessed (Fig. 3B).
The baseline model LIN G-T achieved msa 0.718 and mca 0.638.
Applying the MLP model on the same data resulted in a decrease
in msa and mca of 2.4% and 3.3%, respectively (MLP G-T msa:
0.684, mca: 0.605). For TCGA tissue prediction, we used Slarge for
training, essentially doubling the SRA training data (SRA train +
SRA test set: n = 3,252). LIN Slarge-T improved accuracy by 6.6%
for msa and 8.6% for mca to 0.784 and 0.724, respectively. In com-
parison, MLP Slarge-T increased model performance by 11.4% to
0.832 (by 11.7% to 0.755) for msa (mca) with respect to LIN G-
T. Combining GTEx and SRA training data reduced LIN G+Slarge

performance to msa 0.725 and mca 0.651. The best accuracy was
achieved by our MLP G+Slarge (msa: 0.842, mca: 0.773) and DA
G+Slarge (msa: 0.875, mca: 0.813) models. The DA model had thus
a 15.7% and 9.1% performance increase for msa compared to LIN
G-T and LIN Slarge-T, respectively. In addition to being the top per-
former, DA G+Slarge-T also was the most robust model for this
task, having the lowest variation in its results (std = 0.004 for
msa and std = 0.006 for mca) (Supplementary Table S6).

We repeated the prediction for TCGA with the models trained
for SRA tissue prediction (previous section), i.e., on Ssmall, which
allows us to assess the influence of the amount of bias injection
on model performance. Whereas the addition of more SRA data
to the training dataset had little influence on LIN models (except
for a slight increase of ∼0.2% for G-Slarge-T), both MLP and DA
model accuracies improved significantly (by between 5% and 9%)
upon addition of additional SRA data (Supplementary Table S6).

Notably, adding 5,480 GTEx training samples to MLP Ssmall

(MLP-Ssmall −→ MLP G+Ssmall increased msa from 0.748 to 0.764
and msa from 0.688 to 0.716 on the TCGA test set. On the other
hand, adding 1,531 SRA samples (MLP-Ssmall −→ MLP Slarge in-
creased msa to 0.832 and msa to 0.755, underlining our model’s
ability to incorporate multiple biases for better generalization
(Supplementary Table S6).
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Figure 3: Phenotype prediction results for (A, B) prediction of tissue of origin on SRA (S) and TCGA (T) (16 classes) and (C) prediction of sample source on SRA (2 classes).
Indices “small” and “large” refer to the different size of SRA training data used due to splits of the dataset in SRA prediction. Box plots represent model uncertainty of

ANN-based models, estimated from training with different random seeds (n = 10) and show the the minimum, the maximum, the sample median, and the first and
third quartiles. Mean sample accuracy and mean class accuracy were calculated for each seed. For (A–C) LIN G-X is the baseline proposed in [20]. (D) Accuracy of each
ANN model predicting ovary tissue on the TCGA data source, error bars show plus/minus one standard deviation, and (E) a principal component analysis (PCA) plot of
the gene expression values for the ovary tissue samples. A domain shift (i.e., bias) is clearly visible between GTEx (G) and TCGA, leading to the poor performance of

multilayer perceptron (MLP) G-T on ovary. SRA data in the training set help to establish a good accuracy. DA: domain adaptation; LIN: linear regression.

Expression-based prediction of sample source

SRA data stem from multiple different sources, from which we
selected the 2 largest, namely, either biopsy or (immortalized)
cell lines, whereas GTEx and TCGA data are exclusively from
biopsies. Starting from the hypothesis that fundamental differ-
ences do show on an expression level, we set out to train LIN and
MLP models on SRA data to predict the sample source of SRA,
GTEx, and TCGA. Of note, while we were able to approximately
reproduce the original results for LIN Ssmall-G and LIN Ssmall-S,
we were not able to do so for LIN Ssmall-T (msa: 0.998 reported
in [20]). LIN Slarge-G (msa/mca 0.951) did slightly better than MLP
Slarge-G (msa and mca of 0.943). MLP Slarge-T achieved msa and
mca 0.971, outperforming LIN Slarge-T (msa and mca of 0.882).
MLP Ssmall-S achieved msa 0.95 and mca 0.941, outperforming
LIN Ssmall-S with msa 0.89 and mca of 0.884 (Fig. 3C).

Multi-bias data enhance tissue classification on TCGA

For tissue classification on TCGA, mean class accuracy increased
by 16.8% between MLP G-T and MLP G+Slarge-T. This confirms our
hypothesis that the homogeneity of the GTEx data did not al-

low the MLP G-T model to generalize to TCGA data, while the
addition of SRA training data in MLP G+Slarge-T resulted in a
model with significantly improved generalization. To further in-
vestigate this result, we took a closer look at the per class ac-
curacy for the TCGA tissue prediction (Fig. 3D, Supplementary
Fig. S7). MLP G-T was unable to predict samples for 3 tissues,
namely, bone marrow (msa: 0.08), ovary (msa: 0.02), and uterus
(msa: 0.07), whereas all our other models achieved accuracies
between 0.7 and 1.0 on these tissues. Adding SRA data to the
training set enabled the model to achieve per tissue sample ac-
curacy of 1.00, 0.704, and 0.67 for bone marrow, ovary, and uterus,
respectively. We used principal component analysis (PCA) to vi-
sualize the dataset bias for ovary tissue (Fig. 3E). Interestingly,
the GTEx-ovary and TCGA-ovary data points show little overlap
in the PCA plot, while the SRA-ovary data overlap with GTEx- as
well as TCGA-ovary data, forming a “bridge.”

Linear model sufficient for sex classification

For sex classification, only genes on the X and Y chromosome
were used as input features (d = 190). We first tested the triv-
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ial case MLP G-G by splitting GTEx into training and test sets,
achieving sample and class accuracy of 0.995 (data not shown).

Prediction of TCGA sex
Sex phenotype prediction on TCGA data was the only task where
the linear model outperformed the ANN models. The baseline
LIN G-T, as well as the other linear models LIN Slarge-T and LIN
G+Slarge-T, achieved almost perfect accuracy on the TCGA data
(msa/mca 0.989 for LIN G-T and LIN G+Slarge-T, msa 0.988 and
mca 0.987 for LIN Slarge-T). Our best model, based on the data
annotation provided by MetaSRA, was MLP G+Slarge-T with msa
0.964 and mca 0.962 (Supplementary Fig. S8).

Prediction of SRA sex
All linear models for the prediction of sex for SRA data achieved
high accuracy (msa: 0.98 and mca: 0.98 for LIN G-S and LIN
G+Ssmall-S, msa: 0.979 and mca: 0.979 for LIN Ssmall-S). This re-
sult is significantly better than what was previously reported
(msa: 0.863 [20]). The MLP G-S model (msa: 0.971 and mca: 0.979)
did, on average, perform worse than all the linear models. While
adding SRA data to the training set did not improve the LIN
model, it increased the performance of the MLP and DA mod-
els, DA G+Ssmall-S (msa: 0.99 and mca: 0.987), MLP Ssmall-S (msa:
0.994 and mca: 0.994), and MLP G+Ssmall-S (msa: 0.993 and mca:
0.992). Results are shown in Supplementary Fig. S8.

According to MetaSRA all our training and testing data for
sex prediction on SRA stem from patient biopsies. However, ≥2
of the largest misclassified SRA studies in the test set are clearly
cultured cell lines. For example, SRP056612 is a study on the ef-
fect of the MERS coronavirus on cultured kidney and lung cells
[45] and SRP045611 is a study involving HEK cells, which lack
the Y chromosome but are annotated as male by MetaSRA [46].
These are 2 examples of errors in the MetaSRA. Clearly, misla-
beled data can compromise classifier accuracy, either by provid-
ing the wrong ground truth for training or by reporting the false
label at the point of prediction. As described in the Methods sec-
tion, obviously mislabeled samples have been removed.

Training data diversity outweighs quantity

Our experiments on phenotype classification seem to indicate
that increased training data diversity might enhance classifica-
tion performance. To learn more about the relationship between
the amount of training data and model performance, MLP G-S
was trained on an increasingly large subset of the GTEx train-
ing data for tissue classification. We observed a limited effect
on model performance with increased training dataset size. The
msa reaches its peak with one-third of the available training
data, while the mca saturates at approximately half of the avail-
able training data (Supplementary Fig. S9).

To test the effect of bias in the training data, an MLP Ssmall-
S for sample source classification was trained on an increasing
number of biases in the training set. As a control experiment, an
MLP was trained with the same amount of data but drawn from
a single-bias source. We observed a positive correlation between
msa and the number of biases in the training set (Fig. 4A). Con-
trary to that, increasing the number of training samples by the
same amount but from a single-bias source did not lead to better
model performance (Fig. 4B), validating our assumptions. Both
experiments support our assumption that ANN-based models
can integrate different biases in the training set and trans-
late them into better model performance compared to other
methods.

ANN models can correct mislabeling in MetaSRA

Given the difficulties with metadata standards in SRA data, mis-
labeling in MetaSRA is to be expected. To understand whether
and when ANN models would overfit on mislabeled MetaSRA
data, we trained an MLP on partially mislabeled samples (see
Methods). Supplementary Fig. S10 shows that the MLP model
correctly predicts brain samples, even if they were presented
as skin samples during model training. A decrease in this ac-
curacy was observed if >20% of all brain samples were misla-
beled as skin. A similar observation was made for the sex phe-
notype (Supplementary Fig. S10). We concluded that our models
are robust if <20% mislabeled data are present during training.
More importantly, these models can be used to correct misla-
beled MetaSRA data.

In the specific case of sex classification, the MLP G+S was
used to predict the true corrected label for the SEX samples
that were removed from training due to low sex-chromosome
counts (see Methods). For 82% of the 132 filtered samples, the
MLP model predicted the opposite of the presumably wrong
MetaSRA labels. However, our MLP model was able to confirm
the MetaSRA label for 24 samples. These samples had a mean
chrY count sum of 2.4 (i.e., close to the cut-off value). Man-
ual confirmation revealed a high model accuracy. For example,
SRR1164833, SRR1164787, and SRR1164842 are samples from a
prostate cancer study labeled as male by MetaSRA. Our MLP
model correctly classified these samples despite the fact that
their chrY total sum count was between 0.4 and 1.4. On the
other hand, SRR16076 54/56/61/62/64/65/70/71 are annotated as
female by MetaSRA and the MLP but had a chrY total sum count
of 2–5.3. We see the correct classification of these borderline
cases as further evidence that no overfitting is taking place.

A list of all SRA samples for which the MetaSRA labels and the
predicted labels mismatched is available in the Supplementary
Material [30].

Prediction and availability of novel metadata

We have used our best models to predict high-quality metadata
for published SRA samples lacking information on tissue, sex, or
sample source. Prediction of sex is straightforward because our
models were trained on all possible biological categories. For tis-
sue and sample source, however, our models were trained on a
subset of all potential classes in the unlabeled data. If, for ex-
ample, we try to label a sample of a tissue type unknown by the
model, the model will force 1 of the learned classes onto that
sample. To deal with this in the best possible way for sample
source classification, we modified the classification task into one
vs all. Specifically, we first trained a new MLP model to identify
the sample source biopsy vs all other sample sources available
in the SRA data as defined by MetaSRA. This model (i.e., MLP
Ssmall-S) achieved msa 0.947 and mca 0.93 on a test set (data not
shown) and MLP Slarge was subsequently used to identify all of
our yet unannotated SRA samples of source type biopsy. At a
probability cut-off of 0.5 we identified 1,072 new SRA samples as
originating from a biopsy.

Second, we extended the tissue classification task to 17
classes by adding a “catch-all” class. To this end, we extended
the training data to all GTEx (n = 9,366) and SRA (n = 6,183)
data with tissue labels and assigned the placeholder class for
every sample that did not belong to the original set of 16 tis-
sues. That way, we ensure that the learned model will not force
known classes on every tissue type. With this approach, the
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Figure 4: Increasing bias vs increasing sample size in training data. (A) An MLP Ssmall for sample source prediction on SRA data was trained by randomly sampling an
increasing number of SRA studies per class. Each study was subsampled to 50 samples. Studies were drawn from all SRA studies with n > 100 for either sample source
tissue or cell line. (B) To differentiate the effect of increased bias vs increased sample size, the same model was trained by randomly subsampling the largest available

SRA study per class. At each step an additional 50 samples were added to the training set per class. Models were run with 10 different seeds and the mean sample
accuracy was computed. Box plots are produced by 10 random sampling iterations and show the the minimum, the maximum, the sample median, and the first and
third quartiles. We observe a positive correlation between training data diversity and accuracy.

DA G+Ssmall model achieved msa 0.912 and mca 0.787 (data not
shown). Training and test datasets were subsequently combined
to train DA G+Slarge for annotation prediction of unlabeled SRA
samples. We predicted the tissue of origin for all SRA samples of
source type biopsy for which no entry on MetaSRA was available
(n = 2,818).

Third, 8,495 SRA biopsy samples with missing sex informa-
tion were predicted using MLP G+Slarge. Supplementary Fig. S11
shows the true-positive rate for each phenotype and each class
on the test set. We provide this information such that users can
make their own decision on probability cut-offs applied to each
class. We provide the full list of all classified SRA samples as well
as the probability output of the classifier in the Supplementary
Material [30].

Discussion

We developed a novel deep-learning–based DA approach for au-
tomated bias-invariant metadata annotation. To our knowledge
this is the first time that DA has been applied to this problem.
We were able to outperform the current best model [20] on tis-
sue prediction by 2.9% for SRA and 15.7% for TCGA data on mean
sample accuracy. We can confirm, as was previously reported
[17], that ANNs trained on single-bias training data do not per-
form better than linear models. Given multi-bias training data,
however, we showed that MLPs, and especially our DA algorithm,
have an advantage over standard ML approaches (e.g., linear re-
gression). Our current models help researchers to verify the sex,
tissue, and sample type of RNA-seq samples in the presence
of bias. This metadata information is currently rarely given for
datasets downloaded from the SRA but can be of crucial impor-
tance.

The main strength of our method is its ability to incorporate
dataset bias from datasets with only a few samples by applying
a Siamese network-like architecture. The model learns to ignore
bias by repeated exposure to (a few) samples in (many) different
contexts, i.e., as triplets. In addition, it does not rely on feature

selection but uses normalized gene count tables and lets the net-
work learn which features carry important information.

Different types of experiments showed the importance of
training models on a multi-bias dataset. First, we showed for
every phenotype classification that models that had SRA sam-
ples included in the training data performed better than models
trained only on GTEx data. For tissue classification, we further
showed that the effect of adding SRA samples to the training
data outweighs adding 3.2 times as much GTEx data (MLP Ssmall

→ MLP Slarge vs MLP Ssmall → MLP G-Ssmall). Second, for SRA tissue
classification, we showed that there is a limit of accuracy that
can be achieved irrespective of the size of the training set. Our
experiment showed that peak accuracy is already reached by us-
ing 50% of the available data. Last, for sample source classifica-
tion, we directly compared the relationship between the number
of biases in the training data, the number of samples, and the
model performance. We found a positive correlation between
the diversity of the training data and the accuracy achieved by
that model.

A major concern with our experiments is the potential
misclassification in the MetaSRA-annotated ground truth. The
MetaSRA pipeline serves mainly as a normalizer for already ex-
isting metadata and is therefore susceptible to human error. Sys-
tematic annotation errors create signals in the training data that
a model can learn and then replicate on the test set. We approxi-
mated a systematic error by randomly mislabeling training data
from a single class. We showed that our models are robust to
overfitting if ≤20% of the training samples per class are misla-
beled. Our models are able to predict the correct class of a sam-
ple, even if the sample was mislabeled during model training.
This property of our models was exploited for the correction of
wrongly annotated metadata in the MetaSRA and made publicly
available.

Last, we generated novel metadata for SRA samples using our
best performing models, adding >10,000 new metadata entries
for 8,495 SRA samples. The newly generated metadata are now
publicly available and can be used for future research. We see
this as a first and important step in the general direction of an ef-
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fort to make publicly available data more accessible and reusable
in an automated way.

We observed some limitations to our DA approach. Our ex-
periments showed that the DA model does not perform as well
as the MLP for classification tasks with a low number of classes
(e.g., sex). At least for the TCGA tissue classification, it seems
that a minimum of roughly 8 classes is needed for the DA model
to be able to unfold its full potential consistently. Our experi-
ments indicate that the difference between DA and MLP perfor-
mance will keep increasing, in favor of the DA model, the more
classes we add (Supplementary Fig. S12). Adding more tissue
classes to our model is an important next step. Another lim-
itation is posed by the need for labeled data to train the bias
mapper.

Whereas currently the scope of our predictive models has
been limited by the availability of data (e.g., intersecting tis-
sue types between datasets, limited size of datasets), the ap-
proach is ready to incorporate more data, biases, classes, and
more phenotypes, and there is reason to believe that this will
confer increased performance of ANN-based models, in partic-
ular DA models. At the same time, automated annotation en-
sures that the vast amount of data currently lying idle in online
repositories and institutional data centers can indeed be lever-
aged. We believe that this synergy is capable of producing a large
and comprehensive body of annotated biological data that will
boost knowledge discovery for biomedical research.

Availability of Supporting Source Code and
Requirements

Project name: Bias invariant RNA-seq metadata annotation
Project home page: https://github.com/imsb-uke/rna augment
Operating system: Platform independent
Programming language: Python
Other requirements: TensorFlow 2.1
License: MIT

Data Availability

The input data as described in Supplementary Table S2, as well
as a copy of the Git repository, are available in the GigaScience
Database [30].

Additional Files

Supplementary Figure S1: Visualizing dataset bias. GTEx is a
single-study data source, while SRA is a multi-study data source.
(A) t-SNE plot of gene expression values of GTEx and (B) SRA
samples, belonging to 5 different tissues. The GTEx data are
more coherently clustered compared to the SRA data. The indi-
vidual studies in the SRA data appear to form less homogeneous
clusters, indicating a larger within-variance in the data source.
Supplementary Figure S2: t-SNE on fraction of total gene count
per gene type. The fraction of the total log TPM normalized
counts per gene type was calculated for all types that can be as-
sociated with messenger RNA or small RNA. t-SNE was applied
on the resulting vectors of fraction per gene type. Samples with
their maximum fraction in a gene type belonging to a small RNA
category were labeled orange, else blue. The scatter plot shows
that samples labeled as small RNA-seq all cluster together, sug-
gesting a valid approach.
Supplementary Figure S3: Tissue label overlap between GTEx,
TCGA, and SRA. GTEx v6 provides samples for 31 tissues and

TCGA for 26. MetaSRA provided labels for 26 of the 31 GTEx tis-
sues. This figure depicts the 40 tissues that form the union be-
tween the 3 data sources, a black square indicating that a tissue
is present in the respective dataset. Seventeen tissues are shared
between GTEx, TCGA, and SRA, 16 of which were used for tissue
prediction.
Supplementary Figure S4: Misclassification in MetaSRA. His-
togram of the total sum of normalized counts mapped to the
chrY for GTEx, TCGA, and SRA. Male and female clearly overlap
in SRA, indicating mislabeling by MetaSRA.
Supplementary Figure S5: Graphical representation of architec-
tures for ANN-based models. (A) MLP models for tissue, sex, and
sample source. (B) The (1) SM-CL MLP, (2) SM-BM Siamese Net-
work, and (3) BM-CL prediction models for tissue and (C) sex.
Each rectangle represents a layer in the neural network and is
colored according to the type of layer that has been used. BM:
bias mapper; CL: classification layer; d: input dimension; n: num-
ber of nodes; p: dropout probability; SM: source mapper. B2 and
C2 show the SM to have frozen weights.
Supplementary Figure S6: Supplementary. Samples are indi-
cated according to their classes (circles, squares, triangles) and
their bias (blue: source domain, other colors: bias domain, target
domain). The model is ready for prediction after 2 training steps:
(A) A source mapper is trained on single bias data together with a
classification layer. (B) A bias mapper is created as a duplicate of
the source mapper; the weights of the source mapper are fixed.
Triplets are passed through the source mapper and bias map-
per configuration to learn a bias mapping. (C) The bias mapper,
equipped with a classification layer, can be used to predict data
from previously unseen datasets.
Supplementary Figure S7: Per class accuracy for TCGA tissue
classification. Mean sample accuracy for each tissue and all
ANN-based models is shown. The error bar shows the standard
deviation across 10 random seeds. The plot demonstrates the
varied tissue classification performance of different tissues. For
instance, it seems to be difficult to identify adrenal gland or
pancreas with any of the models. In particular, the bad classi-
fication performance of MLP G-T for bone marrow, ovary, and
uterus is especially noticeable, along with the observation that
performance can be salvaged by addition of (biased) SRA data to
the training dataset. This highlights the strength of ANN-based
models in capturing bias from training data.
Supplementary Figure S8: Sex phenotype results. (A) SRA and
(B) TCGA test data. DA: domain adaptation; G: GTEx; LIN: lin-
ear model; MLP: multilayer perceptron; S: SRA; T: TCGA. ANN-
based models yielded consistently worse results than the base-
line model, until newly annotated data were incorporated into
the training set.
Supplementary Figure S9: Dependence of prediction perfor-
mance on increasing training dataset sizes for MLP G-S. MLP
models were trained on subsets of the GTEx data for SRA tis-
sue classification on 10 seeds and averaged. At each step, the
subset was increased by 250 samples. Box plots from 20 itera-
tions for the msa and mca are shown in blue and green, respec-
tively. Mean sample accuracy reaches its peak with only 25% of
the training data, while 50% of the data is sufficient for the mean
class accuracy to saturate.
Supplementary Figure S10: Test of overfitting. An MLP model
was trained on GTEx data. An increasing fraction of 1 class was
assigned a wrong class label (e.g., brain to skin). The model was
trained on the partially mislabeled data and the mislabeled data
were predicted by the model after training. We quantify the
model’s susceptibility to overfitting by letting it correct the mis-
labeled training data. The MLP model was able to correct all mis-

https://github.com/imsb-uke/rna_augment
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labeled data up to a mislabeling fraction of 20%. We conclude
that the ANN models are very robust in dealing with mislabeled
data.
Supplementary Figure S11: True-positive rate for test data pre-
dicted with annotation models. (A) Sample source, (B) sex, and
(C) tissue classification.
Supplementary Figure S12: Relationship between number of
classes and DA performance in DA G+S-T. The 16 tissues were
sorted by sample size in GTEx, and at each step 1 tissue was
added to the classification problem, starting with the largest 2.
MLP and DA were trained as described above for 10 seeds each
and tested on TCGA data. The mean sample accuracy for each
seed (top panel) or mean class accuracy (bottom panel) is shown.
Each dot shows the difference in accuracy (DA-MLP) at each step
for each seed. Seaborn regplot was used to fit a regression line.
While, on average, MLP performs better for lower number of
classes, the performance gain by the DA model with respect to
MLP increases with the number of classes.
Supplementary Table S1: Mapping from GTEx tissue names to
MetaSRA tissue names.

Supplementary Table S2: Summary of the datasets used for
each phenotype after pre-processing.
Supplementary Table S3: Number of samples per class for phe-
notype classification experiments.
Supplementary Table S4: Hyperparameters considered during
model tuning and their initial range.
Supplementary Table S5: Summary of the hyperparameters
used for each model.

Supplementary Table S6: Sample and class accuracy given
are the mean over n = 10 seeds
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