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Abstract: Selenium, through incorporation into selenoproteins, is one of the key elements of the
antioxidant system. Over the past few years there has been increased interest in exploring those
molecular mechanisms in chicken, responsible for the development of this protection system. In more
detail, Cd/Pb poisoning and heat stress increase oxidation, mRNA levels of inflammatory proteins,
and apoptotic proteins. Selenium seems to enhance the antioxidant status and alleviates these effects
via upregulation of antioxidant proteins and other molecular effects. In this review, we analyze
avian transcriptome key elements with particular emphasis on interactions with heavy metals and on
relation to heat stress.
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1. Introduction

Selenium (Se) is characterized as a vital nutrient for animals and humans [1–3]. In the form
of selenocystein (Sec), Se is integrated into selenoproteins to participate in various organism and
cellular functions [4,5]. The main characteristic of all selenoproteins, is the presence of Sec in their
peptides [6–8]. A stem-loop structure named selenocysteine insertion sequence (SECIS) is responsible
for the decoding of a stop codon UGA to Sec (U) [9]. In mammalian genomes, integration of Se in
selenoprotein requires the existence of SECIS. On the other hand, dietary Se deficiency, in diverse
species, has been implicated in various diseases. In chicken, Se deficiency (SD) is characterized by
the appearance of pendulous ventral part of the neck region giving a soft feel on palpation [10]. Also,
SD results in loss of appetite, swollen legs, uncoordinated movement, poor feathering, and poor
growth [11]. The Se shortage symptoms may appear in broiler chicks utilizing unsupplemented
diets [12–14].

Cadmium (Cd) is a heavy metal and extremely toxic. It is accumulated into birds’ organs mainly
through the feed and on elevated concentrations can cause acute or chronic poisoning [15]. One of
Cd toxicity mechanisms is the nitric oxide (NO) overproduction and the expression of inducible NO
synthase (iNOS) which governs NO synthesis. In splenic lymphocytes of chicks, exposure to Cd
elevates the activity of NO and iNOS. Cadmium harms the liver, kidney, nerves, bones, and other
organs [16]. In chicken, Cd exposure can cause altered behavioral responses and decreased egg
production [17]. Specifically, it has been found that Cd could cause autophagy in chicken pancreas
and alter the concentration of trace elements in kidney [18–20]. Additionally, the overproduction of
NO affects Bcl-2, p53 and other genes, stimulating the release of cytochrome c (Cyt-c) and thereafter
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apoptosis [21]. As in the chicken, kidney of rabbits is the target organ of Cd toxicity. In rabbits, Cd
is accumulated in various organs such as liver, kidney, and lung, impairing the functions of these
organs [22,23]. Furthermore, reduction of cell antioxidant capacity and cell apoptosis is induced by Cd
poisoning [24,25]. Also, exposure to Cd could lead in renal dysfunction [26]. It has been showed that
Cd, in sublethal concentration, has notably changed the levels of glycogen in kidneys of silver carp
(Hypophthalmichthys molitrix) and triggered kidney damage [27,28].

Lead (Pb) is another extremely toxic heavy metal that is broadly distributed in nature due to
human activities. Lead can seep into the environment via various ways, including sewage discharges
and burning of fossil fuels [29]. It has been reported, that vegetables may contaminate with Pb through
burning of municipal waste and by emissions from industry. In leafy vegetables the accumulation
of Pb, is directly related to atmospheric Pb through absorption from leaves [30,31]. It is recognized,
that Pb has toxic effects on several organs and systems in whole organism including central nervous
system, blood system, heart, and kidney [32]. Furthermore, Pb exposure targets immune organs.
Lead can impact the humoral immune function of organisms. It decreases the host’s resistance to
several pathogen infections. According to duration of Pb exposure and dose, it may be capable of
reducing serum immunoglobulin levels [33]. It seemed that T lymphocytes are the most sensitive to
the hazardous effects of Pb. Further, Pb interferes with the TH1/TH2 lymphocytes balance [34], causing
immune dysfunction triggered by inflammation [28]. Additionally, Xing et al. showed that Pb alters
heat shock proteins (HSP) and cytokines mRNA expression and thus decreased immune function in
chicken neutrophils [35]. Similar effects of Pb have been reported in several other avian species [36].
In detail, Gasparik et al. reported that Pb in pheasants is accumulated in kidneys, livers, pectoral
muscles, eggs and ovaries, and reduced egg hatching rate, fertilization rate, and egg weight [37]. Also,
Butkauskas and Sruiga showed that Pb was hazardous for fertility, hatchability, and reproductive
success of Japanese quails [38]. Lead poisoning also affects heat shock proteins expression. Huang et al.
demonstrated that Pb poisoning raises mRNA expressions of HSP27, HSP40, HSP60, HSP70, and HSP90
in the chicken testes. However, mRNA expression of HSP40 was the lowest in the Pb group and it was
found about 24 times higher compared to the control group. These outcomes indicate that Pb toxicity
results in higher mRNA expressions of HSPs [36].

Heavy metals are extremely poisonous for avian species. They cause dysfunctions in many
organs and alter expression levels of many inflammation factors and antioxidative agents such as
selenoproteins. In the later part of this review, we discuss in detail the effects of Cd/Pb toxicity on
avian transcriptome and the benefit of Se supplementation.

2. Avian Transcriptome Response to Cadmium Toxicity and the Benefits of
Selenium Supplementation

2.1. Inflammation Transcripts, Apoptotic Factors and Selenotranscriptome

The predominant mediators of inflammation, cytokines, play a critical role in the inflammatory
response induced by Cd exposure and other various environmental challenges in living organisms.
Some studies have demonstrated that immune cells inflammatory response is closely related to the
expression of inflammatory cytokines. TNF-α is the most important cytokine, activating neutrophils
and lymphocytes, promoting the synthesis and release of other cytokines [39]. On the other hand,
as a pro-inflammatory factor, the main function of iNOS in inflammatory neutrophils is the induction
of NO production. Nitric oxide is synthesized under inflammatory conditions and takes part in
immunoregulation [40,41]. Li-li Liu et al. demonstrated that Cd exposure of broiler cerebrum
significantly raised iNOS mRNA levels, Cd accumulation and NO production. Furthermore, Cd
induced brain damage by adjusting iNOS–NO system changes [42].

It has been reported that Cd stimulation causes the expression of ICAM-1 via NF-κB activation in
cerebrovascular endothelial cells similar to findings by Liu et al. [42]. Moreover, Låg M et al. have
shown that the mRNA expression levels of IL-1β and TNF-α were reduced after exposure to Cd in
lung cells of rats [43]. Furthermore, in another study, exposure to Cd increased mRNA expression of
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IL-1B while decreased IL-17, IL-10, IL-4, IL-2, and IFN-γ in chicken splenic lymphocytes indicating an
impact on immune responses. Supplementation with Se decreased Cd toxicity and in addition the
mRNA expression levels of IL-17, IL-10, IL-2, IL-4, and IFN-γ were higher than in the Cd alone treated
group. However, the mRNA expression levels were not as high as in the Se alone treated group and
the control group. Expression levels of mRNA of IL-2 were also higher in Cd and Se treated group
than in Cd group. Additionally, in respect to the control group, the mRNA levels of IL-10 and IL-4 in
chicken splenic lymphocytes were decreased dramatically due to Cd toxicity [44].

Moreover, Cd exposure could trigger immune cells to raise the mRNA expression of IL-10 and
IL-1B. At gene level, the altered gene expression regulation of cytokines induced the raise of IL-4 and
suppression of IFN-γ production. Cadmium could influence the immune inflammation of neutrophils
by modifying the regulation of cytokine expression as it turned out via the suppression of IL-17
production, the raise of IL-4 release and the production of proinflammatory cytokines IL-1B, TNR-α,
IFN-γ, and IL-10. Also, Cd moderately induced the pro-inflammatory cytokines NF-κB, iNOS, TNF-α,
COX-2, and PGE2. Furthermore, inflammation caused by Cd raised iNOS activity and NO production.
Analogous results were demonstrated in the levels of NF-κB protein expression [45,46].

The key step for enabling downstream caspases, a family of protease enzymes playing essential
roles in programmed cell death and inflammation, is the activation of Bak, a member of the proapoptotic
Bcl-2 family, at the mitochondria. This has a crucial role in the regulation of apoptosis under chronic
endoplasmatic reticulum stress (ERS). The role of ERS in inflammation and stress is not unilateral,
ERS can be triggered by a variety of inflammatory factors, and many inflammatory diseases are
associated with ERS. Similarly to previous reports on Cd toxicity and ERS, Chen et al. showed that Cd
induces high expression of TNF-α, IL-1b, IL-4, and IL-10 in peripheral blood neutrophils of broiler,
acting as strong inducer of ERS and activating ER pathways, one of which is ATF6 cleavage [46].
When Cd triggers ERS, the apoptosis pathway is conducted by the ATF6 branch. Higher apoptotic cells
populations were found in the Cd group compared to the control group. Also, the mRNA expression
of caspase-12 in the Cd-induced chicken peripheral blood neutrophils model group was significantly
higher than that in the control group. The results in the protein expression levels of caspase-12 also
illustrates that it is an important molecule, which initiates apoptosis selectively in response to ERS [46].
Furthermore, Chen et al. proposed that in the lack of apoptosis, the mRNA levels of caspase-9, GRP78,
and caspase-3 increased significantly while levels of CaM and Bcl-xL decreased in the peripheral blood
neutrophils of chicken in the Cd treatment group [46].

On the other hand, in hens liver, Cd toxicity caused significant increase of IL-1β, TNF-α, COX-2,
PTGES, and NF-κB mRNA levels while similarly, in hens serum, TNF-α, and IL-1b were significantly
increased [47]. Recently, a study by Chen et al. showed that Cd exposure caused deregulation of
miRNA-33-AMPK axis, further suppressed AKT/mTOR and HSP70-NF-κB/JNK signaling pathway
and triggered BNIP3-dependent autophagy in chicken spleen [48]. Moreover, another study showed
that Cd toxicity increased mRNA expression of caspase-3, Cyt-c, caspase-9, Bax, p53, and protein levels
of caspase-3, Bax, and Cyt-c in liver of chicken. However, Cd toxicity reduced Bcl-2 protein and mRNA
levels. These findings pointed that Cd induced apoptosis in chicken hepatocytes by the NO-mediated
mitochondrial-dependent pathway and that Cd-triggered apoptosis was mediated by the pro-apoptotic
genes Bax, p53, and Bcl-2 [45].

Messenger-RNA expression of inflammatory cytokines plays a crucial role in inflammatory
response. Under inflammatory conditions due to Cd exposure, NO levels and inflammatory cytokines
are increased in avian tissues. Also, Cd toxicity induces strongly ERS. In addition, Cd toxicity induces
apoptosis on chicken liver and neutrophils via Bak activation and triggers BNIP3-dependent autophagy
on chicken neutrophils. Some ways on how Se supplementation may alleviate Cd toxicity are proposed.

2.2. Selenium Supplementation

There is little information about possible interactions of Se and Cd in mRNA expression of
inflammation factors and selenoprotein genes. A study on Se/Cd treated chicks showed that Se
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co-administration with Cd alleviated the increase of COX-2, NF-κB, PTGES, and TNF-αmRNA levels
caused by Cd in chicken kidneys. The mRNA levels of NF-κB and TNF-α slightly increased in Se/Cd
treated group in relation to control group but PTGES and COX-2 mRNA levels were not influenced [28].
Cadmium toxicity also induced energy metabolism disorders and mitochondrial damage and Se
supplementation reduced mRNA expression of autophagy-related genes (Atg5, LC3-I, LC3-II, Beclin 1,
dynein) caused by Cd treatment [49].

Also apoptosis and the mRNA level of Bak, p53, caspase-3, caspase-9, and Cyt-c increased
significantly, and Bcl-2, Bcl-xl, and CaM decreased in chicken splenic lymphocytes of Cd treatment
groups. Furthermore, Amantana et al. showed that Cd exposure decreased induction of the
promoter of selenoprotein W in rat myoblast and glial cells, which indicates that Cd targets
some selenoproteins [50]. Cadmium decreased the expression of selenoprotein S, selenoprotein
T, selenoprotein N, and selenoprotein K which are located in the endoplasmic reticulum. Moreover,
the protection of Se may be related to the regulation of selenoproteins in chicken lymphocytes [51].
Selenoprotein W has essential role in redox regulation during induction of Ca2+ leakage in muscles [52].
As a result, selenoproteins may play major role in Cd toxicity process as well as in Se antagonistic
function and are an important link between Cd and Se. These studies indicated that Cd treatment
influenced the expression of selenoprotein genes, which may be targets of Cd toxicity. They show
correlations between most of selenoproteins. Hence these selenoproteins function similarly in Se
antagonism of Cd [53]. It was shown that Cd can reduce the expression levels of selenoprotein
N, -T, -K, and -S resided in ER and that Se protection property may be related to the regulation of
selenoproteins [51]. On the other hand, another study on Cd exposure and Se co-administration
showed that the levels of mRNA of GPX1 and TRXR1 were obviously lower in the Cd group
compared with other groups. However, the Cd/Se co-treatment significantly attenuated this decrease.
Selenium supplementation alone with Cd treatment significantly increased the mRNA of GPX1 and
TRXR1, similar to the immunoblotting results of GPX1 and TRXR1 [54].

In a study examining Cd exposure and chicken’s kidney selenotranscritome regulation, there was
a significant difference between the control group and Se-treated group in the mRNA levels of all 25
selenoprotein genes (selenoprotein T, selenoprotein N, selenoprotein W, selenoprotein K, Selenoprotein
U, selenoprotein S, selenoprotein O, selenoprotein M, selenoprotein I, selenoprotein H, selenoprotein
15, selenoprotein Pb, SPS2, Sepp1, Sepx1, DIO3, DIO2, DIO1, GPX4, GPX3, GPX2, GPX1, TXNRD3,
TXNRD2, and TXNRD1) [28]. Among the control group and Cd-treated group there was a crucial
difference of mRNA of selenoprotein W, selenoprotein U, selenoprotein T, selenoprotein S, selenoprotein
Pb, selenoprotein O, selenoprotein N, selenoprotein K, DIO3, GPX3, and GPX2 levels, but not in
the mRNA expression levels of another 14 selenoprotein genes (selenoprotein 15, selenoprotein M,
selenoprotein I, selenoprotein H, Sepp1, Sepx1, SPS2, DIO2, DIO1, GPX4, GPX1). In the group with
Se/Cd treatment, the mRNA expression levels of selenoprotein W, selenoprotein U, selenoprotein T,
GPX3, and GPX2 alleviated, while the amount of alleviation was minor than that in the group with Cd
treatment. The expression levels of selenoprotein N, selenoprotein K, selenoprotein S, selenoprotein O,
selenoprotein M, selenoprotein I, selenoprotein H, selenoprotein 15, selenoprotein Pb, Sepx1, Sepp1,
SPS2, DIO3, DIO2, DIO1, TXNRD3, TXNRD2, TXNRD1, GPX4, and GPX1 were not affected [28,55].
Additionally, treatment with Se through the reduction of MDA levels and the increase of Se-dependent
antioxidant enzymes activities in chicken kidney tissues protected them from Cd toxicity [28,56].

Apart from the studies mentioned above, Se protection mechanism against Cd toxicity is based
on antioxidant proteins. Also, in another study, Se ameliorated Cd-induced oxidative stress through
regulation of mRNA levels of GPX4 and selenoprotein P [57]. However, Se supplementation, decreased
mRNA levels of proapoptotic proteins caspase-3, caspase-9, p53, Bax and Cyt-c. Moreover, mRNA
levels of Bcl-2 raised when concurrently supplemented Se and Cd in chicken nutrition [45].
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3. Avian Transcriptome Response to Lead Toxicity and the Benefits of Selenium Supplementation

Inflammatory Response

Under chemical or noxious physical stimuli, one of the most important indicators of tissue damage
is inflammation. The NF-κB signaling pathway has a significant role in inflammation regulation via
the transcription of diverse target genes, including iNOS, COX-2, and TNF-α. Regarding COX-2 and
iNOS, they are significant enzymes that mediate processes of inflammation [58]. iNOS influences the
lung inflammatory response through regulation of chemokine synthesis [59]. Moreover, TNF-α is
known as a pro-inflammatory cytokine which may participate in the nonalcoholic fatty liver disease
initiation [60]. Activation of NF-κB within endothelial cells constitutes a critical step in the rheumatoid
arthritis pathogenesis of experimental models [61]. Pro-inflammatory response can be increased by Pb.
Furthermore, Pb decreases cell function in macrophages, possibly by enhancing TNF-α release and
oxidative damage [62]. Cadmium-induced inflammatory reaction was weakened by Se, which was
interceded, at least in part, by COX-2, iNOS, and TNF-α expression down-regulation, through the
NF-κB activation suppression. Therefore, a defensive role of Se is indicated regarding Cd-induced
inflammatory response [42].

Selenium could as well antagonize Pb-induced damage on inflammatory cytokines gene expression
in chickens’ peripheral blood lymphocytes [63]. Chicken testes is the target organ where Pb accumulates
and induces inflammation injury [64]. Also, Pb induced apoptosis in chicken testes. Jiao et al. reported
that Pb toxicity raised MDA content; decreased GSH content; and decreased SOD, GPX and GST
activities in chicken bursa of Fabricius [65]. Huang et al. noted that Pb poisoning increased mRNA
expression of ATF4, PERK, caspase-3, caspase-12, eIF2α, and CHOP in chicken testes [66]. This indicated
that Pb induces apoptosis via CHOP/caspase-3 signal pathway and ER stress in chicken testes.
The activation of a major ER stress transducer, the dissociated PERK, activates PERK which leads to
the elF2α phosphorylation and in sensitization of transcription factor ATF4. Upregulation of CHOP is
caused by sustained ATF4 overexpression. Furthermore, CHOP is crucial mediator of ER stress-induced
apoptosis. Under standard conditions, CHOP is expressed at low rates and under extended ER stress,
CHOP is expressed at high levels and triggers apoptosis. After ER stress, caspase-12 dissociates and is
activated and further activates caspase-3. Then, caspase-3 performs apoptosis.

Wang et al. showed that Se supplementation alleviates accumulation of Pb in testes of chicken [67].
Additionally, other studies demonstrated that Se alleviates Pb-induced oxidative stress. Likewise,
Huang et al. illustrated that SOD, GPX, and GST activities were reduced by Se co-administration with
Pb in chicken testes. Also, Se supplementation had protective effects on apoptosis. Jin et al. showed that
triggered apoptosis and caspace-3 raised by Pb poisoning on chicken kidneys was alleviated through Se
supplementation [68]. Additionally, Wang et al. showed that Pb poisoning triggers mRNA expression
increase of caspace-3, caspace-12, ATF4, and GRP78, and alleviation occurs via Se supplementation in
chicken kidneys [69].

In the same way, Pb-induced increase of CHOP, eIF2α, and PERK mRNA expression and these
effects were alleviated by Se in chicken testes [36]. These results indicate that Pb-induced apoptosis,
oxidative stress, and ER stress are alleviated by Se via CHOP/caspase-3 signal pathway in the chicken
testes [36]. Futhermore, Li et al. in a study on Pb-Se interaction found that Se supplementation
alleviated the activation of NF-kB pathway through the reduction of NF-κB, COX-2 and TNF-α
expression in chicken neutrophils [70].

Lead, in addition, induces the mRNA expression of NF-κB, TNF-α, COX-2, PTGEs, iNOS, HSP27,
HSP40, HSP60, HSP70, and HSP90, the NO content, and the iNOS activity in chicken liver. Also in this
case, Se supplementation alleviated those changes [31]. Likewise, mRNA expression of iNOS, NF-κB,
COX-2, and TNF-α, NO content and Pb deposition was ameliorated via Se supplementation in the testes
of chicken [67]. In the same way, the results of another study indicated that Se alleviated the changes
caused by Pb exposure on Bcl-2 mRNA and protein expression, the increased NO content, the iNOS
activity, the relative mRNA and the protein expression of iNOS, the ER-related genes, and caspase-3
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and caspase-12 protein expression. Selenium attenuated those changes caused by Pb and Pb-induced
apoptosis via ER stress in chicken kidneys. In agreement with the above, Zhao et al. demonstrated that
Se supplementation alleviated Pb induced apoptosis, PI3K/Akt pathway suppression and oxidative
stress in chicken splenic lymphocytes [71].

In chicken neutrophils the mRNA expression levels of 23 selenoproteins (except of GPX3) and
TNF-α, NF-κB, and iNOS were dramatically raised during Pb poisoning. However, Se supplementation
alleviated this trend of inflammation factors, increased the mRNA levels of selenoproteins and
decreased serum Pb content. Li et al. found positive correlations among inflammatory factors, besides
COX-2. COX-2 might have played a principal function in Se antagonism against Pb [70]. Jiao et al.
demonstrated that in chicken bursa of Fabricious, Se co-supplementation with Pb alleviated the
inflammatory factors (IL-4, IL-6, IL-12β, and IL-17) mRNA levels increase that were caused due to
Pb poisoning [65]. In accordance with previous studies, Xing et al. demonstrated that Pb treatment
increased significantly the expression of TGF-β4, IL-4, IL-8, IL-10, IL-12, IL-1β, IL-1R and reduced that
of IFN-γ and IL-2. Neutrophil injury and impair immune function in chicken could be induced by Pb
poisoning [35]. There was a correlation between five HSPs and nine cytokines. IFN-γ and IL-2 were
negatively correlated with other parameters, but there was a positive correlation between TGF-β4, IL-12,
IL-10, IL-8, IL-4, IL-1R, IL-1β, HSP90, HSP70, HSP60, HSP40, and HSP27. In contrast, HSP70, HSP60,
and HSP40 were highly related to IL-1β [35]. Zhu et al. [72] showed that Pb triggered apoptosis in
chicken embryonic neurocytes and brain tissues via mitochondrial pathway. In brain tissues of chicken,
Pb induced a time-dependent effect on the decrease of selenoprotein M, GPX4, and in embryonic
neurocytes Pb induced the mRNA decrease of selenoprotein U. Furthermore, multivariate correlation
analysis demonstrated positive correlations between twenty-five selenoproteins; four apoptosis-related
genes (caspase-3, Cyt-c, p53, and Bax); and between Bcl-2 and the selenoproteins in the embryonic
neurocytes and chicks brain tissues [72].

In chicken hearts, mRNA expression levels of PTGEs, COX-2, TNF-α, and NF-κB were decreased
with implementation of Se supplementary diet compared with the Pb diet group. The results indicated
that Se antagonized Pb induced inflammation [73]. Also, Se protects from Pb poisoning and alleviates the
decrease of mRNA levels of SPS2, Sepx1, selenoprotein 15, selenoprotein M, Sepw1, TXNRD1, TXNRD3,
TXNRD3, DIO1, DIO3, Sepn1, selenoprotein K, selenoprotein S, selenoprotein T, selenoprotein H,
selenoprotein I, selenoprotein U, selenoprotein Pb, Sepp1, selenoprotein O, GPX2, GPX3, and GPX4 [73].
Similarly, another study showed that during Pb toxicity the mRNA levels of NF-κB, TNF-α, COX-2,
and iNOS in chickens’ peripheral blood lymphocytes were significantly higher than in the control [63].
In correspondence with previous research outcomes, the results proposed that excess Pb could cause
inflammation of chicken peripheral blood lymphocytes. However, Se supplementation decreased
Pb toxicity-induced increase of HSP (27, 40, 60, 70, 90), COX-2, TNF-α, iNOS, HO-1, and NF-κB [63].
Gao et al. [74], illustrated that dietary Se ameliorated Pb toxicity in the cartilage tissue of broiler
chicken. More specifically, Se alleviated the downtrend of the expression of selenoprotein GPX4,
GPX2, GPX1, DIO1, DIO2, TXNRD2, TXNRD3, Sepx1, selenoprotein O, selenoprotein K, selenoprotein
M, selenoprotein T, selenoprotein W, Sepn1, selenoprotein 15, selenoprotein I, and selenoprotein U
triggered by Pb exposure in the meniscus cartilage. Additionally, in the sword cartilage, Se alleviated
the downtrend of mRNA expression of DIO2, DIO3, TXNRD1, TXNRD2, selenoprotein K, selenoprotein
W, selenoprotein I, selenoprotein H, SPS2, Sepx1, selenoprotein 15, selenoprotein O, selenoprotein M,
selenoprotein P, selenoprotein T, selenoprotein n1, GPX2, GPX3, and GPX4 induced by Pb toxicity [74].

Finally, 25 selenoprotein genes (TXNRD1, TXNRD2, and TXNRD3, selenoprotein H, selenoprotein
I, selenoprotein K, selenoprotein T, selenoprotein M, selenoprotein W, selenoprotein Pb, selenoprotein S,
selenoprotein O, selenoprotein U, DIO1, DIO2, DIO3, selenoprotein 15, Sepn1, Sepp1, Sepx1, SPS2, GPX1,
GPX2, GPX3, and GPX4) in chicken testes showed highest expression levels in the Se supplemented
groups than in the Pb exposed chicken groups indicating an increase of the antioxidative potential
due to Se supplementation. Also, there were positive correlations between the selenoproteins gene
expression and the expression of five HSPs (HSP40, HSP27, HSP90, HSP60 and HSP70) [36].
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From the aforementioned, it can be concluded that Se supplementation can alleviate the toxic
effects of Pb, by increasing the antioxidative potential in several chicken tissues via upregulation of
many antioxidant proteins. A summary of selected studies in chicken describing the effects of heavy
metals on various factors, HSP, and selenoproteins is shown in Table 1.
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Table 1. A summary of selected studies in chicken describing effects of heavy metals on various factors, heat shock proteins (HSP), and selenoproteins.

Type of
Supplementation Heavy Metal Tissue

Inflammation
Factors and Other
Proteins

Heat Stress
Proteins

Cell Death
Regulation
Proteins

Selenoproteins Other Results Analytical
Method Reference

Na2SeO3
2 mg/Kg

CdCl2
150 mg/Kg

Liver
(in vivo)

Se/Cd alleviation of
increased mRNA
levels of NF-κB,
COX-2, PTGES,
TNF-α, and IL-1 in
relation to Cd
treatment

Alleviation of
increased
mRNA/protein
levels of HSP60,
HSP70, HSP90 in
relation to Cd
treatment

No No

Decrease of Cd
induction (decrease
of Li, B, Ca, Fe, Ti,
Cu, Mo, Cd, Cr, Se,
Sr, Ba, and Hg
concentrations)

RT-PCR,
Western blot [47]

Na2O3Se
1 mg/Kg

Pb(CH3COO)2
350 mg/Kg

Neutrophils
(in vivo)

Decrease of (IL-1β,
IL-1R, IL-4, IL-8,
IL-10, IL-12,
TGF-β4) increased
the mRNA
expression of IL-2
and IFN-γ

Decrease of protein
HSP27, -40, -60, -70,
-90 and mRNA of
HSP60 and -70 in
relation to Pb
treatment

No No No RT-PCR,
Western blot [35]

Na2SeO3
2 mg/Kg

CdCl2
150 mg/Kg

Pancreas
(in vivo) No No No No

Se/Cd treatment
alleviated the
mRNA increase of
T-SOD, CAT,
GSH-Px, T-AOC
caused by Cd
toxicity in relation
to control

ICP-MS,
RT-PCR [18]

Na2SeO3
1 mg/Kg Se

Pb(CH3COO)2
350 mg/L

Testes
(in vivo) No No

Se/Pb:
downregulation
of caspase-3,
caspase-12 in
relation to Pb
treatment

GPX upregulation
in Se treatment
and alleviation of
GPX
downregulation
induced by Pb in
Se/Pb treatment

No RT-PCR [66]

Na2SeO3
2 mg/Kg

CdCl2
218.44 mg/Kg

Ovary
(in vivo)

Se/Cd treatment
alleviated the
mRNA increase of
HK2, PK, SDH,
PbHX, LC3, Atg5,
Beclin 1, Dynein,
Lc3-I, Lc3-ll, mTOR
caused by Cd
toxicity in relation
to control

No No No No q-PCR,
Western Blot [49]
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Table 1. Cont.

Type of
Supplementation Heavy Metal Tissue

Inflammation
Factors and Other
Proteins

Heat Stress
Proteins

Cell Death
Regulation
Proteins

Selenoproteins Other Results Analytical
Method Reference

Na2SeO3 1mg/Kg Pb(CH3COO)2
350 mg/L

Kidney
(in vivo) No No

caspase-3,
caspase-12,
Bcl-2 increase
in Pb group
and
alleviation of
increase in
Pb/Se group

No No RT-PCR,
Western Blot [69]

No CdCl2
10 mg/Kg

Spleen
(in vivo)

AKT and mTOR
decrease HSP70 decrease No No

[Ca, Cr, Se, Sr, Sn,
Ba decrease and Na,
Mg, V, Fe, Mo, Cu,
Zn, Cd increase]
LC3-I, LC3-II,
Beclin-1,NF-kB,
p-JNK/JNK
increased

ICP-MS,
qRT-PCR,
Western Blot

[48]

Na2SeO3
2 mg/Kg

CdCl2
150 mg/Kg

Kidney
(in vivo)

Cd group: increase
in mRNA levels of
COX-2, NF-κB,
PTGES, and TNF-α
Se/Cd group:
alleviation of
mRNA level
increase of NF-kB
and TNF-α.
COX-2 and PTGES
were not influenced

No No

(Decrease in the
mRNA levels of
GPX2, GPX3,
DIO3,
selenoprotein K,
-N, -O, -Pb, -S, -T,
-U, and -W
between the Cd
group and control,
not in the mRNA
levels of the GPX1,
GPX4, DIO1,
DIO2, Txnard1, -2,
-3, selenoprotein
H, -I, -M, Sep15,
Sepp1, Sepx1,
SPS2) AND
(between Cd/Se
group and control
GPX2, GPX3,
selenoprotein T,
-U, and -W
smaller decrease)

No RT-PCR [28]
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Table 1. Cont.

Type of
Supplementation Heavy Metal Tissue

Inflammation
Factors and Other
Proteins

Heat Stress
Proteins

Cell Death
Regulation
Proteins

Selenoproteins Other Results Analytical
Method Reference

Na2SeO3
0.02 mg/L

Pb(CH3COO)2
12 mg/L

Spleen
(in vitro) No No

Se/Pb:
increase due
to Pb
exposure of
p53, Bak,
caspace-3,
caspase-9,
Cyt-c and
decrease of
PL3K, Akt,
Bcl2 alleviated
via Se
supplementation

No

Se alleviated the
increase of MDA
levels due to Pb and
alleviated the
decrease in
antioxidant enzyme
activity (GPX, SOD,
and CAT) due to Pb
Additionally, ROS
levels in the control
group and the Se
group were not
significantly
different. Se
alleviated the
increase of ROS
levels due to Pb

RT-PCR,
Flow
cytometry,
Western Blot

[71]

Na2SeO3
2 mg/Kg

CdCl2
150 mg/Kg

Spleen
(in vivo) No No

Se/Cd:
caspase-3,
caspase-9
small
alleviation of
mRNA
increase due
to Cd
treatment but
extensive
alleviation of
increase of
caspase-3
protein levels

Se/Cd treatment
alleviate the
decrease of TrxR1,
GPX1 due to Cd
treatment

Cd increased H2O2
and MDA and SOD
but T-AOC, CAT
decreased Bax,
Cyt-c, Bak
alleviation of
increase due to Cd

ICP-MS,
Western Blot,
RT-PCR

[54]

Na2SeO3
2 mg/Kg

CdCl2
150 mg/Kg

Liver
(in vivo)

Se/Cd: iNOS
alleviaton of
increase of mRNA
levels due to Cd
similarly in protein
levels

No

Se/Cd:
caspase-3,
caspase-9, p53
alleviation of
increase of
mRNA levels
due to Cd
protein levels

No
Se/Cd: Cyt-c
alleviation of
increase due to Cd

RT-PCR,
Western Blot,
TUNEL assay

[45]
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Table 1. Cont.

Type of
Supplementation Heavy Metal Tissue

Inflammation
Factors and Other
Proteins

Heat Stress
Proteins

Cell Death
Regulation
Proteins

Selenoproteins Other Results Analytical
Method Reference

Na2SeO3
2 mg/Kg

CdCl2
150 mg/Kg

Neutrophils
(in vivo)

Se/Cd: alleviated
increase of mRNA
levels of COX-2 and
the decrease of
TNF-α due to Cd

Se/Cd: HSP 40, HSP
70, HSP 90
alleviation of
increase of mRNA
levels due to Cd but
in HSP 60 is the
same with Cd
group

Se/Cd: NF-κB,
IL-2, IL-4,
IL-17, IFN-γ
alleviation of
mRNA levels
increase due
to Cd and
IL-10, IL-1β,
iNOS
alleviation of
decrease of
mRNA levels
due to Cd

No No RT-PCR [41]

Na2SeO3 1mg/Kg Pb(CH3COO)2
350 mg/Kg

Testes
(in vivo) No

Se/Pb: alleviation of
increase of HSP27,
-40, -60, -70, -90
mRNA levels
caused by Pb
toxicity in relation
to control

No

DIO1, DIO2,
DIO3, GPX1,
GPX2, GPX3,
GPX4,
selenoprotein H,
-I, -K, -M, -O, -Pb,
-S, -T, -U, -W, -15,
Sepn1, Sepp1,
Sepx1, SPS2,
Txnrd1, -2 and -3
increase of mRNA
expression in Se
group and
alleviation of
increase in Se/Cd
group

No qRT-PCR [36]
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Table 1. Cont.

Type of
Supplementation Heavy Metal Tissue

Inflammation
Factors and Other
Proteins

Heat Stress
Proteins

Cell Death
Regulation
Proteins

Selenoproteins Other Results Analytical
Method Reference

Na2SeO3
1mg/L

Pb(CH3COO)2
350 mg/L

Neutrophils
(in vivo)

Se treatment
slightly increased
TNF-α 3, Cox-2,
iNOS, NF-κB
mRNA levels in
relation to control
while Pb increased
TNF-α3, Cox-2,
iNOS, NF-κB
mRNA levels in
relation to control
and Se/Pb treatment
alleviated
aforementioned
increase of mRNA
levels

No

GPX2, GPX3,
GPX4, DIO1,
DIO2, DIO3,
Txnrd1,
Txnrd2,
Txnrd3, SPS2,
Sepx1, Sepp1,
selenoprotein
S, -K, -O, -U,
-H, -15,
and -M,
significantly
higher in Se
group than in
control and
slightly higher
in Pb
treatment in
relation to
control. Se/Pb
treatment
intensified the
increase in Pb
treatment in
relation to
control

No No RT-PCR,
Western Blot [70]

Na2SeO3
0.02 mg/L

CdCl2
0.2 mg/L

Neutrophils
(in vitro)

Se/Cd treatment
alleviated the
increase of mRNA
levels of IL-1β,IL-4,
IL-10, IFN-γ, NF-κB,
iNOS, COX-2,
TNF-α, and PGE2
due to Cd present
and also alleviated
the mRNA levels
decrease of IL-17
due to Cd toxicity
in relation to control

No No No No
TUNEL assay,
RT-PCR,
Western blot

[46]
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Table 1. Cont.

Type of
Supplementation Heavy Metal Tissue

Inflammation
Factors and Other
Proteins

Heat Stress
Proteins

Cell Death
Regulation
Proteins

Selenoproteins Other Results Analytical
Method Reference

Na2SeO3
1mg/L

Pb(CH3COO)2
350 mg/L

Testes
(in vivo)

Se/Pb treatment
alleviated the
increase of NF-κB,
TNF-α, COX-2,
PTGE mRNA,
and NF-κB protein
levels due to Pb
toxicity in relation
to control

Se/Pb treatment
alleviated the
mRNA levels
increase of HSP60,
-70, -90 due to Pb
toxicity in relation
to control

No No

Se/Pb treatment
alleviated the 90
days Pb
accumulation in
testes

qRT-PCR,
Western Blot [67]

Na2SeO3
1mg/L

Pb(CH3COO)2
350 mg/L

Bursa of
Fabricius
(in vivo)

Se/Pb alleviated the
mRNA increase of
IL-2, IL-4, IL-6,
IL-12β, IL-17,
and the mRNA
decrease of IFN-γ
caused by Pb
toxicity in relation
to control

No No No

T-AOC, GPX, GST,
SOD, and CAT
activities increase in
Se treatment in
relation to control,
in Pb treatment
T-AOC, GPX, GST,
SOD, and CAT
activities decreased
in relation to
control and Se/Pb
treatment alleviated
this decrease

qRT-PCR [65]

Na2SeO3
1mg/L

Pb(CH3COO)2
350 mg/L

Nervous
Tissues
(in vivo)

No No

Se/Pb
treatment
alleviate the
decrease of
Bcl2 protein/
mRNA levels
while alleviate
the increase of
protein/mRNA
levels in p53,
Bax, Cyt-c,
caspases-3
due to Pb
toxicity

No No qRT-PCR [72]
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Table 1. Cont.

Type of
Supplementation Heavy Metal Tissue

Inflammation
Factors and Other
Proteins

Heat Stress
Proteins

Cell Death
Regulation
Proteins

Selenoproteins Other Results Analytical
Method Reference

Na2SeO3
1 mg/L

Pb(CH3COO)2
350 mg/L

Heart
(in vivo)

Se/Pb treatment
alleviated the
increase of NF-kB,
TNF-a, COX-2 and
PTGEs mRNA
levels due to Pb
toxicity

No No

Se/Pb treatment
alleviated the
decrease of
mRNA levels of
GPX1, -2, -3,
and -4, Txnrd1, -2,
-3, DIO1, -2, -3,
selenoprotein N1,
-K, -S, -T, -O, -H,
-M, -15, -U, -Pb,
Sepp1, Sepn1,
Sepw1, Sepx1,
SPS2 due to Pb
toxicity in relation
to control

No qRT-PCR [73]

Na2SeO3
2 mg/Kg

CdCl2
150 mg/Kg

Heart
(in vivo) No No

Se/Cd
treatment
alleviated the
increase of
JNK, AMPK
and PPARα
due to Cd
exposure and
alleviated the
decrease of
P-JNK

No No qRT-PCR,
Western Blot [75]

Na2SeO3
1 mg/L

Pb(CH3COO)2
350 mg/L

Kidney
(in vivo) No No

Se/Pb
treatment
alleviated the
decrease of
mRNA levels
of mfn1, drp1,
opa1, mff,
mfn2 due to
Pb toxicity

No

Se/Pb treatment
alleviated the
decrease of Cpx,
SOD, MDA, ATPase
activities,
Mitochondrial
complex V, -II, -I
activities due to Pb
toxicity

RT-PCR,
Western Blot,
TUNEL assay

[68]
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Table 1. Cont.

Type of
Supplementation Heavy Metal Tissue

Inflammation
Factors and Other
Proteins

Heat Stress
Proteins

Cell Death
Regulation
Proteins

Selenoproteins Other Results Analytical
Method Reference

Na2SeO3
1 mg/L

Pb(CH3COO)2
350 mg/L

Lymphocytes
(in vivo)

Se/Pb treatment
alleviated the
mRNA increase of
iNOS, TNF-a,
COX-2, NF-KB due
to Pb in relation to
control

Se/Pb treatment
alleviated the
increase of mRNA
levels of HSP27, -40,
-60, -70, -90 due to
Pb toxicity in
relation to control

No No No RT-PCR [63]

Na2SeO3
1 mg/L

Pb(CH3COO)2
350 mg/L

Cartilage
(in vivo) No No No

Se alleviated the
downtrend of the
expression of
GPX1, -2, -4,
Txnrd2, Txnrd3,
DIO1, DIO2,
selenoprotein I,
-U, Sepx1,
selenoprotein K,
-W, -O, -M, Sep15,
Sepnn1,
selenoprotein S,
and -T induced by
Pb in relation to
control

Se/Pb treatment
alleviated the
concentration of Pb
in sword cartilage
tissue

qRT-PCR,
ICP-MS [74]

Na2SeO3
1 mg/L

Pb(CH3COO)2
350 mg/L

Liver
(in vivo)

Se/Pb treatment
alleviated the
increase of mRNA
levels of NF-κB,
TNF-α, COX-2,
PTGEs, and iNOS
due to Pb toxicity in
relation to control

Se/Pb treatment
alleviate the
increase of mRNA
levels of HSP27, -40,
-60, -70, -90 caused
by Pb toxicity in
relation to control

No No No qRT-PCR [31]

Na2SeO3
0.02 mg/L

CdCl2
0.2 mg/L

Splenic
Lymphocytes
(in vitro)

Se/Pb treatment
alleviated the
decrease of IL-1β,
-2, -4, -10, -17,
and IFN-γ mRNA
levels due to Cd
toxicity in relation
to control

No No No No qRT-PCR [44]
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Table 1. Cont.

Type of
Supplementation Heavy Metal Tissue

Inflammation
Factors and Other
Proteins

Heat Stress
Proteins

Cell Death
Regulation
Proteins

Selenoproteins Other Results Analytical
Method Reference

Na2SeO3
0.02 mg/L

CdCl2
0.2 mg/L

Lymphocytes
(in vitro) No No No

Se/Cd treatment
alleviated the
decrease of
selenoprotein K,
-N, -T, -S mRNA
levels caused by
Cd toxicity in
relation to control

No qRT-PCR [51]

Na2SeO3
10 mg/Kg

CdCl2
150 mg/Kg

Immune
organs (serum,
thymus,
spleen, Bursa
of Fabricius)
(in vivo)

Se/Pb treatment
alleviated the
increase of iNOS
activity and NO
production caused
by Pb in relation to
control

No

Se/Pb
treatment
alleviated the
mRNA
increase of
p53 and
apoptotic
rates while
alleviated the
mRNA
decrease of
Bcl2 in
relation to
control

No No qRT-PCR,
TUNEL assay [42]

Na2SeO3
10 mg/Kg

CdCl2
150 mg/Kg

Cerebrum and
Cerebellum
(in vivo)

Se/Cd treatment
alleviated the
increase of iNOS
mRNA/protein
levels and NO
activity induced by
Cd toxicity in
relation to control

No No

Se/Cd treatment
alleviated the
GPX mRNA
levels decrease
caused by Cd
toxicity in relation
to control

Se/Cd treatment
alleviated Pb
accumulation

qRT-PCR,
FAAS [42]
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Table 1. Cont.

Type of
Supplementation Heavy Metal Tissue

Inflammation
Factors and Other
Proteins

Heat Stress
Proteins

Cell Death
Regulation
Proteins

Selenoproteins Other Results Analytical
Method Reference

Na2SeO3
0.02 mg/L

CdCl2
0.2 mg/L

Splenic
Lymphocytes
(in vitro)

No No

Se/Cd
treatment
alleviated the
mRNA
increase of
Bak,
caspase-3, -9,
p53 and Cyt-c
and alleviated
the mRNA
decrease of
Bcl-x, Bcl-2,
CaM induced
by Cd toxicity
in relation to
control

No No
DCF,
TUNEL Assay,
qRT-PCR

[53]

Na2SeO3
0.02 mg/L

CdCl2,
0.2 mg/L

Splenic
Lymphocytes
(in vitro)

No

Se/Cd treatment
alleviated the
mRNA levels
increase of HSP27,
-40, -60, -70, -90
induced by Cd
toxicity in relation
to control

No No No qRT-PCR [76]
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4. Heat Stress and Avian Transcriptome

4.1. An Overview of Heat Stress

Regarding heat stress (HS), the poultry industry is sensitive to economic losses due to poor
thermotolerance of broiler chickens [77,78]. St-Pierre et al. estimated that the livestock industry
experiences a total loss of $1.7 billion (USD) per year due to the negative effects of heat stress [77].
Heat stress has adverse impacts on a variety of performance parameters such as reduced meat quality,
egg production, and feed intake of broilers [79,80]. Moreover, the above physiological imbalances of
broilers, during heat stress, lead to hormonal disequilibriums [81–84] as well as decreased immune [85]
and reproductive development [84].

Heat stress causes reduction of body weight gain and feed consumption [86], and is therefore
a major concern for the poultry industry. Moreover, HS disrupts barrier function and affects enteric
development [87]. Heat stress raises radiant heat loss through the redistribution of blood flow from
the core body to the periphery. It increases also mortality and feed conversion efficiency, thus lowers
carcass weight and lastly decreases broiler meat quality [88]. Moreover, it causes depletion in mineral
(Se, Fe and Zn) and vitamin (A and E) tissue concentrations [89] that might be a consequence of
the impaired intestinal absorption, due to leakage of the gut. The decreased Se, Zn, and Fe levels
outcomes in impairment of oxidative capacity [90]. The changes triggered by HS increase reactive
oxygen species (ROS) formation [91–93] and interrupt the balance of antioxidant defense system and
oxidation. This triggers the occurrence of lipid peroxidation and oxidative damages to biochemical
molecules such as proteins and DNA [91].

Heat stress has been shown to lead to diminished growth rate in various studies [94].
Adomako et al. [95] noted that HS prompt to higher protein degradation, while both Gu et al. [96]
and Li et al. [97] exhibited that HS leads to apoptosis as well. Caspase-6 constitutes a part of a gene
family of caspases related to the apoptotic processes. It was observed that twelve days post-HS, CASP6
mRNA expression levels were raised, as part of a cascade developed by animals under HS to limit
the accumulation of proteins. Additionally, HS results in ROS augmentation, and it seems that a
concomitant raise in ROS concur with CASP6 expression to promote apoptosis [98,99]. When broilers
were exposed to HS, blood and nutrient flow to gastrointestinal tract were reduced, causing ATP
depletion, intestinal hypoxia, intracellular acidosis as well as nitrosative and oxidative stress together
with altered intestinal integrity and function [100]. Lipopolysaccharide leakage was raised due to
intestinal permeability, leading to multiple failure of organs [100].

Furthermore, meat quality was degraded under HS conditions. Poultry have increased contents
of polyunsaturated fatty acids in muscles and are extremely sensitive to oxidative stress when exposed
to high temperatures [101,102]. Postmortem glycolysis also rose due to oxidative stress caused by HS.
Additionally, meat quality of broiler was impaired because of tissue glycogen conversion into lactic
acid (protein and texture contents) [88,103,104].

Slawinska et al. [105] showed that HS environment induced iNOS activity upregulation in a
chicken macrophage-like cell line. On another study [106], in contrast with common conditions,
due to HS, NO content and iNOS activity were increased in the spleen of broilers. This indicated
that under HS conditions, the antioxidant defense system is disrupted leading to ROS accumulation
and in subsequent release of a big number of intermediaries of inflammation. Yao’s research [107]
demonstrated that ER stress response may be downstream from oxidative stress. Xu et al. [108] showed
that under HS environment, in chicks spleen, GRP94 and GRP78 mRNA levels considerable raised
which clearly indicates that ER stress occurs by HS. Also, multiple molecular pathways such as ATF6,
PERK, and IRE1 have interrelation with stress in ER. During ER stress, the expression of the above
genes were elevated [106]. In the next chapter, we examine in more detail the way that HS alters the
avian transcriptome.
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4.2. Avian Transcriptome Response to Heat Stress

Heat stress alters the mRNA expression of oxidants thereby increasing cellular ROS. The NOX
family is consisted of seven members (DUOX1 and -2, NOX1, -2, -3, -4, and -5] [109]. Upon the
outcomes of the study by Habashy et al., some NOX enzymes encoding genes were upregulated due to
long term heat stress in broilers [110]. Bánfi et al.’s [111] results demonstrated that NOX activator 1
and NOX organizer 1 (NOXO1) activate NOX1, the enzyme that generates superoxides. For instance,
subunit p22phox was essential for the activation of NOX3 [112]. Although, in lack of activators,
NOX3 superoxide production was raised via NOXO1 and PHOX organizers [113]. An N-terminal
domain is contained in DUOX2 (like peroxidases) and DUOX2 produces hydrogen peroxide [114].
Three canonical EF-hands (calcium binding domains) are contained in N terminus of NOX5 and
this differentiates it from other NADPH oxidases. In addition, superoxide is generated by NOX5 in
response to intracellular Ca2+ [115].

Under Ca2+ activation, NOX5 is activated and produces high superoxide amounts and further
exhibits another function by becoming a proton channel for charge compensation and pH changes as a
result of the electron export [116]. Regarding HUVEC cells exposed to HS, cytoplasmic Ca2+ peaked
1 h after HS and later reduced progressively. Further, at 1 h, a primary raise concerning mitochondrial
Ca2+ was noted, which peaked at 9 h and reduced at 12 h post-HS [96]. Calcium level in chickens’
plasma was increased 2 h post-HS but reduced to control levels, 24 h post-HS. In this way, it would be
expected that NOX5 will be down-regulated 24 h post-HS as was noticed in that study. At 1 and 12
days post-HS, NOX2 was down-regulated. Presumably, NOX2 was up-regulated earlier than 1 day
post-HS to produce high superoxide amounts [96]. High levels of superoxide have been exhibited to
up-regulate the SOD expression [117,118]. It may be assumed that SOD up-regulation may lead to
NOX2 down-regulation [119]. Corresponding to NOX5, NOX2 regulation may involve other factors
apart from ROS. Reports demonstrated that HS-induced small ubiquitin-like modifier 1 (SUMO1)
down-regulates ROS production through NOX2 [120]. This may clarify the negative NOX2 regulation
upon HS.

In addition, SODs are ubiquitous enzymes catalyzing the superoxide anions’ dismutation to
hydrogen peroxide. SOD1 (cytoplasmic isoform) and SOD3 (extracellular isoform) contain Cu and
Zn, whereas SOD2, the mitochondrial isoform, has Mn in its reactive site [121]. In another study,
Habashy et al. [110] noticed that the SOD1 mRNA expression did not alter 1 day post-HS, but raised at
12 days post-HS. Particular functions between SODs may be the result of subcellular location [121].
Notwithstanding, it is obvious that birds’ HS exposure results to mRNA expression alterations in
NADPH oxidases that induce SOD1 up-regulation, one of the pivotal enzymatic antioxidant defenses
as regards cell damages by superoxide anions. As reported by Schafer and Buettner [122] superoxide
dismutase up-regulation is one of the mechanisms cells employ to control potential cytotoxicity induced
by stress. These results were in accordance with Azad et al.’s [123] results, which described that
cytoplasmic Cu/Zn-SOD (SOD1) activity raised in the Pectoralis major muscle after chronic exposure
of chickens to HS.

Differently, through the antioxidant enzyme catalase (CAT), H2O2 is converted to water and
oxygen, and through GPX, H2O2 is converted to water in a reaction, oxidizing GSH to its disulfide
form (GSSG). Glutathione is regenerated from GSSG by GR. Data concerning the regulation of CAT,
GPX, NADPH, and GR in both acute and chronic HS is insufficient. The GPX, CAT, and NADPH
genes were negatively regulated at 1 day post-HS, presumably as a result of H2O2 raise. It has been
demonstrated that exhibition to ROS negatively regulated CAT expression through hypermethylation
of a CpG island in CAT promoter [124,125]. The high levels of cellular H2O2 due to HS may have
caused the negative regulation of GPX and CAT. This may be true not only at gene level, since in case
of GPX, post-translational modifications have been reported irrespective of changes at gene expression
levels [126].

Niu et al. [127] showed that S-glutahionylation of human cystathionine β-synthase increased its
activity to enhance the production of cysteine and afterwards GSH under oxidative stress conditions.
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Recently, Habashy et al. [128] exhibited that under HS, cysteine is mainly incorporated into chickens’
tissues compared to any other amino acid. Under HS, dietary methionine (a cysteine precursor) should
be raised to increase the trans-sulfuration pathway flux in order to convert homocysteine to cysteine.
In another study, Eriksson et al. [129] exhibited that methionine is critical in reduction systems and
cells protection against oxidative stress through an NADPH-independent pathway. It was exhibited
that hepatocytes can preserve cytosolic redox homeostasis by utilizing NAPDH or methionine. Nrf2
gene was slightly negatively regulated at 1 day post-HS, but not at 12 days post-HS.

The induction of NADPH and GST by electrophiles and antioxidants has been shown to be
mediated by the activation of Nrf2 in human [130]. It should be also noticed that GST was positively
regulated at 1 day post-HS, which commonly believed to accelerate the conjugations between GSH
and 4-hydroxynonenal (HNE), a byproduct of lipid peroxidation generated upon HS [131]. GST
negative regulation 12 days post-HS may be a result of GSH depletion. Further, Nrf2 activates
the antioxidant responsive elements which induce the transcription of diverse genes in the redox
homeostasis machinery [132]. Presumably, the early transcriptional alteration in Nrf2 during HS is
essential to trigger a cascade of events to reserve redox homeostasis [110].

Al-Zghoul et al. in their experiment on thermal manipulated (TM) chicks illustrated that levels of
SOD2, GPX2, NOX4, and CAT expression were significantly lower in the TM groups in two chicken
breeds (Hubbard and Cobb) [133]. This demonstrates that the reduction of NOX4 expression in the TM
groups alleviates oxidative stress by decreasing NOX-induced ROS. Additionally, AvUcp expression
levels in the Hubbard and Cobb TM groups generally increased after exposure to acute heat stress (AHS)
compared to controls. These results indicate that TM through raising AvUcp mRNA levels has a positive
effect on ROS reduction. In relation with the above results, TM treatment has a role in decreasing
heat-induced oxidative stress, the latter of which can be ascertained by the reduction and elevation of
NOX4 and AvUcp mRNA levels, respectively. Lastly, they showed that TM directs thermotolerance
acquisition in broiler chicken and indicated considerable differences among breeds [133].

Moreover, the relative mRNAs expression of HSP (60, 70, and 90) in the heart of broiler chickens
were significantly elevated after exposure to HS for 2 h and then declined rapidly with further exposure.
In addition, the up-regulation of these stress proteins in heart act as important biomarkers and
protective proteins at the start of HS [102]. A summary of selected studies in chicken reporting the
effects of heat stress on various factors, HSP, and selenoproteins is shown in Table 2.
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Table 2. A summary of selected studies in chicken reporting effects of heat stress on various factors, HSP, and selenoproteins.

Type of
Supplementation Tissue Selenoproteins Heat Stress Proteins Antioxidant Capacity Other Results Analytical

Techniques/Methods References

Na2SeO3
0.2 mg/Kg,
Vit E
250 mg

Breast muscles

Se/Vit E:
upregulation of
Gpx1, Gpx4 and
selenoprotein P in
relation to control
and Se group

HSP60, -70, -90 small
mRNA decrease in Se
group, no differences in
Se/Vit E group

Se/Vit E and Se group:
increase in concentration of
CAT, SOD, GSH-P and
MDA especially in Se/Vit E
group in relation to control

RT-PCR [134]

BET
1g/Kg,
Vit E
250 mg/Kg,
Se
0.8 mg/Kg

Breast muscle BET, Vit E and Se: increased
GPx activity

BET reduced
respiratory rate GPx Assay [135]

No Liver Gpx1 mRNA
decrease

Heat stress treatment:
increase NOX1, NOX3,
DUOX2, GST, CAT, SOD1,
GR, CASP6 mRNAs and
decrease of CYBB, NOX4,
NOX5, NADPH mRNAs

RT-PCR [110]

Na2SeO3
0.30 mg/Kg,
Se-yeast
0.30 mg/Kg

Breast muscles
upregulation of
Gpx1, Gpx4 in
both Se treatments

Downregulation of HSP70
in inorganic Se group,
Se-yeast group showed a
further downregulation
HSP70 mRNA levels
compared to control and
inorganic Se group

Improved
organoleptic meat
characteristics
(meat drip loss,
water holding
capacity, and shear
force)

qRT-PCR,
HG-AFS [136]
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Table 2. Cont.

Type of
Supplementation Tissue Selenoproteins Heat Stress Proteins Antioxidant Capacity Other Results Analytical

Techniques/Methods References

Nano-selenium
1.2 mg/Kg Jejunal tissue

Decreased the
plasma
concentrations of
LDL-C and AST,
but linearly
increased that of
HDL-C before heat
exposure.
Moreover,
the cholesterol
concentration was
lower in broilers
fed diets
supplemented
with 0.6 mg/kg
Nano-Se than that
in the control ones.
Heat stress
decreased the
plasma total
protein
concentration, but
increased the AST
activity

Enzymatic Kits [137]

Vit A 16.000 IU/kg,
Na2SeO3
0.50 mg/kg

Se/Vit E group: no
significant change
in egg quality in
relation to control
but significant
changes in hen
performance

[138]

DL-α-tocopherole
acetate
500 mg/Kg,
Na2SeO3
0.5 mg/Kg

Se/Vit E group:
synergistic effect
between Se and Vit
E in alleviation of
heat stress

[139]
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Table 2. Cont.

Type of
Supplementation Tissue Selenoproteins Heat Stress Proteins Antioxidant Capacity Other Results Analytical

Techniques/Methods References

Na2SeO3
1.5 mg/Kg,
PAMK
200 mg/Kg

Spleen

Alleviation of increase of
mRNA expression of
HSP90, GRP-78 caused by
heat stress

Se/PAMK group:
alleviation of
increase of
expression of Bcl-2,
caspase-3, ATF4,
ATF6, IRE due to
heat stress

qRT-PCR,
Western Blot [106]

Organic Se
0.3mg/Kg,
Cr 2 mg/Kg,
Zn 40 mg/Kg

Blood

Improved performance and
antioxidant responses
(reduced LP and increased
superoxide dismutase)

[140]

SeMet 1 mg/Kg
α-tocopherol
acetate 250 mg/Kg

Breast

Se/Vit E group:
growth
performance was
not improved but
improved lipid
oxidation of breast
meat

AAS,
MDA determination [141]

Se
3 mg/Kg,
PAMK
200 mg/Kg

Bursa of Fabricius,
spleen, thymus

Se/PAMK: Improved
alleviation of mRNA
increase of HSP60, -70, -90

Se/PAMK group:
Alleviation of
mRNA increase of
TNF-a, IFN-γ, IL2
and IL4 caused by
heat stress

qRT-PCR [142]

Se
3 mg/Kg,
PAMK
200 mg/Kg

Endoplasmic
reticulum of
Spleen tissue

Higher alleviation of
HSP27 and -70 increase in
Se/PAMK group

qRT-PCR, Western
Blot Analysis [108]

Se
1mg/Kg,
Vit E
250 mg/Kg

Better immune
responses Enzymatic methods [143]
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Table 2. Cont.

Type of
Supplementation Tissue Selenoproteins Heat Stress Proteins Antioxidant Capacity Other Results Analytical

Techniques/Methods References

Na2SeO3
0.028 mg/Kg

Liver, Breast
muscle

GSH-Px activity increase
due to Se supplementation Enzymatic methods [144]

Vit E
250 mg/kg,
Se
1 mg/kg

Pectoralis muscle SOD and Gpx activity
increase

There was not a
significant
interaction in
broiler growth
performance
between dietary
treatments and
environmental
temperature

Enzymatic methods [145]

Se
0.3 g/Kg,
TP
10 g/Kg

Blood

Se/TP significantly
reduced plasma
triglycerides no
significant effects
on plasma
hormones T

Enzymatic Methods [146]
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4.3. Antioxidant Supplements during Heat Stress and Avian Antioxidant Transcriptome Response

Several nutritional approaches, such as supplementation of diets with phytochemicals, have been
used in attempts to attenuate the negative effects of HS [147]. Vitamin E (Vit E) is a fat-soluble vitamin
with antioxidant properties [148] that regenerates damaged tissues [149,150] during oxidative stress by
participating in the GPX pathway causing enhanced chicken performance [151].

Furthermore, Vit E and Se combined supplementation proved to be the most effective inhibitor of
lipid peroxidation. Dietary Vit E and Se supplementation led to significant increases in SOD and CAT
levels in breast muscle of heat-stressed broilers. Selenium alongside with Vit E had a synergistic effect
on SOD, GPX, and CAT activity. However, Shahnawaz Kumbhar showed that enzyme activity of GPX
remained depressed in case of dietary Vit E [134]. Furthermore, MDA content in breast meat decreased
by both Se and Vit E supplementation under HS condition [141]. That was in agreement with other
findings, who observed a significant increase in tissue GPX1, GPX4, and selenoprotein P mRNA levels
when broilers were fed Se and Se+Vit E supplemented diets. However, no effect on these indices was
recorded in broilers given the Vit E supplemented diet.

Selenium performs its biological functions mainly through selenoproteins, as Se is mainly
incorporated in selenoproteins’ active sites [152]. Selenoproteins like GPX1, GPX4, and selenoprotein P
play vital roles in a variety of biological processes by participating in the antioxidant defense system.
Different Se forms including inorganic, such as sodium selenite, organic, such as Se-enriched yeast,
and nanoselenium (Nano-Se) have been compared to choose the best source of Se for maximizing the
poultry production and health in oxidative or thermoneutral rearing conditions [102].

Thus, Nano-Se supplementation has been proposed for reduction of HS effects in broilers. In a
study on the effects of dietary Nano-Se supplementation at 0.6 and 1.2 mg/kg of diet on growth
performance, serum biochemical parameters, immune response, antioxidant capacity, and jejunal
morphology of 29-d-old male broilers subjected to HS at 37 ± 1 ◦C for 14 d, it has been shown that
heat-stressed broilers had lower FI and BMG, but higher FCR than those kept in thermoneutral
condition. According to Safdari-Rostamabad’s [137] study outcomes in broilers after 48 days of
HS exposure, FCR of broilers improved due to dietary supplementation with 1.2 mg/kg Nano-Se.
Furthermore, the 1.2 mg/kg Nano-Se supplementation had better results than the 0.6 mg/kg or the
control treatment concerning FCR and BMG, proposing that heat-stressed broilers’ performance can
be improved with a supplementation rate of 1.2 mg/kg. This might be associated to HSPs (and other
chaperones) and to proteolytic enzymes.

Hu et al. [153], compared the effects of Nano-Se and sodium selenite on the growth performance
of broilers, Se concentrations in liver, serum, and breast muscle, activity GPX in serum, and retention
of Se in the whole body and in liver tissue. It was showed that both Se sources comparably increased
feed efficiency, average daily gain, survival ratio, and serum GPX activity. Nevertheless, Nano-Se
supplementation in broilers notably improved Se transfer to the body from intestinal lumen, Se
concentration in tissues and in the serum and retention of Se in the whole body. Also, performance
parameters were not affected by different Se supplementation sources (Nano-Se, Se-enriched yeast
and sodium selenite) in the non-stressed or oxidative-stressed broilers. However, Nano-Se triggered
the most noticeable impact in oxidative stressed broilers [154]. In parallel with the above outcomes,
Safdari-Rostamabad et al. demonstrated that during broilers’ grower and starter phases, Nano-Se
supplementation at levels of 0.6 or 1.2 mg/kg had no beneficial effect [137]. Also, Nano-Se
supplementation did not alleviate the adverse effect of HS on pancreas [137]. On the other hand,
supplementation with Se enriched probiotics, facilitated an induction of the endogenous antioxidant
defense system. These observations indicate that an improved antioxidant status could greatly
attenuate heat-stress-induced HSPs expression.

In another study, when broilers were supplemented with Se enriched prebiotics (SP), a significant
downregulation was observed in the expression of the HSPs (60, 70, and 90) heat stress biomarkers in
the breast muscles of each experimental group compared with the control group. The SP group had a
profound effect on decreasing the HSP70 mRNA levels in comparison to control [136].
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5. Bibliometric Evaluation

The field of selenoprotein transcriptome in chicken and its interactions with heavy metals has
recently been attracting more and more research interest (Figure 1). The search was performed using
Scopus database and [TITLE-ABS-KEY((“selenium supplementation” OR selenium OR selenoproteins
OR DIO1 OR “iodothyronine deiodinase 1” OR DIO2 OR “iodothyronine deiodinase 2” OR DIO3 OR
“iodothyronine deiodinase 3” OR GPX1 OR “glutathione peroxidase 1” OR GPX2 OR “glutathione
peroxidase 2” OR GPX3 OR “glutathione peroxidase 3” OR GPX4 OR “glutathione peroxidase 4” OR
GPX6 OR “glutathione peroxidase 6” OR MRSB1 OR “methionine sulfoxide reductase B1” OR selenof
OR “selenoprotein F” OR selenoh OR “Selenoprotein H” OR selenoi OR “selenoprotein I” OR selenok
OR “selenoprotein K” OR selenom OR “selenoprotein M” OR selenon OR “selenoprotein N” OR
selenoo OR “selenoprotein O” OR selenop1 OR “selenoprotein P1” OR selenop2 OR “selenoprotein P2”
OR selenos OR “selenoprotein S” OR selenot OR “selenoprotein T” OR selenou OR “selenoprotein U”
OR selenov OR “selenoprotein V” OR selenow OR “selenoprotein W” OR sephs2 OR “selenophosphate
synthetase 2” OR TXNRD1 OR “thioredoxin reductase 1” OR TXNRD2 OR “thioredoxin reductase 2”
OR TXNRD3 OR “thioredoxin reductase 3”) AND (Cd OR cadmium OR chromium OR Cr OR mercury
OR Hg OR arsenic OR As OR lead OR Pb OR “heavy metals” OR “toxic elements”) AND (chicken
OR chick OR chicks OR broiler OR hen OR egg) AND (mRNA OR transcriptome OR transcript OR
RNA))] were used as keywords. Figure 1 shows the temporal evolution of the articles. As it is shown,
there has been an exponential growth in the last 10 years. Related articles were more than 70 in the
period 2016–2018 whereas in the period 2007–2009 were only 4. Authors anticipate that this trend will
continue in the next years.
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Figure 2 shows the related research per country. China outnumbers all other countries, obtaining
more than 50% of the total with 105 articles. As it is known, China is one of the greatest producers
of plant protection products and fertilizers. These products could include heavy metals. Further,
China has a high number of industries that could use or have as by-products heavy metals. Moreover,
China’s GPD increases continuously and so more and more research is conducted. Another reason
why most articles come from China is that the health issue of Keshan’s disease emerged, a congestive
cardiomyopathy caused by a combination of dietary deficiency of Se and the presence of a mutated
strain of Coxsackievirus. These symptoms were prevalent in a wide area extending from north-east
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to south-west China, all due to Se-deficient soil. The U.S. is in the second position with 29 articles,
and South Korea, Belgium, Pakistan, and other countries follow. Articles are scattered in more than
60 journals. This fact could be explained due to the multidisciplinary character of the field. Although,
“Biol. Trace Elem. Res.” dominates the field with 49 articles, while “Environ. Sci. Pollut. Res.” and
“Poult. Sci.” are following with 6 articles each. These journals are highly cited, reflecting the importance
of the field.
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with heavy metals.

Regarding research on selenoprotein transcriptome in chicken and its adaptation to HS and Se
deficiency, the number of articles has also an increasing trend (Figure 3). The search was performed using
Scopus database and TITLE-ABS-KEY[((“selenium supplementation” OR selenium OR selenoproteins
OR DIO1 OR “iodothyronine deiodinase 1” OR DIO2 OR “iodothyronine deiodinase 2” OR DIO3 OR
“iodothyronine deiodinase 3” OR GPX1 OR “glutathione peroxidase 1” OR GPX2 OR “glutathione
peroxidase 2” OR GPX3 OR “glutathione peroxidase 3” OR GPX4 OR “glutathione peroxidase 4” OR
GPX6 OR “glutathione peroxidase 6” OR MRSB1 OR “methionine sulfoxide reductase B1” OR selenof
OR “selenoprotein F” OR selenoh OR “Selenoprotein H” OR selenoi OR “selenoprotein I” OR selenok
OR “selenoprotein K” OR selenom OR “selenoprotein M” OR selenon OR “selenoprotein N” OR
selenoo OR “selenoprotein O” OR selenop1 OR “selenoprotein P1” OR selenop2 OR “selenoprotein P2”
OR selenos OR “selenoprotein S” OR selenot OR “selenoprotein T” OR selenou OR “selenoprotein U”
OR selenov OR “selenoprotein V” OR selenow OR “selenoprotein W” OR sephs2 OR “selenophosphate
synthetase 2” OR TXNRD1 OR “thioredoxin reductase 1” OR TXNRD2 OR “thioredoxin reductase 2”
OR TXNRD3 OR “thioredoxin reductase 3”) AND (chicken OR chick OR chicks OR broiler OR hen OR
egg) AND (“heat stress”))] were used as keywords. The number of related articles were more than
doubled in last 3-year period (2016–2018). As depicted in Figure 3, 58 articles have been published
until the end of 2018. Half of them were published after 2013.
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Figure 4 includes the countries which have published relative articles. Asian countries dominate
the field. Particularly, China is again in the first place with 13 articles. Brazil, Egypt, and Iran follow
with 8 articles each, and Pakistan and United States with 5 articles each. These countries are known
for their warm climate and usually hot summers. Meanwhile, there is high demand for chicken meat
in these countries. Therefore, the production of chicken is analogous. With regard to journals, “Biol.
Trace Elem. Res.” leads with 11 articles.
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6. Conclusions

It can be concluded that the toxic effects of Cd and Pb and the harmful effects caused by heat stress
in chickens are alleviated via supplementation of Se. Studies highlight selenium’s role as antioxidant
and modulator for the enzymatic and non-enzymatic antioxidant defense factors such as GSH, GPx,
and TrxR in order to modulate the toxic effects of heavy metals in chicken. Further, Se alleviates the
excess of mRNA expression levels of apoptotic factors, immune proteins, and heat stress proteins
caused by heavy metals. In addition, over heat stress conditions, Se through upregulation of GPxs and
other selenoproteins, eliminates heat stress proteins mRNA levels in many chicken tissues and reduces
mRNA increase of inflammatory factors and other chicken immune responses.
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Abbreviations

ATF4 Activating transcription factor 4
AvUcp Avian uncoupling protein
Bak BCL2 antagonist/killer 1
Bcl-2 B-cell lymphoma 2 gene
Bcl-xL B-cell lymphoma-extra large
BNIP3 Adenovirus E1B 19 kDa protein-interacting protein 3
CaM Calmodulin protein gene
CHOP CCAAT-enhancer-binding protein homologous protein
COX-2 Cyclooxygenase 2
DIO Iodothyronine deiodinase
eIF2α Eukaryotic Initiation Factor 2
GPX Glutathione peroxidase
GRP78 Unfolded protein response regulator
GSH Glutathione
GST Glutathione S-transferases
ICAM-1 Intercellular Adhesion Molecule 1
IFN-γ Interferon gamma
IL Interleukin
iNOS Inducible NO synthase
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NO Nitric oxide
p53 Tumor protein p53 gene
PERK Protein kinase RNA-like endoplasmic reticulum kinase
PGE2 Prostaglandin E2
PTGES prostaglandin E synthase
SECIS Selenocysteine insertion sequence
SEPHS2 Selenophosphate Synthetase 2 gene
SEPP1 Selenoprotein P
Sepx1 Methionine-R-sulfoxide reductase B1
SOD Superoxide dismutase
TGF-β4 Transforming Growth Factor-β
TNF-α Tumor necrosis factor alfa
TNR-α Tumor necrosis receptor alfa
TXNRD Thioredoxin reductase
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101. Skrivan, M.; Dlouha, G.; Mašata, O.; Ševčíková, S. Effect of dietary selenium on lipid oxidation, selenium
and vitamin E content in the meat of broiler chickens. Czech. J. Anim. Sci. 2008, 53, 306–311. [CrossRef]

102. Khan, A.Z.; Kumbhar, S.; Hamid, M.; Afzal, S.; Parveen, F.; Liu, Y.; Shu, H.; Mengistu, B.M.; Huang, K.
Effects of Selenium-Enriched Probiotics on Heart Lesions by Influencing the mRNA Expressions of
Selenoproteins and Heat Shock Proteins in Heat Stressed Broiler Chickens. Pak. Vet. J. 2016, 36, 460–464.
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