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Discrimination of high-risk types of humanpapillomaviruses plays an important role in the diagnosis and remedy of cervical cancer.
Recently, several computational methods have been proposed based on protein sequence-based and structure-based information,
but the information of their related proteins has not been used until now. In this paper, we proposed using protein “sequence space”
to explore this information and used it to predict high-risk types of HPVs. The proposed method was tested on 68 samples with
known HPV types and 4 samples without HPV types and further compared with the available approaches. The results show that
the proposed method achieved the best performance among all the evaluated methods with accuracy 95.59% and F1-score 90.91%,
which indicates that protein “sequence space” could potentially be used to improve prediction of high-risk types of HPVs.

1. Introduction

Cervical cancer is one of the leading causes of cancer mor-
bidity andmortality in womenworldwide [1]. Approximately,
500,000 new cases of cervical cancer were diagnosed each
year, with 280,000 deaths [2]. It has become the second most
common cancer among women especially for developing
countries [3, 4]. Some studies have shown that human
papillomavirus (HPV) is strongly associated with cervical
cancer, and some types of HPVs can cause abnormal tissue
growth in the form of warts (papillomas) and someHPVs are
associated with certain cancers and precancerous conditions
[5–7].

Human papillomaviruses are icosahedral, nonenveloped
particles that contain a small, double-stranded circular DNA
of approximately 8000 nucleotide base pairs [8] and belong to
the Papillomavirus family (papilloma, polyoma, and simian
vacuolating viruses) [9]. The diameter of circular DNA is
approximately 55 nm [10–13]. Up to now, there are more than

150 HPV types, and some new types will be identified when
they have significant homology differences with the defined
HPV types [14–16]. Epidemiologic studies have shown that
genital human papillomaviruses have a strong relationship
with cervical cancer, independent of other risk factors.
According to their relative malignancy, the genital tract
HPVs can be grouped into two or three types: low-risk type,
intermediate-risk type, and high-risk types [17]. But HPVs
are usually divided into two types in clinical association
study: high-risk or low-risk types. Low-risk viral types are
more closely related with low-grade lesions, and high-risk
viral types are associated with high-grade cervical lesions
and cancers [17]. High-risk type is composed of 20 HPV
types, such as HPV-16, HPV-18, HPV-26, HPV-31, HPV-
33, HPV-35, HPV-39, HPV-45, HPV-51–53, HPV-56, HPV-
58, HPV-59, HPV-66, HPV-68, HPV-70, HPV-73, HPV-82,
and HPV-85 [18]. HPV-16 and HPV-18 are responsible for
about 62.6% and 15.7% of cervical cancers [19]. Therefore,
discrimination of high-risk types of HPVs becomes one of
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the most important things for diagnosis and therapy of
cervical cancers.

Because of the importance of the HPV types, many epi-
demiological and experimental methods have been proposed
to identify them [5, 20–22]. They are mostly based on the
polymerase chain reaction (PCR), a sensitive technique for
the detection of very small amounts of HPV nucleic acids in
clinical specimens. With rapid increasing of the HPV data in
protein and DNA databank, there is a great need to develop
some reliable and effective computational methods to predict
the high-risk types of HPVs directly from the available data.

Recently, some research works found the correlations
between these data and high-risk types of HPVs and pro-
posed some computational methods to predict the high-risk
types of HPVs. Eom et al. learned the most informative sub-
sequence segment sets of DNA sequences and used genetic
algorithm to classify the risk types of each HPV [23]. Joung
et al. classified the risk type of HPVs based on the hidden
Markov model and the support vector machines using the
protein sequences [24, 25]. Park et al. proposed a classification
of the risk type of human papillomavirus by decision tree
[26]. Kim and Zhang introduced the string kernel and Gap-
spectrum kernel to compute the distances of amino acids
pairs and further used them to classify HPV risk types based
on E6 protein sequences [7, 9]. Kim et al. proposed an
Ensemble support vector machine to classify HPV risk types
based on the differential subsequences of protein secondary
structures [13]. Esmaeili et al. calculated Chou’s pseudo
amino acid composition of E6 protein sequences and used
ROC to predict HPV risk types [27]. Alemi et al. analyzed
the physiochemical properties of all early and late proteins in
high- and low-risk HPV types and introduced support vector
machines to classify high-risk HPV types based on receiver
operating characteristic analysis [28].

These methods have achieved promising results in high-
risk types of HPVs prediction, but challenges for information
extraction of HPVs still remain.Thewidely used information
of HPVs in high-risk type prediction is sequence-based or
structure-based information from the given DNA or protein
sequence, and the information from related proteins or family
has not been explored until now. With this problem in
mind, we presented a novel scheme to predict high-risk types
of HPVs using word statistical model of protein sequence
space and support vector machine. We first constructed a
“sequence space” of the given protein sequence with help
of mutation matrices. We then extracted the information of
HPV from the protein “sequence space” with the proposed
word statistical model. At last, the extracted information was
fed into support vector machine to predict high-risk types
of HPVs. Through several experiments, we want to address
how well the proposed prediction method performed when
comparingwith the available ones andwhether the prediction
abilities of the proposed prediction method depends on the
choice of the mutation matrices.

2. Materials and Methods

2.1. Datasets. All types of HPV share a common genomic
structure which is arranged into the upstream regulatory

region (URR) and eight open reading frames (ORFs) encod-
ing the viral early and late genes [11]. URR contains long
control region, TATA signal 1 and TATA signal 2. There are
polyA signal 1 and polyA signal 2 between early and late
genes. Late gene expression produces the structural proteins
L1 and L2 [12], which assemble into the viral capsid structure,
whereas early gene activity translates into the regulatory
proteins E1, E2, E4, E5, E6, and E7. In this paper, we con-
structed seven datasets of HPV protein sequences: E1, E2, E4,
E6, E7, L1, and L2, respectively. Here, we did not use HPV
E5 because the lengths of its protein sequences are too small.
All the HPV datasets were downloaded from the Human
Papillomaviruses Compendium published by Los Alamos
National Laboratory (LANL).

There are total 72 types of HPVs in each dataset, but some
HPV sequences are missing in LANL. So we downloaded the
missing sequences from taxonomy browser in the National
Center of Biotechnology Information. For example, HPV
43, 67, 75, 76, 77, and 80 protein sequences are missing
in L2 dataset; we obtained these sequences from taxonomy
browser. But we could not find themissed sequences of the E4
dataset in the National Center of Biotechnology Information,
so the total number of HPV sequences is 71 in the E4 dataset.
Among HPV sequences, four sequences (HPV 26, 54, 57,
and 70) are selected as the predicting data and others are
the training data [13]. Here, HPV risk types are manually
determined based on the HPV compendium, in which
seventeen HPV types are classified as high-risk types (HPV
16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 61, 66, 67, 68, and 72)
and the remaining are low-risk types.

2.2. Construction of Protein “Sequence Space”. It is well
known that there are over 20 amino acids and each one is
different from the others. Mutation matrices represent the
similarities among amino acids. Let𝐴𝐴

𝑖
and𝐴𝐴

𝑗
denote two

amino acids from the set Ω, and their score was defined as
follows:

𝑆 (𝐴𝐴
𝑖
, 𝐴𝐴
𝑗
) = Mutation (𝐴𝐴

𝑖
, 𝐴𝐴
𝑗
) , (1)

where Mutation(𝐴𝐴
𝑖
, 𝐴𝐴
𝑗
) represents the “normalized

probability” that the amino acid 𝐴𝐴
𝑖
mutates into the amino

acid 𝐴𝐴
𝑗
. In evolutionary biology, the score describes the

rate at which one amino acid in a protein sequence changes
to other amino acids states over time. That is to say the
sequence similarity depends on the amino acids’ scores
represented in above definition. Usually, two amino acids
𝐴𝐴
𝑖
and 𝐴𝐴

𝑗
are considered similar if their score is more

than zeros. It is worth noting that the similarity between𝐴𝐴
𝑖

and 𝐴𝐴
𝑗
is symmetric, but it is not a transitive relation. For

example, 𝐴𝐴
𝑖
is similar to 𝐴𝐴

𝑗
and 𝐴𝐴

𝑗
is similar to 𝐴𝐴

𝑘
,

but 𝐴𝐴
𝑖
is not similar to 𝐴𝐴

𝑘
.

Taking amino acids’ scores into mind, we classified 20
amino acids into several overlapping classes. Here, star sets
were introduced, in which the properties are known between
vertices and center. Given an amino acid 𝐴𝐴

𝑖
, its star set was

defined as follows:

Star𝑆 (𝐴𝐴
𝑖
) = ⋃

𝛼∈Ω

sig (𝑆 (𝐴𝐴
𝑖
, 𝐴𝐴
𝛼
)) ⋅ 𝛼, (2)
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Table 1: Star sets of 20 amino acids based on PAM250 substitution matrix.

Matrix Star set

PAM250

{AGPST} {C} {DEGHNQ} EDHNQ {FILY}
{GADS} {HDENQR} {IFLMV} {KNQR} {LFIMV}
{MILV} {NDEHKQS} {PAS} {QDEHKNR} {RHKQW}

{SAGNPT} {TAS} {VILM} {WR} {YF}

where sig is a function that returns the sign of a number,
indicating whether the number is positive or zero. If number
is greater than zero, 1, otherwise, to zero. For example, 20
amino acids can be partitioned into several star sets based on
PAM250 mutation matrix, which was presented in Table 1.

Wewanted to go furtherwith the star sets and found some
related protein sequences that have a high similarity among
them. Suppose 𝑆

1
= 𝑠
1

1
𝑠
1

2
⋅ ⋅ ⋅ 𝑠
1

𝑛
and 𝑆

2
= 𝑠
2

1
𝑠
2

2
⋅ ⋅ ⋅ 𝑠
2

𝑛
are two

given protein sequences; they are related if they satisfy the
following condition:

∀𝑠
1

𝑘
∈ Star𝑆 (𝑠2

𝑘
) , ∀𝑠

2

𝑘
∈ Star𝑆 (𝑠1

𝑘
) , 1 ≤ 𝑘 ≤ 𝑛. (3)

From the above definition, it is easy to note that if two protein
sequences have more similar sequences, they should be more
closely related. With help of definition of related sequences,
we constructed the “sequence space” of given sequence 𝑆 =
𝑠
1
𝑠
2
⋅ ⋅ ⋅ 𝑠
𝑛
, denoted by SP

𝑆
, as follows.

Step 1. Given a null-set, denoted by 𝜙, add its star sets to 𝜙
and obtain protein “sequence space” SP

𝑆
.

Step 2. A prefix 𝑠
1
was added to 𝜙 and obtained its star set

Star𝑆(𝑠
1
). We checked whether the star set of the prefix 𝑠

1

is empty or not. If its star set is a nonempty set, we added a
symbol “−” after Star𝑆(𝑠

1
) and updated the protein “sequence

space” SP
𝑆
.

Step 3. We repeated Step 2 until the end of the given sequence
𝑆 = 𝑠
1
𝑠
2
⋅ ⋅ ⋅ 𝑠
𝑛
and obtained its protein “sequence space” SP

𝑆

as follows:

SP
𝑆
=

𝑛

⋃

𝑘=1

[⋃

𝛼∈Ω

sig (𝑆 (𝐴𝐴
𝑘
, 𝐴𝐴
𝛼
)) ⋅ 𝛼] − . (4)

In the construction of the protein sequence space, all the
protein sequences were closely related to the given protein
sequence.That is to say all the information on the related pro-
teins or family could be explored through the construction of
the protein “sequence space.”

2.3.Word StatisticalModel in Protein “Sequence Space”. Word
statistical model is one of the most widely used methods for
sequence analysis [29–32]. In this model, each sequence is
first mapped into an 𝑚-dimensional vector according to its
word frequencies, and sequence similarity can be measured
by distance measures, such as Euclidean distance [33], Maha-
lanobis distance [34], Kullback-Leibler discrepancy [35],
and Cosine distance [36]. When the words occurring in
biological sequence are estimative probabilities rather than

the frequencies, they are more readily optimized by more
complex models, such as Markov model [37–39], mixed
model [40], and Bernoulli model [41].These complexmodels
could be considered to be the modification of traditional
word-based models.

A biological sequence can be described as a succession
of symbols, and a word is a series of 𝑘 consecutive letters in
the sequence. For a sequence 𝑆 = 𝑠

1
𝑠
2
⋅ ⋅ ⋅ 𝑠
𝑛
, the count of its

word𝑊
𝑘
= 𝑤
1
𝑤
2
⋅ ⋅ ⋅ 𝑤
𝑘
, denoted by 𝑐(𝑊

𝑘
), is the number of

occurrence of the word𝑊
𝑘
in the sequence 𝑆. Here, we con-

structed a word statistical model in protein “sequence space.”
First of all, a position function of an occurrence of the word
𝑊
𝑘
was defined as follows:

ℵ
𝑖
(𝑠
𝑖
, 𝑤) =

{

{

{

1, if 𝑠
𝑖
= 𝑤,

0, otherwise.
(5)

The count of the word 𝑊
𝑘
in the protein “sequence space”

can be defined from the random indicators of occurrence as
follows

Φ(𝑊
𝑘
) =

𝑛−𝑘+1

∑

𝑖=1

∑

𝛼
1
∈Star𝑆(𝑠

𝑖
)

∑

𝛼
2
∈Star𝑆(𝑠

𝑖+1
)

⋅ ⋅ ⋅ ∑

𝛼
𝑘
∈Star𝑆(𝑠

𝑖+𝑘
)

ℵ
𝑖
(𝛼
1
, 𝑤
1
) × ℵ
𝑖+1
(𝛼
2
, 𝑤
2
) × ⋅ ⋅ ⋅

× ℵ
𝑖+𝑘
(𝛼
𝑘
, 𝑤
𝑘
) .

(6)

In order to eliminate the effects of space size, we normalized
the word contents with the size of the space and got word
frequencies of protein “sequence space,” denoted as 𝐹SP

𝑆

𝑘
.

Consider

𝐹
SP
𝑆

𝑘
= (𝑓

SP
𝑆 (𝑊
𝑘,1
) , 𝑓

SP
𝑆 (𝑊
𝑘,2
) , . . . , 𝑓

SP
𝑆 (𝑊
𝑘,𝑌
))

= (
Φ (𝑊
𝑘,1
)

∏
𝑛−𝑘+1

𝑖=1
∏
𝑘

𝑗=1


Star𝑆 (𝑠

𝑖+𝑗
)


,

Φ (𝑊
𝑘,2
)

∏
𝑛−𝑘+1

𝑖=1
∏
𝑘

𝑗=1


Star𝑆 (𝑠

𝑖+𝑗
)


, . . . ,

Φ (𝑊
𝑘,𝑌
)

∏
𝑛−𝑘+1

𝑖=1
∏
𝑘

𝑗=1


Star𝑆 (𝑠

𝑖+𝑗
)


) ,

(7)

where |Star𝑆| is the size of the star set and 𝑌 is the total
number of the words that appear in the protein “sequence
space” SP

𝑆
.
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2.4. Prediction Algorithm. There are two types of HPV
protein sequences: high-risk type and low-risk type. Let 𝑌 =

[𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
]
𝑇 denote the type labels of 𝑛 samples, where

𝑦
𝑖
= 𝑘 indicates the 𝑖th sample being risk type 𝑘, where

𝑘 = 1, 2 denotes two different risk types (𝑦
𝑖
= 1 indicates

the 𝑖th sample being high-risk type, and 𝑦
𝑖
= 2 indicates

the 𝑖th sample being low-risk type). Let 𝑥
𝑖𝑗
be the 𝑗th word

frequency in protein “sequence space” for the 𝑖th sample,
where 𝑗 = 1, 2, . . . , 𝑚; 𝑋 = (𝑥

𝑖𝑗
)
𝑛,𝑚

denotes all the statistical
information of “sequence space” for all samples,

𝑋 =

index1 index2 ⋅ ⋅ ⋅ index𝑚
𝑥
1

𝑥
2

.

.

.

𝑥
𝑛

[
[
[
[
[
[

[

𝑥
11

𝑥
12

⋅ ⋅ ⋅ 𝑥
1𝑚

𝑥
21

𝑥
22

⋅ ⋅ ⋅ 𝑥
2𝑛

.

.

.
.
.
. d

.

.

.

𝑥
𝑛1

𝑥
𝑛2

⋅ ⋅ ⋅ 𝑥
𝑛𝑚

]
]
]
]
]
]

]

, (8)

where 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
are 𝑛 samples and 𝑥

𝑖
= [𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑛
]

and 𝑥
𝑖
∈ 𝑅
𝑚. With help of the support vector machine

(SVM), the prediction problem of HPV types was formulated
as follows:

min
𝑤,𝑏,𝜉

𝐽 (𝑤, 𝑏, 𝜉) =
1

2
(𝑤
𝑇
𝑤) + 𝐶

𝑛

∑

𝑖=1

𝜉
𝑖

subject to 𝑦
𝑖
[𝑤
𝑇
𝜑 (𝑥
𝑖
) + 𝑏] ≥ 1 − 𝜉

𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝜉
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛,

(9)

where 𝑤 is defined as a Linear combination of the set of
nonlinear data transformations

𝑤 =

𝑛

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
𝜑 (𝑥
𝑖
) , (10)

𝑏 is a bias term, 𝐶 is a regularization metaparameter, and 𝜉
𝑖

denotes the training error for the 𝑖th sample. This optimiza-
tion problem derived in a dual space can be written as

max
𝛼

𝐽 (𝛼) = max
𝛼

𝑛

∑

𝑖=1

𝛼
𝑖

−
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝛼
𝑖
𝛼
𝑗
𝑦
𝑖
𝑦
𝑗
𝜑 (𝑥
𝑖
)
𝑇
𝜑 (𝑥
𝑗
)

subject to
𝑛

∑

𝑖−1

𝛼
𝑖
𝑦
𝑖
= 0, 𝑖 = 1, 2, . . . , 𝑛,

0 ≤ 𝛼
𝑖
≤ 𝐶, 𝑖 = 1, 2, . . . , 𝑛.

(11)

In this paper, we used the Gaussian radius basis function
kernel to calculate the 𝜑(𝑥

𝑖
)
𝑇
𝜑(𝑥
𝑗
) instead of calculating

either 𝜑(𝑥
𝑖
) or 𝜑(𝑥

𝑗
) explicitly. Then the optimal separating

problem was modeled as

𝑓 (𝑥) =

𝑛

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
𝐾(𝑥
𝑖
, 𝑥) + 𝑏. (12)

And the classifier takes the form

𝑦 (𝑥) = sign [𝑓 (𝑥)] . (13)

After training the model, a test sample 𝑥 ∈ 𝑅
𝑚 will be

assigned to a risk type according to the following decision
function:

𝑦 (𝑥) =
{

{

{

1, if 𝑓 (𝑥) > 0,

2, if 𝑓 (𝑥) ≤ 0.
(14)

When 𝑦(𝑥) is 1, it means that the test sample 𝑥 is the high-
risk type of HPV; otherwise, 𝑥 should be low-risk type.
Here, we selected the parameters for the sake of getting the
highest overall prediction as possible. A simple grid search
strategy based on 10-fold cross-validation for each datasetwas
performed to get the optimal values of 𝛼

𝑖
and 𝑏 for prediction

algorithm.

3. Results and Discussion

3.1. Evaluation Measures. Subsampling test, independent
dataset test, and jackknife test are three widely used cross-
validation methods to evaluate prediction’s capability. The
jackknife test always yields a unique outcome, which facil-
itates examining the quality of various predictors. Hence,
we chose jackknife test to evaluate the performance of the
proposed method and introduced the accuracy for each
class, overall accuracy, and𝐹1-score as standard performance
measures, which were defined as follows:

specificity (accuracy of high − risk type) = 𝑎

𝑎 + 𝑐
,

sensitivity (accuracy of low − risk type) = 𝑑

𝑏 + 𝑑
,

accuracy of totality = 𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
⋅ 100%,

𝐹1-score = 2 ⋅ 𝑎/ (𝑎 + 𝑏) ⋅ 𝑎/ (𝑎 + 𝑐)

(𝑎/ (𝑎 + 𝑏)) + (𝑎/ (𝑎 + 𝑐))
⋅ 100%,

=
2𝑎
2

2𝑎2 + 𝑎𝑐 + 𝑎𝑏
⋅ 100%,

(15)

where 𝑎 is the number of true positives, 𝑐 is the number
of false positives, 𝑑 is the number of true negatives, and 𝑏
is the number of false negatives. From their definition, it is
interesting to note that 𝐹1-score will be higher if 𝑎 is bigger.
That is to say 𝐹1-score will be better to reflect the efficiency
of HPV risk type prediction capacity.

3.2. Comparison of Early and Late Proteins’ Performances in
HPV Type Prediction. The HPV genome encodes a number
of early (E1, E2, E4, E5, and E6) and late (L1 and L2) proteins
[3, 5]. Several methods classified the high-risk and low-
risk HPVs using the information from protein sequences,
secondary structure, and pseudo amino acid composition
[23–28]. But most of them used E6, E7, or L1 proteins. In this
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Figure 1: Comparison of prediction accuracy of each class, overall accuracy, and 𝐹1-score of all the early and late proteins. The mutation
matrices in 𝑋-coordinate are BLOSUM 40, BLOSUM 45, BLOSUM 62, BLOSUM 80, BLOSUM 100, PAM 40, PAM 80, PAM 120, PAM 200,
and PAM 250.

study, we constructed seven protein datasets of E1, E2, E4,
E6, E7, L1, and L2 and compared their performance in HPV
type prediction.The proteins of E5 were not included because
their lengths are too small.The accuracy of each class, overall
accuracy, and 𝐹1-score of all the early and late proteins were
summarized in Figure 1.

From Figure 1, it is easy to observe that the accuracies
of low-risk type are higher than that of high-risk type. For
the low-risk type prediction experiment, E7 performs better
than other HPV proteins expect for mutation matrix p200.
But as for high-risk type prediction and all-type prediction
experiments E6 achieves the best performance among all the
HPV proteins according to the accuracies and 𝐹1-scores.
Some experiment studies have shown that E5, E6, and E7
proteins of high-risk HPV play an important role in disease
progression and cancer [14]. E5 protein enhances half-life
and activity of epidermal growth factor receptor (EGFR).
E6 and E7 proteins inactivate p53 and Rb functions [42].
The results also highlight that the sequences of E6 protein
are more suitable for HPV high-risk type prediction and E7
protein is more reliable for HPV low-risk type prediction in
the proposed model.

3.3. Comparison of Mutation Matrices in HPV Type Predic-
tion. The proposed word statistical model was constructed
based on protein “sequence space” that relies heavily on the
mutation matrix. In order to evaluate the influence of dif-
ferent mutation matrices, we adopted ten mutation matrices
including PAM 40, PAM 80, PAM 120, PAM 200, PAM 250,
BLOSUM 40, BLOSUM 45, BLOSUM 62, BLOSUM 80, and
BLOSUM 100. The accuracy of each class, overall accuracy,
and 𝐹1-score of the proposed prediction method based on
ten mutation matrices were represented in Figure 1.

Figure 1 largely confirms that the proposed prediction
method possesses different performances based on the dif-
ferent mutation matrices. The changes of high-risk type and
all-type prediction experiments are similar, but there is a bit
of difference in the low-risk type prediction experiments.
As for the BLOSUM mutation matrices, BLOSUM 45 and
BLOSUM 62 perform better in the prediction of high-risk
type of HPVs. For PAM mutation matrices, PAM 40 and
PAM 80 achieve the better performance in the high-risk type
prediction experiments. Judging from prediction accuracy,
it is easier to recognize that PAM 40 achieves the best
performance based on E6 protein among PAMand BLOSUM
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Table 2: Comparison of the real risk types (REAL) and the prediction results using the proposed approach.

Types Real Predicted Types Real Predicted Types Real Predicted Types Real Predicted
HPV 39 High High HPV 7 Low Low HPV 34 Low Low HPV 50 Low Low
HPV 72 High Low HPV 30 Low High HPV 44 Low Low HPV 5 Low Low
HPV 33 High High HPV 73 Low Low HPV 43 Low Low HPV 20 Low Low
HPV 51 High High HPV 6 Low Low HPV 32 Low Low HPV 23 Low Low
HPV 16 High High HPV 27 Low Low HPV 24 Low Low HPV 19 Low Low
HPV 56 High High HPV 13 Low Low HPV 8 Low Low HPV 47 Low Low
HPV 18 High High HPV 55 Low Low HPV 48 Low Low HPV 22 Low Low
HPV 59 High High HPV 2 Low Low HPV 12 Low Low HPV 25 Low Low
HPV 52 High High HPV 10 Low Low HPV 49 Low Low HPV 9 Low Low
HPV 35 High High HPV 42 Low Low HPV 15 Low Low HPV 36 Low Low
HPV 68 High High HPV 28 Low Low HPV 21 Low Low HPV 41 Low Low
HPV 58 High High HPV 40 Low Low HPV 4 Low Low HPV 63 Low Low
HPV 31 High High HPV 3 Low Low HPV 65 Low Low HPV 1 Low Low
HPV 66 High Low HPV 11 Low Low HPV 37 Low Low HPV 80 Low Low
HPV 45 High High HPV 29 Low Low HPV 38 Low Low HPV 77 Low Low
HPV 61 High High HPV 74 Low Low HPV 60 Low Low HPV 76 Low Low
HPV 67 High High HPV 53 Low Low HPV 17 Low Low HPV 75 Low Low

matrices except for PAM 80 with E4 protein. These results
maybe give us some suggestion on how to choose a suitable
mutation matrix for the prediction of high-risk type of HPVs
based on the different protein sequences.

3.4. HPV Classification. In this study, we extracted the
information using the word statistical model of E6 protein
“sequence space” that was constructed based on PAM 40
mutationmatrix. Leave-one-out cross-validation was applied
to determine the prediction performance for all experimental
results. HPV types were grouped into two classes, high-risk
and low-risk. Table 2 shows the comparison of the manually
tagged answer and the results from the proposed prediction
approach.

Table 2 shows that the proposed prediction method
achieves better performance, in which the prediction results
of 65 HPV types are consistent with their real risk types.
HPV 66 and HPV 72 are high-risk types, but they are
predicted as low-risk type, and HPV 30 is low-risk type, but
predicted as high-risk type using the proposed prediction
method. In order to highlight the prediction differences, we
further compared our results with Kim’s results [13]. As for
Kim’s prediction, HPV 72 was predicted as possible high-
risk type, but it was predicted as “low-risk type” in the
proposed method; HPV 56 was predicted as possible high-
risk type, while we predicted it as high-risk type; HPV 53
and HPV 73 were predicted as possible high-risk types, but
they are low-risk types in our results. Phylogenetic analysis
showed that HPV 30was grouped closely with the established
carcinogenic type HPV 56, which indicates that HPV 30 is
more likely high-risk type. From the comparison, it is easy to
note that the results obtained with the proposed method are
more consistent with the real risk types.

To further evaluate the performance of the proposed
prediction method, we computed the overall accuracy and
𝐹1-score and compared them with the published results in
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Figure 2: Comparison of overall accuracy and 𝐹1-score of all the
evaluated prediction methods for HPV high-risk viral types.

Figure 2. The methods evaluated here are as follows: SVM
using Mismatch kernels (Mismatch) that have been reported
in Joung et al. [24], SVMwith Linear kernel method (Linear)
[13], SVM classifier with the Gap-spectrum kernel (Gap)
[7], BLAST predictions with a slight modification of the 𝑘-
nearest neighbor method [13], Ensemble SVM (Ensemble)
based on protein secondary structures [13], and two text-
based predictionmethods AdaCost [26] and nave Bayes [26].

The proposed approach achieved 95.59% accuracy and
90.91% 𝐹1-score, while the Ensemble SVMs obtained 94.12%
accuracy and 88.89% 𝐹1-score, and SVMwithMismatch ker-
nel achieved 92.70% accuracy and 85.70%𝐹1-score, and SVM
using Linear kernel with 90.28% accuracy and 83.72% 𝐹1-
score and BLAST with 91.18% accuracy and 88.24% 𝐹1-score.
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Table 3: Prediction results of the HPVs with unknown types using the proposed prediction methods and from the available methods.

Types Prediction methods
Mismatch [24] Linear [13] Gap [7] Genetic [23] PseAAC [27] Ensemble [13] This paper

HPV 26 Low Low High Low High High High
HPV 54 Low Low Low Low Low Low Low
HPV 57 Low Low Low Low Low Low Low
HPV 70 High High High Low Low High High

As for text-based prediction method, AdaCost [26] achieved
better performance with 93.05% accuracy and 84.490 % 𝐹1-
score, andNaive Bayes [26] lags behind with 81.94% accuracy
and 63.64% 𝐹1-score. According to the prediction accuracy
and 𝐹1-score, the proposed prediction method achieved
the best performance among all the evaluated prediction
methods; the next best prediction approach is Ensemble
SVMs, and the others lag behind. It is worth mentioning
that the proposed approach is based on protein sequences as
well as Mismatch, Linear, and Gap, while Ensemble uses the
information from the predicted protein secondary structures.
We also noted that text-based prediction does not provide
superior results compared with other prediction methods.
Although text-based prediction methods have an advantage
in having explicit key words in the document, but they rely on
the evidence obtained from the literature. When there is no
available document for HPVs with unknown risk type, it is
impossible to predict them. This comparison also indicates
that the proposed word statistical model based on protein
“sequence space” is more effective to classify risk types of
human papillomaviruses.

3.5. Prediction for UnknownHPV Types. Themost important
task of this paper is to predict high-risk types of new HPV.
Here, we downloaded the E6 protein sequences of HPVs with
unknown types from the LANL database and used them to
further evaluate the performance of the proposed approach.
Table 3 shows the prediction results of all the HPVs with
unknown types.

From Table 3, HPV 26 and HPV 70 were predicted
as high-risk types and HPV 54 and HPV 57 as low-risk
types using the proposed method. In order to compare with
the existing methods, we also represented the prediction
results of available approaches in Table 3. From the HPV
classification, we knew that the proposed prediction method
achieved the best performance, and it is followed byEnsemble
SVMs. From Table 3, it is easy to note that the proposed
method and Ensemble SVMs achieve the same results. As for
the HPV 54 and HPV 57, all the methods predicted them as
low-risk types. For HPV 26, the proposed method, PseAAC
[27], Ensemble [13], and Gap [7] predicted it as high-risk
type, while Mismatch [24], Linear [13], and Genetic [23]
predicted it as low-risk type. According to the reliabilities
of the prediction approaches, HPV 26 should be high-risk
type. As for HPV 70, all the prediction methods predicted
it as high-risk type except for Genetic [23] and PseAAC
[27]. These results show that the proposed method can
provide a simple but efficient guideline for the investigation
of potentially high-risk HPVs.

4. Conclusion

Genital human papillomaviruses have a strong relationship
with cervical cancer, especially high-risk viral types of HPVs.
Therefore, discrimination of HPV risk type plays an impor-
tant role in the diagnosis and remedy of cervical cancer.
This paper proposed a computational scheme to predict
high-risk types of HPVs with word statistical model of
protein “sequence space.” With help of mutation matrices,
we first constructed a sequence space of the given protein
sequences. Instead of only using sequence-based or structure-
based information of protein sequences, we extracted the
information of HPV from the protein “sequence space” with
word statisticalmodel to predict high-risk types ofHPVs.The
proposedmethodwas tested on 68 samples with knownHPV
types and 4 samples with unknown HPV types. The results
show that the proposedmethod achieved better performance
in comparison to the previous methods.

The main goal of our research is to investigate a new
prediction method based on protein “sequence space.” The
first contribution can be seen from comparison of early
and late proteins’ performances in HPV type prediction;
we found that the “sequence space” of E6 protein is more
suitable for HPV high-risk type prediction, while that of
E7 protein is more reliable protein for HPV low-risk type
prediction. The second contribution can be indicated from
comparison of mutation matrices in HPV type prediction;
we noticed that PAM 40 achieves the best performance with
the sequences of E6 protein among PAM and BLOSUM
matrices except for PAM 80 with E4 protein. The third
contribution can be deduced from HPV classification and
prediction for unknown HPV types; we found that the
proposed prediction method achieved the best performance
among all the evaluated prediction methods, with 95.59%
accuracy and 90.91% 𝐹1-score, which can be contributed to
the introduction of the protein “sequence space.” Thus, this
understanding can be used to guide development of more
powerful method for prediction of high-risk types of HPVs.
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