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Abstract

Background—Mathematical models can help aid public health responses to Chagas disease. 

Models are typically developed to fulfill a particular need, and comparing outputs from different 

models addressing the same question can help identify the strengths and weaknesses of the models 

in answering particular questions, such as those for achieving the 2020 goals for Chagas disease.

Methods—Using two separately developed models (PHICOR/CIDMA model and Princeton 

model), we simulated dynamics for domestic transmission of Trypanosoma cruzi (T. cruzi). We 

compared how well the models targeted the last 9 years and last 19 years of the 1968–1998 

historical seroprevalence data from Venezuela.

Results—Both models were able to generate the T. cruzi seroprevalence for the next time period 

within reason to the historical data. The PHICOR/CIDMA model estimates of the total population 

seroprevalence more closely followed the trends seen in the historic data, while the Princeton 

model estimates of the age-specific seroprevalence more closely followed historic trends when 

simulating over 9 years. Additionally, results from both models overestimated T. cruzi 
seroprevalence among younger age groups, while underestimating the seroprevalence of T. cruzi in 

older age groups.

Conclusion—The PHICOR/CIDMA and Princeton models differ in level of detail and included 

features, yet both were able to generate the historical changes in T. cruzi seroprevalence in 

Venezuela over 9 and 19-year time periods. Our model comparison has demonstrated that different 

model structures can be useful in evaluating disease transmission dynamics and intervention 

strategies.
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1. Introduction

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is one of the world's 

most important neglected tropical diseases (NTDs). It infects approximately 6–7 million 

people worldwide (World Health Organization, 2016) and results in an estimated $627.46 

million in healthcare costs and $7.19 billion in societal costs annually (Lee et al., 2013). 

Given its substantial burden Chagas is one of the ten NTDs targeted for control or 

elimination by 2020, with one of the London Declaration's stated goals for being 100% 

certified interruption of domestic transmission in Latin America (Tarleton et al., 2014). 

Historically, control of Chagas disease has focused on vector control. This can be achieved 

directly by vector reduction using insecticides or indirectly through housing modifications.

Mathematical models are simplifications of real life that are developed to address a 

particular need or question (Garnett et al., 2011). Model development must balance the 

actual complexity of biological systems with the simplifying assumptions that ensure 

computational tractability (Lee, 2008). Additionally, models are not a one size fits all. The 

applicability of different models to answer specific research and public health questions lies 

in appropriateness and flexibilities of specific methodologies employed. Thus, assessing and 

comparing mathematical models and determining if they capture relevant features of reality 

for a particular application is fundamental to optimal model design (St-Pierre, 2016). While 

model assessments and comparisons have been conducted in other fields/pathogens (notably 

human immunodeficiency virus (Hontelez et al., 2013; Eaton et al., 2012)), little has been 

done in the realm of NTDs (Hollingsworth et al., 2015).

In this study, we parameterize two differently structured, independently developed, Chagas 

disease transmission models to evaluate the same research question using the same input/

baseline data. We compare model results, and discuss possible causes of differences. 

Comparing outputs from different models addressing the same question can help identify the 

strengths and weaknesses of the models to answer particular questions. For example, one 

model may be best at answering policy questions related to disease prevalence and control in 

humans, while another may be better suited to answer questions about ecology and vector 

control. Model comparison can also help us gain understanding on how data informs 

parameter estimation and impacts output. Understanding model strengths and weaknesses 

can aid various decision makers in knowing which model is best apt to answer questions and 

in interrupting model results, which can be helpful in achieving the 2020 goals.

2. Methods

We independently developed two T. cruzi transmission models (described below). The 

comparison consisted of simulating the transmission of T. cruzi in the domestic setting in the 

two models and comparing the resulting seroprevalence between the models and to the 
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historical seroprevalence data. Table 1 shows key input parameter values and sources for 

both models, while Fig. 1 provides an outline of each model.

2.1. PHICOR/CIDMA model

This model was developed by a team at Johns Hopkins Bloomberg School of Public Health 

and the Center for Infectious Disease Modeling and Analysis (CIDMA) at Yale School of 

Public Health. It was originally developed to answer questions about vector control on T. 
cruzi transmission (i.e., measuring new acute Chagas cases) and the role of non-human hosts 

on a larger scale than previous models, and has three general age categories to explore 

potential target populations for interventions. Developed in Python (Python Software 

Foundation, Wilmington, DE), this compartmental simulation model represented vector and 

host populations involved in T. cruzi transmission and included triatomines, human hosts, 

and non-human hosts (i.e., dogs) and vector-borne transmission among these populations in 

the domestic habitat (Fig. 1). The model ran in monthly time steps (i.e., t = 1 month or 30 

days), chosen due to the long disease course of Chagas, and simulated a 41-year period. 

During each time step, epidemiological and clinical rates defined transitions between model 

compartments, stratified by the different vector and host populations. Vectoral transmission 

in this model was governed by the force of infection.

Triatomine bugs could be susceptible (not infected with T. cruzi and able to become 

infected) or infectious (infected with T. cruzi and able to transmit to vertebrae hosts upon 

biting). Upon biting an infectious host (human and viable non-human), a susceptible bug had 

probabilities of becoming infected with T. cruzi, depending on the disease state of the host. 

The number of triatomine bugs (NV = 475,972) in the model was determined from the 

carrying capacity, or the number of bugs sustainable in the habitat, which was assumed to be 

50 bugs per person (consistent with previous work (Peterson et al., 2015)). The following 

formulas describe the susceptible and infectious states for triatomine bugs:

where bv is the number of bug births, dv is the triatomine death rate, and γV is the force of 

infection. The number of bug births is determined by the birth rate, carrying capacity, and 

total number of triatomines by the following formula:

The following formula determine the force of infection (ϒv):
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where β represents the triatomine biting rate, Θ is the probability of transmission (or 

infectivity), NH, and ND the number in the human and dog populations, respectively; pH and 

pD, and describe the vector feeding preferences for humans and dogs, respectively.

The human population (NH) consisted of 10,000 persons at the start of the simulation and 

was comprised of three age groups, i: (0–19 years old, 20–39 years old, and 40 years and 

older following historical age-specific demographic data from the World Population 

Prospects (United Nations, 2015)). The human population is divided into four states: 

susceptible (SH, not infected with T. cruzi and able to become infected), acute stage Chagas 

disease (AH, infected with T. cruzi and able to transmit, exhibit mild and nonspecific 

symptoms, and person has microscopically detectable parasitemia), indeterminate stage 

Chagas disease (IH, asymptomatically infected with T. cruzi and able to transmit), and 

symptomatic chronic stage Chagas disease (CH, infected with T. cruzi, able to transmit, and 

show symptoms of chronic disease such as cardiomyopathy and/or megaviscera). Thus, a 

person in any of the three Chagas disease states are considered positive. Upon the bite of an 

infectious triatomine, a susceptible human had a probability of becoming infected with T. 
cruzi, based on the force of infection (γH), and once infectious, persons were remained 

infectious in absence of treatment (i.e., once seropositive, always seropositive, with no 

decay). Those in the acute and symptomatic chronic states of disease had probabilities of 

Chagas-related mortalities. These states and the transmission between them are described by 

the following four equations:

where bH is the number of people entering each age group (i.e., number of births or number 

of persons aging (United Nations, 2015)), dH is the human death rate from all causes, μha is 

the probability of Chagas related mortality in the acute phase of disease, and μHC is the 
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probability of Chagas related mortality in the chronic phase. Two variables, πh and λH, 

describe the rate of movement from the acute phase to the indeterminate phase and the 

indeterminate phase to the chronic phase, respectively.

The force of infection in humans from vectors, denoted ϒH, is defined by the following 

equation:

Dogs serve as reservoir hosts for T. cruzi and could be either susceptible (SD) or infectious 

(ID), with a susceptible dog becoming infected upon the bite of an infected vector based on 

the force of infection. Dogs could transmit T. cruzi to susceptible triatomines (i.e., 

triatomines could become infected upon biting an infected dog). The number of dogs in the 

model (ND =3930) was determined from the literature based on the ratio of dogs to humans 

(Table 1). Equations dictating the movement of dogs between states and their force of 

infection are as follows:

Here, bD and dD are birth and death rates of dogs, respectively. ε is the probability of T. 
cruzi transmission to dogs given the bite of an infected vector. As already described, β is the 

vector biting rate, and pH and pD, are vector preferences for humans and dogs, respectively.

Chagas prevention and control interventions are modeled as a reduction in contact between 

the triatomine and host populations, using the following formula to attenuate the force of 

infection:

where rID is the reduction in intradomiciliary transmission to domestic vectors due to control 

measures.
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The PHICOR/CIMDA model was fitted to account for uncertainty in empirical data. Initial 

conditions assumed the values in Table 1, for fitted parameters, we started with the reported 

value and then allowed the calibration method to search in a range around these values. The 

model calibration used two methods: 1) a genetic algorithm that searched and identified 

combinations of parameter values within our search space, mean squared error measured 

goodness of fit of these sets compared to the published range and 2) a search for sets of 

parameter values that generated seroprevalence values within 0.5% of the published range to 

reflect the uncertainty around the reported seroprevalence and model's input parameter 

values. Table 1 lists the ranges for these parameters. Results are reported as the average 

across all the simulated years runs during a given timer period, with the range representing 

the minimum and maximum average over the time period across all simulation runs.

2.2. Princeton model

This model was developed in R (R Foundation for Statistical Computing, Vienna, Austria), 

by Dobson and Peterson at Princeton University (Fig. 1). It was originally developed to 

examine the dynamics of Chagas disease in an age-structured population, to look at how 

age-prevalence patterns of infection would change in response to different interventions. The 

model is an age-structured differential equation model that runs in 1 week time steps. Since 

the duration of the acute phase of Chagas disease is a matter of weeks, while the chronic 

phase is a matter of years, we selected one week time steps to capture the dynamics in both 

phases.

In this model, the human population (N) is divided into 6 ten-year age groups (i), each of 

which contains uninfected hosts, infected individuals in an acute phase, Ia, and a chronic 

phase, Ic. The uninfected human population in each age group i, is equal to Ni – (Iai +Ici). 

The population grows slowly with the birth rate, w, equal to two times the mortality rate, d. 

Individuals move from the acute phase into the chronic phase at rate α. All Chagas phases 

are considered positive. A maturation rate, m (=1/10), moves individuals into sequential age 

groups. Infected individuals in the chronic stage have an increased mortality rate, Cm. An 

age-dependent exposure term, Ba, accounts for the accumulation of T. cruzi infection in each 

age group. This determines the rates at which vectors are distributed across the host 

population and the rate at which humans of different ages acquire infection in the model.

The triatomine population is divided into uninfected bugs, B, exposed and incubating, X, 

and infected and infectious, V. The T. cruzi incubation period within the bugs is represented 

by inc. All bugs have a birthrate, r, and a death rate, μ. We assume a triatomine-human 

contact rate of β, with the transmission probability upon contact from humans to bugs being 

different between infection stages with ha and hc, representing the transmission probabilities 

from humans in the acute and chronic phases, respectively. The probability of transmission 

from bugs to humans is represented by hb. Vector control interventions such as insecticide 

spraying or housing improvements are represented throughout the model by the terms HII 
and HDI. These terms represent the proportion of houses infested (HII) and the number of 

bugs per total houses examined (HDI; from the “House Infestation Index” and “House 

Density Index,” (Ache and Matos, 2001)). We use a density dependence parameter, del, 
which determines bug abundance relative to humans, and is calculated by:
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Vector control interventions are represented elsewhere in the model with two additional 

terms HIIR, and HDIR, which represent the slopes of the regression of HII and HDI over 

time.

The full age-structured model can be described by the following set of equations:

Human hosts

Triatomine dynamics

Intervention
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Initial conditions were set up for each ten year run using the observed age-prevalence 

relationships and estimates of average bug density and proportion of houses treated. 

Parameter variability is included in the model as an array of 100 random values within the 

95% confidence intervals for each parameter generated with the function rtruncnorm from 

the package “truncnorm” (Trautmann et al., 2014). This package uses least squares to 

measure fit. For parameters obtained from experimental results, (i.e., triatomine mortality), 

the range of values observed in the given experiment were used. Values from this array were 

then selected for each parameter for each year of 100 runs of the model. Results are 

presented as the average and 95% confidence interval, with the confidence interval 

calculated from the mean and standard deviation of the simulation runs.

2.3. Differences between models

There are a few key differences between the PHICOR/CIDMA and Princeton models. They 

differ in the number of age groups included and how infection may vary by age (i.e., the 

Princeton model accounts for the rate at which humans of different ages acquire infection). 

While both models include a chronic state, only the PHICOR/CIDMA model differentiates 

between the indeterminate and determinate chronic Chagas disease states. Likewise, Chagas 

mortality representations differed. The host species in the models differ, which impacts 

transmission dynamics. Intervention representations also where accounted for differently in 

both models. The PHICOR/CIDMA model simulates a change in the force of infection, 

while the Princeton model simulates changes in bug abundance. These differences require 

data to calibrate.

2.4. Data sources

Both models utilized age-structured T. cruzi seroprevalence data from the national Chagas 

Disease Control Programme (CDCP) for Venezuela as reported in Ache and Matos (Ache 

and Matos, 2001). These data were originally collected by the Venezuelan Ministry of 

Health between 1958 and 1998 in regions of Venezuela considered to be at high-risk for 

Chagas disease. This historic data is reported in six 10-year age groups. The PHICOR/

CIMDA model collapsed two sequential age groups so there where three groups total, while 

the Princeton model represent the same six groups. Due to Chagas' long disease course, the 

compartments of both models would tend to be at equilibrium in the absence of any 

intervention. Entomological interventions, including insecticide spraying and improvements 

of over 400,000 houses, were carried out during the same time. These interventions resulted 

in a drastic reduction in T. cruzi seroprevalence in Venezuela. However, control has slowed 

down since the turn of the century and there are reports of increases in T. cruzi prevalence in 

humans (Anez et al., 2004; Anez et al., 2011; Anez et al., 2016).

Each model accounted for the ongoing Chagas disease intervention and control programs in 

Venezuela over time differently. The PHICOR/CIDMA Model used data on the change in 

the force of infection (FOI) over time for the same Venezuelan dataset, as reported in 
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Feliciangeli et. al (Feliciangeli et al., 2003), and determined the reduction in the FOI for 

each time interval. Yearly estimates were aggregated and used as proxies in place of specific 

historical interventions. The Princeton Model used both age-specific force of infection 

(calculated from the data for each successive ten year time interval) and changes in the 

house infestation indexes and house density indexes to estimate the change (i.e., slope 

calculated by regression in a linear model) in the number of bugs per house and in infested 

houses overtime (Fig. 2).

2.5. Model comparison scenarios

We used the age-stratified seroprevalence data from Venezuela over the 41-year period of 

1958–1998 (Ache and Matos, 2001) split into 4 time periods (historic data in Tables 2 and 

3). In the first scenario, targeting the last time point, we independently calibrated our models 

to the first three time periods (first 32 years, 1958–1989) and compared observables for the 

last time period (last 9 years, 1990–1998). In the second scenario, targeting the last two time 

points, we calibrated our models to the first two time periods (first 21 years, 1958–1978) and 

compared observables for the last two time periods (last 19 years, 1980–1998). The 

PHICOR/CIDMA model allowed for the calibration of any number of time periods and 

simulation of the full 41 years of historical data, while the Princeton model used the 

seroprevalence of the time period prior to the simulated time period as a starting point to 

generate seroprevalences over the next 9 or 19 years. Observables of interest were age-

stratified T. cruzi seroprevalence in humans and T. cruzi seroprevalence in triatomine bugs.

3. Results

3.1. PHICOR/CIDMA model

Table 2 shows the average simulated T. cruzi seroprevalence among humans for each age 

group for each time period and the range across the years for each time period. While the 

model generated seroprevalences were within the reported 95% confidence intervals of the 

observed prevalences, the average T. cruzi seroprevalence among 0–19 year olds was 

consistently higher than the historical data for the last three time periods (Table 2). 

Additionally, the modeled average seroprevalence for 1990–1998 among those 40 years and 

older is lower than the historical data (by a relative 36%, absolute difference of 13.4% when 

targeting the last two time points). These trends are most likely due to the lack of data to 

adequately represent the impact of Venezuela's historical Chagas interventions.

When calibrating to two time periods and targeting the last two, the PHICOR/CIDMA 

model generated consistent T. cruzi seroprevalence among the age groups. The resulting 

average seroprevalence between 1980 and 1989 was consistent between the calibrated 

scenario and the targeted scenario (absolute difference of 0.6% to 1.4% across the age 

groups). The generated seroprevalence for the last time period was consistent with the three 

calibration points, with an absolute difference of 0.3–1.3 across the age groups (Table 2).

Fig. 3 shows the simulated T. cruzi seroprevalence in humans compared to the historical 

data. The PHICOR/CIDMA model generated seroprevalences were statistically within the 

observed values for each of the scenarios for all time periods, except for 1969–1978. This 

Bartsch et al. Page 9

Epidemics. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



may be due to the sharp decline in infestation following insecticide spraying interventions 

that may not be adequately captured by our modeled change in FOI. When targeting the last 

time period, the PHICOR/CIDMA model's generated seroprevalence was a relative 7.1% 

lower than the historical data (absolute difference of –0.65%); when targeting the last two 

time periods, the resulting seroprevalence was a relative 2.1% and 14.1% lower (absolute 

difference of −0.28% and −1.30%) than the obeserved historical data for 1980–1989 and 

1990–1998, respectively. Fig. 2b shows the change in T. cruzi seroprevalence over the entire 

simulation for each of the three age groups; the circle represents the simulated average over 

the time period plotted at the middle of the time period (thus the monthly prevalence many 

exactly pass through the average) while the squares show the historical data. Compared to 

the observed prevalences, all model generated values were within an absolute difference of 

−13.4% (40 years and older for 1990–1998) to 1.9% (0–19 year olds for 1980–1989).

3.2. Princeton model

This model produced seroprevalence curves that matched the directional trends for each age 

group reported in the historical data in both scenarios (Fig. 4, Table 3), with the 

seroprevalence values being closer to the observed values when targeting the last time point 

(i.e., 9 year simulation) than when targeting the last two time points (i.e., 19 year simulation 

values). When targeting the last time period (1990–1998), the absolute difference between 

the model generated and the observed seroprevalences ranged from 0.23% to 2.23% across 

age groups, with all model generated values higher than those in the data. The model 

generated seroprevalence values were closest to the historic values for two the youngest age 

classes, with an absolute difference of 0.23% and 0.10% for the 0–9 year and 10–19 year 

age groups, respectively. Compared to the historic data, the generated seroprevalences in the 

older age groups where higher, with the absolute difference being 2.31%, 2.09% and 2.23% 

for the 30–39 year, 40–49 year and 50+ year age groups, respectively. The model generated 

total population seroprevalence was 2.2% higher than the observed values (11.4% generated 

vs. 9.2% historical data).

When targeting the last two time periods (1980–1998), the simulation values for each age 

class were similar to observed values for 1990–1998 than compared to the 1980–1989 

period, but the overall seroprevalence values were more similar in the short term (for 1980–

1989). Absolute differences between the model generated seroprevalences and the historical 

data ranged from −4.99% to 4.44% for 1990–98 and −3.40% to 2.19% for 1980–89, while 

the absolute difference for total population seroprevalence was 0.1% and 1.9% for 1980–

1989 and 1990–1998, respectively. The average modeled seroprevalence in the youngest age 

group (0–9 years) where consistent with the historic data throughout the simulation (Fig. 3), 

with the difference between the model and the historical data being 1.83% and 0.8% for 

1980–1989 and 1990–1998, respectively. The model underestimated the average 

seroprevalence in the oldest age group by an absolute difference of −4.99% for 1980–1989 

and −3.18% for 1990–1998.

3.3. Comparison

Fig. 5 shows the model generated T. cruzi seroprevalence values from both models in 

addition to the historical Venezuelan data. Overall, the PHICOR/CIDMA model more 
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closely estimated the total population seroprevalence for 1990–1998 in both simulations 

(Fig. 5a), while the Princeton model estimated age-specific seroprevalence that more closely 

aligned with the historic values reported when targeting the last time period. This is possibly 

due to the disproportional sampling of the historic data among the younger age groups (60% 

of total population sample are 0–19 years old). The PHICOR/CIMDA model generated 

seroprevalence for this younger age group are with (absolute difference 0.6%) compared to 

the observed value, thus the greater difference in the older age group (13.4% absolute 

difference compared to the observed data) is minimized. While the narrower age-groups of 

the Princeton model allowed it to generate age-specific seroprevalences closer to the historic 

data. In general, both models overestimated T. cruzi seroprevalence among younger age 

groups, while underestimating the T. cruzi seroprevalence in older age groups. Additionally, 

model generated values tended to be more similar to the reported historic data when 

calibrating to three time periods and estimating one. However, simulated seroprevalence for 

the last two time periods were still in line with the historical data.

Compared to the historical data in Venezuela, the PHICOR/CIDMA model estimated a 

lower total population seroprevalence of T. cruzi (absolute −0.3% to −1.3% difference) 

whereas the Princeton model generated a higher total seroprevalence (absolute 0.1%–2.2% 

difference), as shown in Fig. 5a. When targeting only the last time period, the range of 

absolute difference across the age groups for the Princeton model was less than that of the 

PHICOR/CIDMA model (Princeton model: absolute 0.23%–2.23% difference, PHICOR/

CIDMA model: absolute −12.1% to 0.6% difference). Compared to the historic data, when 

targeting the last two time periods, the PHICOR/CIDMA model generated T. cruzi 
seroprevalence was closer in the younger age groups, while the Princeton model generated 

seroprevalence was closer among older age groups. Between the models, the PHICOR/

CIDMA model generated seroprevalence values for the combined age groups that fell 

between the averages produced by the Princeton model for all age groups except 40 years 

and older.

Even without data on the seroprevalence of T. cruzi in triatomine bugs, both models 

estimated similar T. cruzi seroprevalence values for the bugs across the two scenarios (Fig. 

5c–d). The largest difference between models (13.6% vs. 9.6%) occurred for the 1980–1989 

time period in the 19-year simulation (1980–1998).

4. Discussion

The ability of a model to generate historic data depends on the situation that is simulated 

(e.g., stable, rapid declines, or near elimination). Here, we modeled a scenario in which 

seroprevalence declined steadily for most of a 41 year period, in the presence of an 

intervention that waned toward the end of the time period. Our two independently developed 

models produced similar model genearated T. cruzi transmission in humans using different 

methodologies. Both models estimated the seroprevalence of T. cruzi in Venezuela over the 

evaluated time periods within an absolute difference ranging from −13.4% to 5.5% from the 

historical values across all age groups and scenarios.
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Although they evaluate intervention effectiveness in different ways, both models 

overestimated the impact of the intervention on Chagas disease seroprevalence among older 

age groups (i.e., resulted in a lower estimated T. cruzi seroprevalence) and underestimated 

the impact among lower age groups (i.e., resulted in a higher estimated T. cruzi 
seroprevalence). These age groups are likely to be the most- and least-impacted by vector 

control interventions; the youngest age class theoretically contains the highest proportion of 

uninfected individuals, and thus would be the most affected, while the oldest age group 

would be the least affected by interventions, as this age group contains the lowest proportion 

of uninfected individuals and the most chronically infected individuals. As interventions 

such as those used for Chagas disease (e.g., housing improvements and indoor residual 

spraying) do not target a specific age group (vs. a vaccine for example), the impacts of 

interventions in many Chagas models tend to be consistent across all age groups or 

simulated for the entire population. Hence, it is not surprising that the two most extreme 

outcomes are the least precisely estimated. This illustrates the importance of accuracy when 

reporting information on interventions and their efficacies, as these can greatly impact model 

estimates that could inform policy decisions. It also emphasizes the challenge of fine-tuning 

models to reflect the differences in the impact of intervention in an age-dependent manner. 

This is critical for Chagas disease in particular, as the Pan American Health Organization 

uses T. cruzi seroprevalence of under 1% in children under five as a base indicator of success 

in vector control interventions (Salvatella et al., 2014).

While the historical data for Venezuela we used were the most comprehensive and long-term 

data on seroprevalence available, these data do have limitations for modeling purposes. First, 

data were accumulated over the time periods (condensed from monthly and annual 

information) and presented by Ache and Matos as averages (Ache and Matos, 2001). The 

starting and ending seroprevalence for each time period are not known, nor is the frequency 

of the data collection, which prevents us from knowing the true shape of the seroprevalence 

curves for each time period. Second, although it is well known that vector-borne T. cruzi 
infection in humans (i.e., Chagas disease) is consistently underreported by as much as 85% 

(Abad-Franch et al., 2014), it is likely that an increase in underreporting may have occurred 

in the last time period modeled (1990–1998), as only 15–18 municipalities per year were 

surveyed in that time period, down from 110 to 143 municipalities surveyed per year in the 

thirty years prior. Third, several details on Chagas disease interventions and their 

measureable impact on T. cruzi seroprevalence were not readily available or reported. For 

example, we do not know the number of houses that were treated, the total population size of 

the areas surveyed, intervention efficacy, or if all reported prevalence values were from 

individuals residing in the municipalities where entomological surveillance or interventions 

took place. More robust data to feed into and calibrate the models may lead to better 

estimates.

Historically, models for Chagas disease are underutilized compared to other infectious 

diseases, but hold promise (Nouvellet et al., 2015). A few modeling approaches (e.g., 

population dynamics, spatial models, force of infection, compartment models, etc.) have 

been used to represent Chagas disease and transmission in the past (Nouvellet et al., 2015). 

These models tend to be complex and evaluate biological or epidemiological systems. Our 

models were developed to answer more policy related questions and to focus more on 
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relevant outcomes rather than to be complex and to evaluate, explore, and understand the 

dynamic relationships of T. cruzi transmission. It is important to highlight the benefit of 

including different features in Chagas disease transmission models. While the PHICOR/

CIDMA and Princeton models differ in level of detail and included features (e.g., number of 

age groups included, separate indeterminate and determinate chronic Chagas disease states, 

other vertebrae host compartments, intervention representations, etc.), both were able to 

estimate the historical seroprevalence of T. cruzi in Venezuela with several similar trends in 

their results. This demonstrates that the level of detail necessary to include in models is 

dependent on the question being asked. For example, the current scenarios focused on 

targeting T. cruzi seroprevalence in the human population from nation-wide data 

accumulated over 10 year periods, thus the additional detail of an animal component may 

not be necessary. However, in the evaluation of T. cruzi transmission on a smaller scale (one 

house or one village) an intervention that would impact triatomine feeding sources or T. 
cruzi seroprevalence in animals, this component would be necessary to adequately answer 

the question at hand. These details can be important for answering different questions for 

achieving the 2020 goals for Chagas disease.

It should be noted that both models are simplifications and neither accounted for age-related 

general morality nor the potential for the clustering of exposure. However, the Venezuelan 

population age structure and life expectancy was relatively consistent over the modeled time 

period (United Nations, 2015; The World Bank, 2016), therefore both models made a 

simplifying assumption not to include age-related mortality. Neither model accounts for the 

potential clustering of exposure due to data limitations. Serological data will overlook 

heterogeneity of the population and the risk of Chagas disease will not be the same for each 

person. While the risk will not be identical, we modeled a limited area so there may not a be 

a substantial difference in terms of risk across the modeled population. Additionally, neither 

model took into account the accuracy of serological testing for Chagas disease and how it 

may change over time. However, given the point of this exercise was to estimate reported 

seroprevalence, this does not impact the current analysis.

5. Conclusions

While the PHICOR/CIDMA and Princeton models differ in level of detail and included 

features, both were able to target the historical seroprevalence of T. cruzi in Venezuela 

across a 41-year time period. Differing methods and level of detail between the models 

allow for different interventions and questions to be investigated, but both can be used to 

estimate T. cruzi seroprevalence and evaluate general intervention control approaches.
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Fig. 1. 
Model outline for a) the PHICOR/CIDMA model, and b) the Princeton model (i denotes 

different age groups in both models).
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Fig. 2. 
Entomological surveillance data for triatomine bugs and triatomine-infested houses from 

Ache 2001 for the time period of 1958–1998. The blue line indicates the percentage of 

houses infested with triatomine bugs; we assume the proportion of humans at risk of Chagas 

disease varies directly with this index. The green line is the average number of triatomine 

bugs per house, including those that are not infested. The red line is the average number of 

triatomine bugs per infested house, calculated from the two prior indices. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of 

this article.)
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Fig. 3. 
Simulated seroprevalence from the PHICOR/CIDMA model a) T. cruzi seroprevalence in 

the total population over the four time periods, and b) age-stratified seroprevalence over time 

with the average simulated seroprevalence compared to the historical seroprevalence when 

targeting the last two time periods.
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Fig. 4. 
Simulated seroprevalence from the Princeton model for each age group a) T.cruzi 
seroprevalence in the total population over the four time periods, and b) age-stratified 

seroprevalence over time with the average simulated seroprevalence compared to the 

historical seroprevalence when targeting the last two time periods.
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Fig. 5. 
Comparison of models with historical data a) the average total population seroprevalence 

when targeting the last time period, b) the average total population seroprevalence when 

targeting the last two time periods, c) simulated T. cruzi seroprevalence among triatomines 

when targeting the last time period, and d) simulated T. cruzi seroprevalence among 

triatomines when targeting the last two time periods.
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Table 2

Average (range) simulated T. cruzi seroprevalence (%) for each time period using the PHICOR/CIDMA 

Model compared to historical Venezuelan data.

Time Periods (Years)

1958–1968 1969–1979 1980–1989 1990–1998

Historical Dataa

Ages 0–19 years 26.3 (18.3–29.8) 6.0 (3.4–11.0) 1.7 (0.9–2.6) 1.1 (0.42–2.0)

Ages 20–39 years 55.3 (46.6–64.7) 32.3 (26.9–36.5) 18.3 (11.5–27.6) 10.4 (5.5–16.8)

Ages 40 years and older 65.5 (62.2–68.5) 44.4 (38.2–52.7) 44.3 (36.2–48.9) 37.1 (27.2–43.9)

Targeting the Last Time Point

Calibrated Calibrated Calibrated Generated

Ages 0–19 years 25.4 (15.9–39.5) 10.8 (6.3–15.8) 4.2 (2.6–6.3) 1.7 (1.1–2.5)

Ages 20–39 years 55.5 (42.3–68.8) 32.2 (21.9–42.2) 15.8 (10.8–21.8) 7.8 (5.4–10.7)

Ages 40 years and older 63.4 (68.0–58.3) 51.9 (43.6–58.2) 36.7 (30.1–43.5) 25.0 (20.3–30.0)

Targeting the Last Two Time Points

Calibrated Calibrated Generated Generated

Ages 0–19 years 24.8 (14.8–39.5) 9.8 (5.5–14.7) 3.6 (2.1–5.5) 1.4 (0.9–2.1)

Ages 20–39 years 54.9 (41.3–68.8) 31.0 (20.6–41.1) 14.6 (9.8–20.4) 7.0 (4.8–9.8)

Ages 40 years and older 63.0 (57.4–68.0) 50.7 (42.2–57.3) 35.3 (28.7–42.1) 23.7 (19.2–28.6)

NOTE: average across all the simulated years and runs during each time period; range represents the minimum and maximum over the time period 
across all simulation runs.

a
Average for age-groups combined from data reported in Ache and Matos (Ache and Matos, 2001); range represents the lower and upper bounds of 

the 95% confidence intervals reported for the individual age-groups.
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Table 3

Average (95% confidence interval) simulated T. cruzi seroprevalence (%) for each time period using the 

Princeton Model compared to historical Venezuelan data.

Time Periods (Years)

1980–1989 1990–1998

Historical Dataa

Ages 0–9 years 1.1 (0.9–1.2) 0.5 (0.42–0.56)

Ages 10–19 years 2.4 (2.2–2.6) 1.8 (1.6–2.0)

Ages 20–29 years 12.4 (11.5–12.8) 5.9 (5.5–6.3)

Ages 30–19 years 26.6 (25.5–27.6) 16.1 (15.4–16.8)

Ages 40–49 years 37.5 (36.2–38.8) 28.3 (27.2–29.4)

Ages 50 years and older 48.0 (47.0–48.9) 43.0 (42.1–43.9)

Targeting the Last Time Point

Ages 0–9 years – 0.73 (0.71–0.75)

Ages 10–19 years – 1.90 (1.88–1.93)

Ages 20–29 years – 7.18 (6.99–7.37)

Ages 30–19 years – 18.41 (18.02–18.81)

Ages 40–49 years – 30.39 (30.01–30.78)

Ages 50 years and older – 45.23 (45.07–45.39)

Targeting the Last Two Time Points

Ages 0–9 years 2.93 (2.88–2.98) 1.30 (1.27–1.33)

Ages 10–19 years 6.84 (6.72–6.96) 3.63 (3.58–3.69)

Ages 20–29 years 16.81 (16.37–17.25) 8.09 (7.98–8.20)

Ages 30–19 years 27.76 (27.30–28.21) 14.61 (14.39–14.82)

Ages 40–49 years 41.98 (41.56–42.40) 24.90 (24.53–25.27)

Ages 50 years and older 43.01 (42.95–43.07) 39.82 (39.64–40.01)

a
Values are average (95% confidence interval) as reported in Ache and Matos (Ache and Matos, 2001).

Epidemics. Author manuscript; available in PMC 2018 March 01.


	Abstract
	1. Introduction
	2. Methods
	2.1. PHICOR/CIDMA model
	2.2. Princeton model
	2.3. Differences between models
	2.4. Data sources
	2.5. Model comparison scenarios

	3. Results
	3.1. PHICOR/CIDMA model
	3.2. Princeton model
	3.3. Comparison

	4. Discussion
	5. Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Table 1
	Table 2
	Table 3

