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A 3q gene signature associated with 
triple negative breast cancer organ 
specific metastasis and response to 
neoadjuvant chemotherapy
Jun Qian1,*,, Heidi Chen2,*, Xiangming Ji1, Rosana Eisenberg3, A. Bapsi Chakravarthy4, 
Ingrid A. Mayer5 & Pierre P. Massion1,6

Triple negative breast cancers (TNBC) are aggressive tumors, with high rates of metastatic spread 
and targeted therapies are critically needed. We aimed to assess the prognostic and predictive value 
of a 3q 19-gene signature identified previously from lung cancer in a collection of 4,801 breast tumor 
gene expression data. The 3q gene signature had a strong association with features of aggressiveness 
such as high grade, hormone receptor negativity, presence of a basal-like or TNBC phenotype and 
reduced distant metastasis free survival. The 3q gene signature was strongly associated with lung 
metastasis only in TNBC (P < 0.0001, Hazard ratio (HR) 1.44, 95% confidence interval (CI), 1.31–1.60), 
significantly associated with brain but not bone metastasis regardless of TNBC status. The association 
of one 3q driver gene FXR1 with distant metastasis in TNBC (P = 0.01) was further validated by 
immunohistochemistry. In addition, the 3q gene signature was associated with better response to 
neoadjuvant chemotherapy in TNBC (P < 0.0001) but not in non-TNBC patients. Our study suggests 
that the 3q gene signature is a novel prognostic marker for lung and/or brain metastasis and a predictive 
marker for the response to neoadjuvant chemotherapy in TNBC, implying a potential role for 3q genes 
in the mechanism of organ-specific metastasis.

Breast cancer is the most frequent malignant disease in women worldwide. Patients with breast cancer are at risk 
of experiencing metastasis for their lifetime. It is not the primary tumor, but its metastases at distant sites such 
as lung, bone and liver that are the main cause of death in these patients1. Many gene expression studies have 
demonstrated that breast cancer is a clinically and molecularly heterogeneous disease comprising subtypes with 
distinct gene expression patterns and outcomes, making it difficult not only to cure this disease, but also to assess 
risk factors for metastasis2. A small number of expression profiling strategies have been successfully developed 
and validated for clinical use, some of which are now commercially available2. Nevertheless, uncertainty remains 
in the clinical use of many breast gene signatures. Moreover, new prognostic markers are urgently needed to iden-
tify patients who are at the highest risk for developing metastases in each subtype of breast cancer, which might 
enable oncologists to begin tailoring treatment strategies3.

Amplification of the chromosomal region 3q26-29 is the most frequent genomic alteration in primary squa-
mous cell lung cancers and occurs in many other cancers including breast cancer4,5. Recent comprehensive 
genomic studies in breast cancer reveal that gene copy number (CN) changes correlated with mRNA subtype 
including characteristic loss of 5q and gain of 3q, 10p in basal-like cancers and gain of 1q and 16q loss in luminal 
tumors5. Earlier studies showed that gains of chromosome 3q, 9p, 11p and 11q and loss of 17p are associated 
with breast cancer recurrence6. In an effort to identify oncogenic drivers in lung cancer associated the 3q26-29 
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amplicon, we previously integrated genomic and gene expression analysis of 593 primary lung squamous car-
cinoma from seven independent datasets and identified 20 driver genes in this amplicon7. Some of these driver 
genes such as phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), fragile X mental 
retardation, autosomal homolog 1 (FXR1) and protein kinase C iota (PRKCI) have been implicated in the pro-
gression of lung or breast cancers8–10.

In this report, we interrogated the expression profiles of 4,801 breast tumors and report that this 3q gene 
expression signature is associated with poor outcomes in node negative breast cancer patients. We discovered that 
the 3q gene signature is strongly associated with the risk of developing lung and/or brain specific metastasis and 
the response to neoadjuvant chemotherapy in triple negative breast cancer (TNBC).

Results
3q-gene signature is associated with aggressive behavior of breast cancer.  Among the 4,801 
patients with breast cancer, we tested the association between the 3q 19-gene signature and established prog-
nostic variables including age, grade, tumor size, lymph node status, and the expression status of ER, PR and 
HER2. The 3q gene signature was significantly associated with higher grade (P <​ 2.2e-16), larger tumor size 
(P =​ 0.005), ER- (P =​ 1.42e-08) and PR- status (P =​ 4.75e-10), but not associated with age (P =​ 0.07), HER2 status 

Clinical 
parameters

Sample 
size P value HRa 95% C.I.

Age <​50 v>​50 3675 0.07

Grade I/II v III 3176 <​2.2e-16

Tumor size <​2 v>​
2 cm 3528 0.005

Nodal status Yes v No 4554 0.26

ER Negative v 
Positive 3881 1.42e-08

PR Negative v 
Positive 2056 4.75e-09

HER2 Negative v 
Positive 1777 0.53

PAM50 4461 <​2.2e-16

TNBC Yes vs No 4801 3.06e-12

DMFS 3715 3.25e-05 1.19 1.10–1.3

RFS 1841 0.07 1.10 0.99–1.22

OS 990 0.29 1.06 0.95–1.17

DSS 614 0.24 1.13 0.93–1.37

Table 1.   Association between 3q gene signature and clinical parameters in 4,801 breast tumors. aHazard 
ratio (HR) was derived from univariable Cox analysis. ER, estrogen receptor; PR, progesterone receptor; HER2, 
epidermal growth factor receptor 2; TNBC, triple negative breast cancer; DMFS, distant metastasis free survival; 
RFS, recurrence-free survival; OS, overall survival; DSS, disease specific survival.

Figure 1.  The 3q 19-gene signature is associated with Basal-like and Luminal B subtypes of breast cancer. 
PAM50 subtypes of 4801 tumors were calculated using genefu R package. P value was calculated using Kruskal–
Wallis analysis of variance analysis (ANOVA).
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(P =​ 0.53) or lymph node involvement (P =​ 0.26) (Table 1 and Supplemental Fig. 1). The 3q gene signature was 
significantly associated with basal-like and luminal B subtypes of breast tumors (P <​ 2.2e-16, Fig. 1) or TNBC 
(P =​ 3.06e-12, Supplemental Fig. 1). Moreover, both univariable Cox analysis and a meta-analysis indicated 
that the high 3q gene signature was significantly associated with worse distant metastasis–free survival (DMFS) 
(P =​ 3.25e-05), but not recurrence-free survival (RFS) (P =​ 0.07), OS (P =​ 0.29) or DSS (P =​ 0.24) (Table 1 and 
Supplemental Figs 2 and 3).

3q gene signature is associated with distant metastasis in node-negative breast cancer.  To 
identify determinants of recurrence independent of treatment, we focused on a subset of lymph node-negative 
breast tumor samples in three datasets (GSE11121, GSE2034 and TRANSBIG) obtained from 788 patients 
who did not receive systemic neoadjuvant or adjuvant treatment and had DMFS information available 
(Supplemental Table 2). The expression of the 3q gene signature was not different across three datasets (P =​ 0.99, 
Supplemental Figure 4) but was significantly associated with DMFS in all three cohorts (Supplemental Table 3). 
After adjustment for age, ER, PR and HER2 status, grade and/or tumor size, multivariable Cox analysis demon-
strated that the 3q gene signature remained an independent prognostic marker for DMFS in GSE11121 (HR 1.83, 
95% CI 1.41–2.37, P =​ 6.45e-06) and GSE2034 (HR 1.38, 95% CI 1.11–1.72, P =​ 0.004, Supplemental Table 4), 
respectively. In the TRANSBIG dataset, the 3q gene signature tended to be an independent prognostic 
marker for DMFS (HR 1.18, 95% CI 0.95–1.47, P =​ 0.13, Supplemental Table 4). In the combined two data-
sets (GSE11121 +​ TRANSBIG, P =​ 0.03) or three datasets (GSE2034 +​ GSE11121 +​ TRANSBIG, P =​ 0.0001), 
the association remained significant independent of variables available (Supplemental Table 4). The associ-
ation also remained statistically significant when adjusted for PAM50 molecular subtypes (HR 1.38, 95% CI 
1.23–1.55, P =​ 8.43e-08, Supplemental Table 5) or five well-established gene signatures such as the 70-gene, 
76-gene, Genomic Grade Index (GGI), Oncotype Dx and proliferating cell nuclear antigen (PCNA)-117 gene 
signatures in pooled datasets (HR 1.24, 95% CI 1.14–1.36, P =​ 7.8e-07, Supplemental Table 6). Schmidt et al. 
reported a B-cell metagene as a prognostic factor for highly proliferating tumors, independent of the prolifera-
tion, ER, and T-cell metagenes in the same combined cohort11. Our study showed that the 3q gene signature was 
also significantly associated with worse DMFS independently of B-cell metagene (HR 1.26, 95% CI 1.17–1.36, 
P =​ 2.96e-09, Supplemental Table 7). Further analysis showed that the 3q gene signature was able to identify 
high risk patients in fast-proliferating tumors such as Basal-like and Luminal B subtypes of breast cancer (Fig. 2 
and Supplemental Table 8), but not in HER2 or Normal-like subtypes after adjusting for B-cell and proliferation 
metagene signatures (Supplemental Table 9). Therefore, we concluded that high expression of the 3q genes is an 
independent prognostic factor for DMFS in Basal-like and Luminal B subtypes of node-negative breast cancer 
patients and has added prognostic value to known prognostic variables and known proliferation or immune 
response related gene signatures.

3q gene signature is an independent prognostic marker for triple negative breast cancer lung 
and brain metastasis.  The ability to predict the risk and location of tumor recurrence could influence the 
surveillance for patients with a history of breast cancer. Therefore, we sought to ask whether the 3q gene sig-
nature (originally derived from lung cancer gene expression analysis) is associated with breast cancer metas-
tasis to specific organ sites such as the lung. To test this hypothesis, we analyzed expression profiles of three 
independent cohorts of patients with breast cancer where the outcome information on lung, brain and bone 
specific metastasis was available (EMC344, GSE12276 and GSE2603, Supplemental Table 10). The univariable 
Cox analysis showed that the 3q gene signature was significantly associated with shorter lung metastasis–free sur-
vival in all three dataset (P =​ 0.0008, 8.58e-06, and 0.0032 for EMC344, GSE12276, and GSE2603, respectively), 
whereas only associated with shorter brain metastasis–free survival in two datasets (P =​ 0.00003 in EMC344 and 
P =​ 0.008 in GSE12276), and associated with shorter bone metastasis–free survival only in EMC344 (P =​ 0.013, 
Supplemental Table 11). When tested on the combined cohort (n =​ 618), the 3q gene signature was highly cor-
related to lung (P <​ 2.0e-16, HR 1.74, 95% CI 1.60 to 1.9) and brain metastasis (P =​ 4.79e-11, HR 1.99, 95% CI 

Figure 2.  KM plot showed that high 3q gene signature was significantly associated with worse distant 
metastasis free survive (DMFS) in basal-like (n = 137) and luminal B (n = 254) subtypes of node-negative 
breast cancer patients (n = 788). The log-rank P values are shown.
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1.62 to 2.45) but not bone metastasis (P =​ 0.71) (Supplemental Table 11). The multivariable Cox model further 
showed that the 3q gene signature was an independent predictor of metastases to lung (P <​ 2.0e-16, HR 1.58, 
95% CI 1.42 to 1.76) or brain (P =​ 0.001, HR 1.61, 95% CI 1.21 to 2.13), after adjusting for age, ER, PR, HER2 
and lymph node status, five common variables in the combined cohort (Supplemental Table 12). In addition, the 
3q gene signature was significantly associated with lung metastases in basal-like (P <​ 2.0e-16), HER2 (P =​ 0.01) 
and luminal A (P =​ 0.01) subtypes, whereas was associated with brain metastases in basal-like (P <​ 2.0e-16) and 
luminal B (P =​ 1.94e-14) subtypes (Table 2). Basal-like breast cancer is known to have a large overlap with triple 
negative breast cancer, a subtype associated with distant metastasis. Further multivariable Cox model indicated 
that the 3q gene signature remained strongly associated with the risk of development of lung metastasis in TNBC 
(P =​ 8.48e-13, HR 1.44, 95% CI 1.31to 1.60) or basal like (P =​ 1.86e-07, HR 1.47, 95% CI 1.27 to 1.70) breast 
cancer patients after adjusting for age, node status and five known gene signatures (including two proliferating 
related signatures and three reported lung specific metastasis gene signatures), but not in non-TNBC breast can-
cer patients (P =​ 0.09, Table 2 and Supplemental Table 13). In contrast, the 3q gene signature was significantly 
associated with brain metastasis in both TNBC (P =​ 0.02) and non-TNBC patients (P =​ 8.46e-10, Table 2 and 
Supplemental Table 14). Together, these data suggest that the 3q gene signature is an independent prognostic 
marker for lung and brain specific metastasis in breast cancer, especially for lung metastasis in TNBC.

3q gene signature is associated with response to neoadjuvant chemotherapy.  Among 4,801 
patients, there are 1,058 patients in four datasets (GSE16446, GSE25066, GSE20194 and GSE20271) who had 
information on the response to neoadjuvant chemotherapy (Supplemental Table 15). All these patients received 
anthracycline (Epirubicin) monotherapy (GSE16446), taxane-anthracycline based (GSE25066) or paclitaxel fol-
lowed by 5-fluorouracil, doxorubicin and cyclophosphamide (FAC) (GSE20194 and GSE20271) based neoad-
juvant chemotherapy. In the combined dataset, multiple logistic regression analysis showed that the 3q gene 
signature was significantly associated with pathological complete response (pCR) after adjusting for clinical vari-
ables known to be associated with pCR including grade, status of ER, PR, HER2 and node (P <​ 0.0001, OR =​ 1.32, 
95% CI 1.24 to 1.41, Supplemental Table 16). Further analysis showed that the 3q gene signature was associated 
with better pCR in TNBC (P <​ 0.0001, OR =​ 1.50, 95% CI 1.33 to 1.71) but worse pCR in non-TNBC patients 
(P =​ 0.35), after adjusting for known gene signatures and clinical variables (Supplemental Table 17). These data 
suggest that the 3q gene signature is an independent predictive biomarker for better response to neoadjuvant 
chemotherapy in TNBC.

FXR1 protein overexpression predicts distant metastasis in TNBC.  We previously identified FXR1 
as a novel cancer gene that is associated with poor outcomes in multiple human cancers including lung and 
breast9. FXR1 was most significantly associated with lung metastasis only in TNBC (Supplemental Table 18), 
therefore we elected to validate this finding using immunohistochemistry on 69 breast tumors (Fig. 3 and 
Supplemental Table 19). Univariable Cox analysis showed that elevated FXR1 expression was associated with 
DMFS in TNBC (P =​ 0.01, HR, 9.63, 95% CI, 1.7–43.96, Fig. 3B) but not in non-TNBC (Supplemental Table 20). 
Multivariable Cox analysis further indicates that FXR1 protein expression was associated with DMFS after adjust-
ing for tumor stage in TNBC (P =​ 0.03, HR, 6.37, 95% CI, 1.2–33.7, Supplemental Table 20). Together, these 

Lung Met

Univariable Cox Multivariable Cox No. of No. of

HR 95% C.I. P value HR 95% C.I. P value events patients

  Basal-likea 1.37 1.28 1.46 <​2.0e-16 1.47 1.27 1.7 1.86e-07 42 160

  HER2b 3.29 1.39 7.82 0.01 3.65 0.93 14.31 0.06 8 57

  Luminal Ab 1.88 1.17 3.03 0.01 2.17 1.42 3.3 0.0003 10 204

  Luminal B 1.29 0.71 2.35 0.41 21 174

  Normal-like 1.08 0.82 1.42 0.58 4 23

  TNBCa 1.39 1.34 1.45 <​2.0e-16 1.44 1.31 1.6 8.48e-13 43 194

  non-TNBCa 1.87 1.4 2.49 2.21E-05 1.36 0.95 1.96 0.09 42 424

Brain Metb

  Basal-like 1.79 1.57 2.04 <​2.0e-16 1.87 1.57 2.22 1.2E-12 11

  HER2 0.89 0.15 5.25 0.89 3

  Luminal A 0.35 0.09 1.35 0.13 2

  Luminal B 4.4 3.02 6.41 1.19e-14 6.67 2.2 20.34 0.001 7

  Normal-like 1.16 0.21 6.25 0.87 5

  TNBC 1.46 1.15 1.87 0.002 1.5 1.07 2.12 0.02 12

  non-TNBC 2.45 2.01 2.99 <​2.0e-16 2.44 1.83 3.24 8.46e-10 16

Table 2.   Association between 3q gene signature and lung/brain metastasis free survival in subtypes of 
breast cancer. a) Hazard ratio (HR) in multivariable Cox model was calculated and adjusted for age, node and 
four known gene signatures ; b) HR in multivariable Cox model was adjusted for only age and node due to 
the limited number of events. C.I., confidence interval. The status of triple negative breast cancer (TNBC) was 
determined using microarray expression value of ER,PR and HER2 as described in the Methods.
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results suggest that FXR1 is a novel prognostic biomarker for distant metastasis in TNBC. Nonetheless, organ 
specific metastasis information was not available on these patients and thus we were unable to further analyze 
this association.

Discussion
In a study including 27 publicly available gene expression datasets of clinically annotated breast cancer on a total 
of 4,801 patients, we found that the 3q 19-gene signature has strong association with breast cancer features of 
aggressiveness, reduced DMFS and response to neo-adjuvant chemotherapy, especially in triple negative breast 
cancer (TNBC). TNBC which are defined by a lack of ER, PR and HER2 expression, are still poorly characterized 
at the molecular level, and lack prognostic markers or targets for therapy12.

The majority of breast cancer deaths result from metastases rather than from direct effects of the primary 
tumor itself. The most common site of breast metastasis includes bone, lung and brain1. The prediction of a met-
astatic behavior remains a major challenge with only few metastasis-inducing proteins experimentally validated 
so far6. In a subset of 618 patients who had lung, brain and bone specific metastasis information available, the 
3q 19-gene signature independently predicted breast cancer to metastasize to the lung or brain but not bone in 
TNBC. While gene signatures have been associated with breast outcome13, gene signatures that significantly asso-
ciate with specific organ metastases are very limited6. Many gene signatures are not able to predict organ specific 
metastasis when adjusted for molecular subtype. For instance, the LMS 6-gene is highly correlated with basal sub-
type but its ability to predict lung metastasis is controversial14,15. Venet et al. showed that even randomly selected 
gene expression signatures could be significantly associated with breast cancer outcome, due to a high correlation 
with proliferation16. In contrast, the 3q gene signature is able to predict lung and brain metastasis in basal and 
luminal A/B. Furthermore, when compared with other lung metastasis signatures or well-studied proliferation 
signatures, the 3q gene signature maintained significance especially in TNBC. Likewise, in the setting of neoad-
juvant chemotherapy, we found that the 3q gene signature was associated with pathological complete response 
(pCR) in TNBC patients. Together, the 3q gene signature provides additional prognostic information beyond the 
previously reported organ metastasis signatures, shedding new light on the possible biological processes relevant 
for predicting outcome or response to therapy in TNBC.

To date molecular mechanisms underlying breast cancer metastasis to the lungs and brain are still poorly 
understood. Our study highlights the molecular pathways possibly driven by 3q genes that might contribute 
to the organ preference of breast tumor cells for lung or brain. There have been studies showing that basal-like 
breast tumors represent a unique molecular entity strikingly similar to squamous cell lung cancers17, supporting 
clinical trials testing immune checkpoint agents in basal-like breast cancer as well as TNBC patients. We pre-
viously found the 3q gene signature is inversely associated with the suppressed immune response pathway in 
squamous carcinoma of the lung18. Whether and how 3q genes contribute to the regulation of immune pathway 
in human cancer warrants further study. Moreover, none of our 3q 19 genes overlaps with known gene signa-
tures tested in this study, arguing a lack of efficacy of using these known gene signatures as prognostic factors 
in TNBC patients. Although the exact role of these 19 genes in breast cancer metastasis is unclear, 12 genes 
including FXR1 have been studied functionally or mechanistically in human cancers including lung and breast 
(Supplemental Table 21)9,19–25. For instance, PIK3CA is the most well-studied oncogene among our 3q gene sig-
nature due to its high mutation rate in human cancer, especially in breast cancer23. However, the prognostic value 
of PIK3CA mutation status in breast cancer is controversial23. PIK3CA mutation is associated with ER +​ and 
PR +​ breast cancer. A PIK3CA-mutated gene signature actually predicted better outcome in ER +​ breast cancer26. 
In contrast, our study showed that PIK3CA expression is significantly associated with lung or brain metastasis in 
TNBC (Supplemental Table 18). An analysis using TCGA breast cancer datasets showed that PIK3CA expression 
was indeed associated with copy number but not mutation (Supplemental Figure 5). It is PIK3CA amplification 
rather than PIK3CA mutation status that is associated with basal-like breast cancer (Supplemental Table 22). 

Figure 3.  FXR1 overexpression was associated with poor DMFS in TNBC patients. (a) Representative 
immunohistochemical staining of FXR1 protein expression in sections of formalin-fixed paraffin-embedded 
breast tumor and adjacent normal* tissues. (b) Kaplan–Meier plot of DMFS of 16 TNBC patients stratified by 
median FXR1 protein expression. The log-rank P value is shown.



www.nature.com/scientificreports/

6Scientific Reports | 7:45828 | DOI: 10.1038/srep45828

Early clinical trials also showed that PIK3CA mutations do not result in a dramatic responses to PI3K inhibi-
tors23. Collectively, the significance of genotyping PIK3CA in clinical practice and targeted therapies based on 
the PIK3CA mutation in breast cancer remains unclear. Our study further argues that PIK3CA amplification or 
PIK3CA overexpression is more relevant than PIK3CA mutation status in breast cancer.

PRKCI is another well-known oncogene in human cancers and has been proposed to be a novel therapeutic 
target27. A recent study specifically demonstrated that PRKCI signaling promotes TNBC cell growth and metas-
tasis through NF-κ​B pathway which could be regulated by TGFβ​ and IL1β​25. We previously reported a new onco-
genic role for RNA binding protein FXR1 linking to PRKCI and ECT2 in NSCLC9. In this study, multivariable cox 
analysis indicated that among 19 3q genes, FXR1 was actually most specifically associated with lung but not brain 
metastasis in TNBC (Supplemental Table 18). Therefore, we postulate that FXR1 is a novel prognostic biomarker 
specific for lung metastasis in TNBC and further validated the association of FXR1 protein with distant metastasis 
in TNBC using IHC on 69 breast tumors. We were not able to analyze organ specific metastasis due to the lack of 
such information on this small cohort of patients, a limitation we acknowledge. Future studies on a larger cohort 
are warranted.

Although the possible role of the 3q genes in specific steps of the metastatic process needs to be functionally 
validated, our study suggests an unrecognized role of certain 3q genes or gene interaction in the 3q amplicon in 
the basal cell type of human cancers and TNBC. A better knowledge of their function might lead to new insights 
into the mechanisms of disease progression and to the development of new predictive markers of metastatic 
behavior in breast cancer.

Methods
Breast tumor microarray datasets.  We interrogated gene expression profiles from a total of 4,801 
breast cancer patients in 27 publically available breast cancer datasets (Supplemental Table 1). 129 raw CEL 
files of E-TABM-158 (U133AAofAv2) were obtained from ArrayExpress and normalized using affy R package 
and Robust Multi-array Average (RMA) method28,29. Raw CEL files of GSE25066 (n =​ 508) were downloaded 
from the NCBI Gene Expression Omnibus (GEO) database and normalized using frozen Robust Multi-Array 
Analysis (fRMA) method, a procedure that allows one to pre-process microarrays individually or in small batches 
and to then combine the data into a single comparable dataset for further analyses30,31. The other 4,164 breast 
cancer gene expression profiles from 25 breast cancer datasets (GSE11121, GSE12093, GSE12276, GSE1456, 
GSE16391, GSE16446, GSE17705, GSE19615, GSE20194,GSE20271, GSE2034, GSE20685, GSE20711, GSE21653, 
GSE25066,GSE2603, GSE26971, GSE31519, GSE3494, GSE42568, GSE45255, GSE4922, GSE5327, GSE6532, 
GSE7390 and GSE9195) were obtained on the Affymetrix U133A or U133 Plus 2.0 expression array11,30–57. These 
samples were collected from InsilicoDB database58 and normalized using fRMA method. A final combined data-
set compiling 4,801 breast tumor samples was generated using inSilicoMerging R package and COMBAT algo-
rithm59, an Empirical Bayes method to adjust for potential batch effects in the dataset. TRANSBIG (n =​ 731) 
cohort consists of samples from GSE3494, GSE4922, GSE6532 and GSE7390 and the replicates within the studies 
were removed49. EMC344 (n =​ 344) consists of GSE2034 and GSE5327. After integration of the datasets, all gene 
expression profiles were filtered to include 21,172 probes on the HG-U133A platform and were further col-
lapsed to 13,129 gene symbols. TCGA breast mutation (wustl curated), copy number (gistic2_thresholded) and 
mRNA expression dataset (IllumninaHiSeq_RNASeqV2) were downloaded using the UCSC Cancer Genomics 
Browser60 as described before9.

In addition to the raw expression data, we also obtained clinical outcome data from a subset of the samples 
(Supplemental Table 1), which included data on overall survival (OS, n =​ 990), recurrence-free survival (RFS, 
n =​ 1,814), distant metastasis free survival (DMFS, n =​ 3,715), as well as disease specific survival (DSS, event 
of death from breast cancer, n =​ 614). Four datasets included data on response to neoadjuvant chemotherapy 
(n =​ 1,028). For samples not characterized by immunohistochemistry (IHC) in this cohort, the final calls for 
estrogen receptor (ER) progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2) statuses was 
defined by analyzing mRNA expression bimodal cutoffs in pooled 4801 samples using a 2-component Gaussian 
mixture distribution model and parameters were estimated by maximum likelihood optimization in optim R 
package61. PAM50 (basal-like, luminal A, luminal B, HER2-enriched, and normal-like) molecular subtype was 
calculated using genefu R package62,63. Triple-negative breast cancer (TNBC) was defined as ER-, PR- and HER2- 
based on mRNA expression cutoff.

Breast tumor biospecimens.  Breast cancer tissues were collected from surgical specimens through the 
Specialized Program of Research Excellence (SPORE) in breast at Vanderbilt University Medical Center in 
Nashville, Tennessee. All samples were reviewed by a pathologist (R.E). 69 breast cancer tissues contained in 
tumor tissue microarrays were used for the evaluation of FXR1 protein expression using immunohistochemistry 
as described before9. Clinical characteristics of these patients are described in Supplemental Table 19. All primary 
tumors were fresh-frozen, with efforts made to use samples with tumor content >​70%. This study using human 
biospecimens was approved by the Vanderbilt University Internal Review Board and complied with all state, fed-
eral, and NIH regulations. Informed consent was obtained from all patients.

Immunohistochemistry study.  Immunohistochemical staining and scoring were performed as previously 
described9. Briefly, the staining index was considered as the sum of the intensity score (0, no staining; 1 +​ , weak; 
2 +​ , moderate; 3 +​ , strong) and the distribution score (0, no staining; 0.1, staining of 1%-9% of cells; 0.5, 10%-49% 
and 1 if >​50% of cells). The final immunoreactivity H score was determined by multiplying the intensity and extent 
of positivity scores of stained cells, with the minimum score of 0 and a maximum score of 3. The median value of 
all the H scores was a priori chosen as the cutoff point for separating FXR1-high tumors from FXR1-low tumors.
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Statistical analysis.  Known gene signatures including MammaPrint (70-gene)64, Veridex (76-gene)51, 
GGI65 and Oncotype DX66 were calculated using genefu R package. 18-gene Lung metastasis signature (LMS) was 
defined as a linear combination of the gene-expression values weighted by their estimated regression coefficients 
obtained from univariable Cox proportional-hazard regression modeling as originally published46,52,67. The 3q 
19-gene signature (19 out of 20 genes were mapped to the HG-U133A platform) and other published gene sig-
natures including LMS 6-gene14, TGFβ​ pathway (152-gene)67 and PCNA (117-gene)16 were summarized to the 
mean expression within each sample and standardized to zero mean and unit variances before further analyses 
were performed. Pearson correlations between the signature indices were performed. Genes in signatures were 
mapped to the combined dataset by gene symbol.

Mann-Whitney-Wilcoxon test and Kruskal–Wallis one way analysis of variance (ANOVA) were used to com-
pare the difference of gene signatures for groups of interest including dichotomized category clinical variables 
such as age (<​50 or >​50), tumor size (<​2 cm or >​2 cm), status of ER, PR, HER2 (positive vs negative), and lymph 
node (positive or negative), grade (grade III vs grade I/II), PAM50 subtypes, status of triple negative breast cancer 
(TNBC vs non-TNBC) and chemotherapy response (pathological complete response; pCR vs residual disease; 
RD). The distribution of gene signatures were visualized by using Box-and-whisker plots. Multiple logistic regres-
sion models were used to analyze the association between chemotherapy response and gene signatures as well as 
other clinical variables of interest. Cox proportional hazard (CPH) regression was used to analyze time to event 
data and the survival curve was calculated from Kaplan-Meier (KM) method. Robust sandwich covariance esti-
mator was used for logistic and CPH regressions to account for the gene expression cluster (dataset) effect. The 
estimated odds ratio (OR), hazard ratio (HR) and 95% confidence intervals were provided to measure the effect 
of the association. In addition to the univariate CPH analysis, meta-analysis was conducted to confirm the finding 
in the univariate CPH regression. When 3q gene signature was used as dichotomized variable, the patients were 
divided into tertiles (high, intermediate and low) according to gene expression value. All p-values were based 
on two-sided tests and differences were considered statistically significant when p-value <​ 0.05. Analyses were 
performed using R version 3.3.1.
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