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Abstract

Surgical transection of the anterior cruciate ligament (ACL) in the porcine model leads to

posttraumatic osteoarthritis if left untreated. However, a recently developed surgical treat-

ment, bridge-enhanced ACL repair, prevents further cartilage damage. Since the synovial

fluid bathes all the intrinsic structures of knee, we reasoned that a comparative analysis of

synovial fluid protein contents could help to better understand the observed chondroprotec-

tive effects of the bridge-enhanced ACL repair. We hypothesized that post-surgical changes

in the synovial fluid proteome would be different in the untreated and repaired knees, and

those changes would correlate with the degree of cartilage damage. Thirty adolescent Yuca-

tan mini-pigs underwent unilateral ACL transection and were randomly assigned to either no

further treatment (ACLT, n = 14) or bridge-enhanced ACL repair (BEAR, n = 16). We used

an isotopically labeled high resolution LC MS/MS-based proteomics approach to analyze

the protein profile of synovial fluid at 6 and 12 months after ACL transection in untreated and

repaired porcine knees. A linear mixed effect model was used to compare the normalized

protein abundance levels between the groups at each time point. Bivariate linear regression

analyses were used to assess the correlations between the macroscopic cartilage damage

(total lesion area) and normalized abundance levels of each of the identified secreted pro-

teins. There were no significant differences in cartilage lesion area or quantitative abun-

dance levels of the secreted proteins between the ACLT and BEAR groups at 6 months.

However, by 12 months, greater cartilage damage was seen in the ACLT group compared

to the BEAR group (p = 0.005). This damage was accompanied by differences in the abun-

dance levels of secreted proteins, with higher levels of Vitamin K-dependent protein C (p =

0.001), and lower levels of Apolipoprotein A4 (p = 0.021) and Cartilage intermediate layer

protein 1 (p = 0.049) in the ACLT group compared to the BEAR group. There were also

group differences in the secreted proteins that significantly changed in abundance between
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6 and 12 months in ACLT and BEAR knees. Increased concentration of Ig lambda-1 chain C

regions and decreased concentration of Hemopexin, Clusterin, Coagulation factor 12 and

Cartilage intermediate layer protein 1 were associated with greater cartilage lesion area. In

general, ACLT knees had higher concentrations of pro-inflammatory proteins and lower con-

centrations of anti-inflammatory proteins than BEAR group. In addition, the ACLT group had

a lower and declining synovial concentrations of CILP, in contrast to a consistently high

abundance of CILP in repaired knees. These differences suggest that the knees treated

with bridge-enhanced ACL repair may be maintaining an environment that is more protec-

tive of the extracellular matrix, a function which is not seen in the ACLT knees.

Introduction

Anterior cruciate ligament (ACL) injuries are has been linked to increased risk of posttrau-

matic osteoarthritis (OA) in humans and animal models [1–3]. Synovial fluid has been an

attractive source to identify new biomarkers for monitoring joint health and a better under-

standing of the disease pathophysiology. This attraction is primarily due to the fact the synovial

fluid bathes all the intrinsic structures of diarthrodial joints, including articular cartilage and

synovium, both of which have shown to be actively involved in OA development [4, 5]. Addi-

tionally, alterations in these structures due to OA may be directly reflected in the composition

of synovial fluid, which could be correlated to disease severity and progression. Recent

advances in high-throughput and sensitive mass spectrometry (MS)-based approaches have

facilitated protein profiling of complex biological fluids including synovial fluid. As such, this

technology has emerged as a powerful and reproducible technique to identify proteins

involved in disease etiology and pathogenesis, as well as potential biomarkers for a range of

diseases, including arthritis [6–11].

Recently, a biologically augmented ACL repair procedure, bridge-enhanced ACL repair,

has shown to be successful in reducing macroscopic evidence of posttraumatic OA following

ACL injury in porcine knees [12]. This new surgical technique uses a combination of a novel

extracellular matrix-based scaffold to augment a suture repair of the torn ACL [13]. Using the

porcine ACL transection model, where the untreated knee progresses to posttraumatic OA

and the repaired knee promotes cartilage preservation, allows us to compare these two differ-

ent consequences of an identical surgical injury and potentially identify mechanisms and bio-

markers for posttraumatic OA development.

Compared to other animal models, the porcine knee has been shown to be closest to the

human based on its size, anatomy and functional dependency on the ACL [14]. Furthermore,

porcine knee develops posttraumatic OA following ACL transection in a pattern similar to

that reported in humans, but at a faster rate, with the joint changes at 1 year reflective of those

seen at 10–15 years after ACL reconstruction in humans [12]. This faster onset of post-trau-

matic OA allows for more rapid assessment of factors that may influence the development of

posttraumatic OA following ACL injury and treatment. The high degree of similarity between

human and porcine synovial fluid [15]. further justifies the porcine knee as a suitable model to

study the biology of OA.

In the current work, we used an isotopically labeled high resolution LC MS/MS-based pro-

teomics approach to analyze the protein profile of synovial fluid at 6 and 12 months after ACL

transection in untreated and repaired porcine knees. Our primary aim was to determine how

the synovial fluid proteome differs between the two groups in an effort to identify candidate
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proteins that may be associated with the development of posttraumatic OA. We hypothesized

that the development of macroscopic cartilage damage following surgical ACL transection

would be accompanied by differential changes in synovial fluid proteome in untreated knees

compared to repaired joints.

Materials and methods

Study design

This study was approved by the Institutional Animal Care and Use Committee at Boston Chil-

dren’s Hospital. The study was designed as a randomized controlled large animal trial with

cross-sectional outcome assessments at two post-injury time points. The study was designed as

a randomized controlled large animal trial with cross-sectional outcome assessments at two

post-injury time points. A total of 30 adolescent Yucatan mini-pigs (ages 14–16 months)

underwent unilateral ACL transection and were randomly treated with bridge-enhanced ACL

repair (BEAR, n = 16) or left untreated (ACLT, n = 14). Animals were obtained from LoneStar

Laboratory Swine (Sioux Center, IA, USA). A computer based random permutation of the

complete set of animal identifiers was used to randomize treatment allocation and side of uni-

lateral surgery. Half of the animals within each treatment group were euthanized at 6 months,

while the other half was followed up to 12 months post-injury. The histological, biomechanical

and OA-related outcomes for these animals have been previously reported by our group [12,

16]. For the current study, synovial fluid from an additional 6 healthy intact age-matched ado-

lescent Yucatan minipigs was also used as a control.

Surgical procedure

All animals were acclimated to the animal care facility environment for a minimum of 7 days

prior to any surgical procedures. Animals allocated to ACLT or BEAR groups underwent ACL

surgery under general anesthesia and postoperative housing as previously reported [12, 16]. In

brief, the ACL was transected surgically and for the animals assigned to BEAR group, the torn

ACL was repaired using an extracellular matrix–based scaffold soaked with autologous blood

as previously described [17]. After surgery, all animals were housed in individualized pens and

checked multiple times a day for 4 weeks. They were then shipped to a farm for long-term care

(Coyote Consulting Corp Inc, Douglas, Massachusetts). Full weightbearing status was achieved

within 48 to 72 hours and the animals were allowed ad libitum activity. Two animals (both in

the ACLT group) developed subcutaneous abscesses near the jaw that were treated with short-

term oral antibiotics. These animals were included in the study as there was no visual evidence

of joint synovitis at the time of dissection. In the BEAR group, one animal (12 months) was

shipped to the external holding facility at 2 weeks rather than 4 weeks postoperatively, a devia-

tion in the postoperative rehabilitation, thus it was excluded from the analysis. Also, one

BEAR animal (6 months) had a missing synovial fluid sample, thus was excluded from this

study. The total number of animals, analyzed in this study, was 7 in each group at each time

point.

After 6 and 12 months, synovial fluid was aspirated from the injured knee joints under

anesthesia. For control animals, synovial fluid was obtained under anesthesia within 1 week of

arrival to the animal care facility. Samples were centrifuged at 3,000g at room temperature for

10 min and the supernatant stored at −80˚C. Following aspiration, animals were euthanized

and the knees were harvested and stored at -20˚C.

Synovial fluid proteome changes after ACL injury
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Proteomics analysis

Sample preparation. A multiplexed Isobaric Tag for Relative and Absolute Quantitation

(iTRAQ) [18] coupled with liquid chromatography with tandem mass spectrometry (LC-MS/

MS) was used to identify the changes in synovial fluid protein levels. iTRAQ is a chemical

labeling method, which uses multiplexed isobaric tagging reagent to label peptide mixtures

which allows post label mixing of the samples (after enzymatic digestion) without adding com-

plexity to the MS analysis [19]. This will help minimizing the quantitation variability during

sample preparation prior to LC MS/MS data collection. The iTRAQ-based quantitative proteo-

mics approach has been widely used to identify biomarkers for several diseases including end

stage OA and rheumatoid arthritis [7, 8, 11].

Comparison of the peak areas and resultant peak ratios for MS/MS reporter ions was used

to measure the relative abundance of proteins. Synovial fluid from each individual sample was

reduced with DTT, alkylated with iodoacetamide, and digested with trypsin at 37˚C overnight.

Digested samples were separated across five different sets for comparison with each set consist-

ing of seven unique samples (S1 Table). A pooled sample consisting of equal amount of pro-

teins from all 35 total samples was made to serve as a common eighth sample across the five

different sets of comparison. Per each comparison set, equal amounts of total peptides were ali-

quoted and labeled with the 8-plex iTRAQ reagents (iTRAQ Reagents Multiplex kit, Applied

Biosystems, CA), then pooled, dried and stored until analyzed by mass spectrometry. Total

digested peptides in each sample were quantified by Amino Acid Analysis (AAA; Hitachi

Model L-8900) prior to iTRAQ labeling to ensure equal amounts of total peptides for each

sample.

LC-MS/MS analysis. LC-MS/MS analysis of the iTRAQ labeled samples peptides were

carried out using AB SCIEX TripleTOF 5600 mass spectrometer (SCIEX, Framingham, MA)

coupled to a NanoACQUITY UPLC system (Waters Inc., Milford, MA). The dried peptide

samples were dissolved in 70% formic acid/water, diluted with 13 μl 0.1% trifluoroacetic acid

(TFA) and quantitated at A280 absorption on a Nanodrop (ThermoFisher Scientific, Wil-

mington, DE). Peptides were loaded on a NanoACQUITY Symmetry C18 UPLC Trap col-

umn, washed in 9% Buffer A (0.1% formic acid in water) then run for 160 minutes over a

linear gradient 99%A to 65% A at 500 nL/min. The parameters utilized on the 5600 Triple-

TOF were: 2300 V IonSpray Voltage Floating, Ion Source Gas 1 of 10, Curtain Gas of 20, Inter-

face Heater Temperature 120, with a declustering potential of 60. MS cycle time was 250 milli-

seconds, with a maximum 20 MS/MS spectra taken each with a 100-millisecond accumulation

time, and collision energy adjusted for iTRAQ reagents.

Protein abundance level calculation and analysis. The ProteinPilot peptide summary

was filtered to only include peptides with zero mis-cleavages, high confidence peptide identifi-

cations, and two or more iTRAQ reporter ion ratios measured. We then performed a cyclic

Lowess normalization [20] on the remaining peptides to compensate for any differences

between iTRAQ labels. All peptides across the 5 sets were merged and normalized to the com-

mon pooled sample. This was done by subtracting the common pooled sample, replicated in

each set, from the other 7 samples in each set. The purpose of this adjustment is to remove set-

specific effects to facilitate comparisons between the experimental groups (i.e. Intact, ACLT

and BEAR) and time points (i.e. 6 and 12 months) across all the sets. A linear mixed effect

model was used to compare the normalized protein abundance levels between the groups at

each time point (limma package in R v3.3.1, The R Foundation for Statistical Computing)

[21]. Benjamini and Hochberg method was used to adjust the p-values to control the false dis-

covery rate [22]. P�0.05 considered statistically significant and used to select differentially

abundant proteins between the groups (i.e. Intact, ACLT 6 months, ACLT 12 months, BEAR 6
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months and BEAR 12 months). Bivariate linear regression analyses were used to assess the cor-

relations between the macroscopic cartilage damage (total lesion area assessed at 6 or 12

months after ACLT and BEAR) and normalized abundance levels of each identified secreted

proteins.

Pathway enrichment analysis. The differentially abundant proteins were used to analyze

the enrichment of specific pathways using the Process Networks ontology in the MetaCore

bioinformatics suite (Thomson Reuters) [23]. Sus scrufa Ensembl identifiers and, if not recog-

nized, gene symbols of the corresponding gene for each protein were used for as input for the

analysis. Pathways were considered significantly enriched when they contain at least 2 unique

proteins and adjusted P values (false discovery rate; FDR) were less than 0.05.

Results

As previously reported, macroscopic cartilage damage was observed in the ACLT knees, pri-

marily across the medial femoral condyle [12]. While at 6 months no difference in total carti-

lage lesion area was observed between ACLT and BEAR knees, ACLT knees had a significantly

larger total lesion area at 12 months compared to the BEAR knees (Fig 1) [12].

Most abundant secreted proteins found in the synovial fluid after ACL

transection

A total of 1,340 unique peptides corresponding to 232 proteins were identified across all 34

samples (S2 Table). Of the 232 detected proteins, 80 (34%) were secreted extracellular proteins.

The subcellular localization patterns of the identified proteins were similar to those reported

in knee synovial fluid proteins of humans with knee OA [24]. The top 20 most abundant

secreted proteins in the synovial fluid of each surgical group are listed in Table 1. Of the 232

Fig 1. Development of macroscopic cartilage damage following ACL transection. Total cartilage lesion area at 6 and

12 months after untreated ACL injury (ACLT) and bridge-enhanced ACL repair (BEAR). Data is presented as

Mean ± SD. P value is derived from a one-way ANOVA with posthoc Bonferroni correction for multiple comparisons

(adopted and modified with permission from Murray MM and Fleming BC, Am J Sports Med 2013 [12]) Macroscopic

cartilage damage was assessed by measuring the cartilage lesions across the femoral condyles and tibial plateau in

medial and lateral compartments using India ink staining and calipers [12].

https://doi.org/10.1371/journal.pone.0212662.g001
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Table 1. Top 20 most abundant secreted proteins detected in the synovial fluid in each surgical group. The uniquely abundant proteins in each group are highlighted

in bold.

Abundant Proteins in the ACLT Group at 6 Months

Rank Protein Gene Rank Protein Gene

1 Peptidylprolyl isomerase A PPIA 11 Serotransferrin TF
2 Vitamin K-dependent protein C PROC 12 Aggrecan core protein ACAN
3 Lactadherin MFGE8 13 Corticosteroid-binding globulin SERPINA6
4 Cartilage intermediate layer protein 1 CILP 14 Alpha-2-HS-glycoprotein AHSG
5 Coagulation Factor 12 F12 15 Protein AMBP AMBP
6 Glucose-6-phosphate isomerase GPI 16 Hemopexin HPX
7 Alpha-1-antitrypsin SERPINA1 17 Complement component C7 C7
8 Pituitary adenylate cyclase-activating polypeptide ADCYAP1 18 Serum albumin ALB
9 Haptoglobin HP 19 Apolipoprotein E APOE

10 Inhibitor of carbonic anhydrase ICA 20 Clusterin CLU
Abundant Proteins in the BEAR Group at 6 Months

Rank Protein Gene Rank Protein Gene

1 Peptidylprolyl isomerase A PPIA 11 Serotransferrin TF
2 Vitamin K-dependent protein C PROC 12 Complement component C7 C7
3 Plasminogen activator inhibitor 1 SERPINE1 13 Apolipoprotein C3 APOC3
4 Cartilage intermediate layer protein 1 CILP 14 Apolipoprotein E APOE
5 Lactadherin MFGE8 15 Inhibitor of carbonic anhydrase ICA
6 Glucose-6-phosphate isomerase GPI 16 Serum albumin ALB
7 Coagulation Factor 12 F12 17 Protein AMBP AMBP
8 Corticosteroid-binding globulin SERPINA6 18 Hemopexin HPX
9 Alpha-1-antitrypsin SERPINA1 19 Alpha-2-HS-glycoprotein AHSG

10 Elafin PI3 20 Clusterin CLU
Abundant Proteins in the ACLT Group at 12 Months

Rank Protein Gene Rank Protein Gene

1 Cystatin-B CSTB 11 Hyaluronan and proteoglycan link protein 1 HAPLN1
2 Protein S100-A12 S100A12 12 Peptidylprolyl isomerase A PPIA
3 Complement C5 C5 13 Aggrecan core protein ACAN
4 Lactotransferrin LTF 14 Alpha-1-antitrypsin SERPINA1
5 von Willebrand factor VWF 15 Cathepsin D CTSD
6 Vitamin K-dependent protein C PROC 16 Prothrombin F2
7 Prophenin-2 17 Complement factor D CFD
8 Insulin-like growth factor-binding protein 2 IGFBP2 18 Prophenin-1

9 Complement C1q subcomponent subunit A C1QA 19 Decorin DCN
10 Chitinase-3-like protein 1 CHI3L1 20 Thyroxine-binding globulin SERPINA7

Abundant Proteins in the BEAR Group at 12 Months

Rank Protein Gene Rank Protein Gene

1 Hyaluronan and proteoglycan link protein 1 HAPLN1 11 Protein S100-A12 S100A12
2 Cystatin-B CSTB 12 Complement C1q subcomponent subunit A C1QA
3 Cartilage intermediate layer protein 1 CILP 13 Complement factor D CFD
4 von Willebrand factor VWF 14 Apolipoprotein A4 APOA4
5 Annexin A2 ANXA2 15 Insulin-like growth factor-binding protein 2 IGFBP2
6 Complement C5 C5 16 Clusterin CLU
7 Cathepsin D CTSD 17 Alpha-2-HS-glycoprotein AHSG
8 Apolipoprotein M APOM 18 Prophenin-1

9 Annexin A1 ANXA1 19 Alpha-1-antitrypsin SERPINA1
10 Aggrecan core protein ACAN 20 Lactotransferrin LTF

https://doi.org/10.1371/journal.pone.0212662.t001
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detected proteins, 65 (28%) were significantly differentially abundant in at least one of the

comparisons between the experimental groups (i.e. ACLT, BEAR and Intact) and / or between

the time points (S3 Table), and 33 (51%) of these were secreted extracellular proteins.

Treatment related changes in synovial fluid proteome

At 6 months, a total of 27 secreted proteins were significantly differentially abundant between

intact group and surgical groups (ACLT and/or BEAR; Table 2). There were no significant dif-

ferences in the normalized abundance levels of the detected secreted proteins between the

ACLT and BEAR groups at 6 months.

At 12 months, a total of 16 secreted proteins were significantly differentially abundant

between intact group and surgical groups (ACLT and/or BEAR; Table 3). Compared to the

BEAR group, the ACLT group had higher normalized abundance levels of vitamin K-depen-

dent protein C (by 2.4 fold, P = 0.00126) along with lower normalized abundance levels of apo-

lipoprotein A4 (by 0.7 fold, P = 0.0213) and cartilage intermediate layer protein (by 0.35 fold,

P = 0.049).

Table 2. Secreted proteins that are significantly different in abundance in ACLT and/or BEAR knees compared to intact group at 6 months. Fold change values rep-

resent the ratio of detection in the ACLT or BEAR group versus intact group; thus a fold change greater than 1 reflects higher protein abundance in the synovial fluid of

the ACLT or BEAR group and a fold change less than 1 reflects higher protein abundance in the synovial fluid of the intact group.

Protein Gene ACLT / Intact BEAR / Intact

Fold Change P-Value Fold Change P-Value

Differentially Abundant Proteins in both ACLT and BEAR Groups Compared to Intact

Vitamin K-dependent protein C PROC 6 1.03E-06 7.35 6.91E-08

Cartilage intermediate layer protein 1 CILP 3.82 5.51E-03 5.35 8.34E-04

Coagulation Factor XII F12 2.71 2.74E-04 2.67 3.34E-04

Alpha-1-antitrypsin SERPINA1 1.62 8.92E-04 1.56 1.80E-03

Clusterin CLU 1.6 6.52E-05 1.65 2.66E-05

Inhibitor of carbonic anhydrase ICA 1.6 1.02E-04 1.47 8.87E-04

Hemopexin HPX 1.59 2.16E-04 1.52 6.56E-04

Serotransferrin TF 1.42 6.18E-05 1.5 7.23E-06

Apolipoprotein A4 APOA4 1.38 2.59E-02 1.63 1.22E-03

Protein AMBP AMBP 1.37 1.23E-02 1.31 2.99E-02

Serum albumin ALB 1.13 3.68E-02 1.18 4.55E-03

Transthyretin TTR 0.83 2.77E-02 0.79 8.35E-03

Inter-α trypsin inhibitor heavy chain 2 ITIH2 0.8 1.99E-02 0.76 5.95E-03

Complement factor B CFB 0.69 3.64E-02 0.72 4.43E-02

Ig lambda-1 chain C regions IGLC1 0.59 2.36E-03 0.59 2.16E-03

Complement factor D CFD 0.58 3.05E-04 0.61 1.17E-03

Ficolin-2 FCN2 0.39 5.27E-03 0.54 3.98E-02

Differentially Abundant Proteins in ACLT Compared to Intact

Haptoglobin HP 3.21 8.33E-04

Coagulation factor V F5 0.09 4.33E-02

Differentially Abundant Proteins in BEAR Compared to Intact

Peptidylprolyl isomerase A PPIA 11.53 1.74E-02

Apolipoprotein C3 APOC3 1.75 4.57E-03

Apolipoprotein E APOE 1.37 2.13E-02

Apolipoprotein A1 APOA1 1.33 2.08E-02

Prothrombin F2 0.73 1.13E-02

Vitronectin VTN 0.71 5.80E-03

https://doi.org/10.1371/journal.pone.0212662.t002
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There were 20 secreted synovial fluid proteins with significant fold changes between the 6

to 12-month time points in ACLT and/or BEAR knees (Table 4). Nine proteins had significant

fold changes from 6 to 12 months after surgery in both groups. Five proteins had a significant

fold change from 6 to 12 months only after untreated ACL transection. Six proteins had a sig-

nificant fold change from 6 to 12 months only after bridge-enhanced ACL repair.

Differentially abundant proteins enriched 7 biological pathways (Process Network ontol-

ogy) including terms related to blood coagulation, proteolysis, inflammation and cell adhesion

(Table 5).

Associations between protein levels and total area of macroscopic articular

cartilage damage

Among all the identified secreted proteins, notable associations (R2� 0.1) were only found

between the total area of the macroscopic cartilage damage across the femoral condyles and

tibial plateau and the normalized abundance levels of Ig lambda-1 chain C regions (r = 0.52),

Hemopexin (r = -0.40), Clusterin (r = -0.35), Coagulation factor 12 (r = -0.32) and Cartilage

intermediate layer protein 1 (r = -0.33); Fig 2.

Discussion

The results of this study support our hypothesis that development of macroscopic cartilage

damage following an ACL injury and subsequent surgery are accompanied with changes in

synovial fluid proteome with different responses in untreated knees compared to repaired

joints. There was no significant difference in cartilage lesion area or quantitative protein abun-

dance levels between the two treatment groups at 6 months. However, by 12 months after

Table 3. Secreted proteins that are significantly different in abundance in ACLT and/or BEAR knees compared to intact group at 12 months. Fold change values

represent the ratio of detection in the ACLT or BEAR group versus intact group; thus a fold change greater than 1 reflects higher protein abundance in the synovial fluid of

the ACLT or BEAR group and a fold change less than 1 reflects higher protein abundance in the synovial fluid of the intact group.

Protein Gene ACLT / Intact BEAR / Intact

Fold Change P-Value Fold Change P-Value

Differentially Abundant Proteins in both ACLT and BEAR Groups Compared to Intact

Trypsin-1 PRSS1 2.23 1.06E-02 2.24 8.52E-03

Haptoglobin HP 1.96 4.03E-02 1.91 4.32E-02

Actin beta ACTB 1.52 1.58E-02 1.65 3.55E-03

Clusterin CLU 1.43 1.28E-03 1.7 7.33E-06

Apolipoprotein A4 APOA4 1.36 3.17E-02 1.86 5.79E-05

Apolipoprotein A1 APOA1 1.29 3.71E-02 1.43 3.90E-03

Vitronectin VTN 0.77 3.28E-02 0.64 4.63E-04

Inter-α trypsin inhibitor heavy chain family member 4 ITIH4 0.63 6.81E-03 0.55 6.32E-04

Differentially Abundant Proteins in ACLT Compared to Intact

Serotransferrin TF 1.2 2.14E-02

Differentially Abundant Proteins in BEAR Compared to Intact

Cartilage intermediate layer protein CILP 2.83 5.01E-02

Annexin A1 ANXA1 2.48 4.36E-02

Plasminogen PLG 0.84 4.88E-02

Inter-α trypsin inhibitor heavy chain 1 ITIH1 0.8 1.69E-02

Inter-α trypsin inhibitor heavy chain 2 ITIH2 0.8 1.67E-02

Ig lambda-1 chain C regions IGLC1 0.68 1.73E-02

Vitamin K-dependent protein C PROC 0.44 1.99E-03

https://doi.org/10.1371/journal.pone.0212662.t003
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surgery, there was significantly greater cartilage damage in the knees with an untreated ACL

transection than in those knees that underwent bridge-enhanced ACL repair (Fig 1). This

damage was accompanied by differences in the proteome between the groups at 12 months,

with the ACLT group having a higher concentration of Vitamin K-dependent Protein C (2.4

fold), and a decreased content of Apolipoprotein A4 (0.7 fold) and Cartilage intermediate

layer protein 1 (0.35 fold) when compared to the BEAR knees. In addition, there was also a dif-

ference in the proteins which significantly changed in abundance between 6 and 12 months

(Table 4), with Insulin-like growth factor-binding protein 2 (IGFBP2), Ig lambda-1 chain C

regions (IGLC1), Hemopexin and CILP changing in the ACLT group, and significant changes

in Annexin A1, alpha-1 antitrypsin, Complement C7, Apolipoprotein C3, Leukocyte elastase

inhibitor and Peptidylprolyl isomerase A (PPIA) found in the BEAR group. Increased levels of

IGLC1 and decreased levels of Hemopexin, Clusterin, Coagulation factor 12 and CILP were

Table 4. Secreted proteins that are significantly different in abundance between 6 and 12 months after surgery.

Differentially abundant in both ACLT and BEAR

Protein Gene ACLT (12 / 6 months) BEAR (12 / 6 months)

Fold Change P-Value Fold Change P-Value

Increased from 6 months to 12 months

Complement factor D CFD 1.80 8.97E-05 1.81 4.98E-05

Transthyretin TTR 1.29 3.36E-03 1.37 2.69E-04

Decreased from 6 months to 12 months

Serotransferrin TF 0.85 2.93E-02 0.72 5.78E-05

Serum albumin ALB 0.85 4.13E-03 0.76 1.05E-05

Inhibitor of carbonic anhydrase ICA 0.74 5.26E-03 0.77 1.09E-02

Apolipoprotein E APOE 0.73 1.61E-02 0.68 3.14E-03

Protein AMBP AMBP 0.73 9.04E-03 0.69 2.07E-03

Coagulation Factor 12 F12 0.60 3.46E-02 0.55 1.18E-02

Vitamin K-dependent Protein C PROC 0.17 1.47E-06 0.06 8.04E-10

Differentially abundant only in ACLT

Protein Gene ACLT (12 / 6 months)

Fold Change P-Value

Increased from 6 months to 12 months

Insulin-like growth factor-binding protein 2 IGFBP2 1.80 2.63E-02

Ig lambda-1 chain C regions IGLC1 1.45 2.20E-02

Thyroxine-binding globulin SERPINA7 1.45 1.24E-02

Decreased from 6 months to 12 months

Hemopexin HPX 0.72 4.98E-03

Cartilage intermediate layer protein 1 CILP 0.26 5.46E-03

Differentially abundant only in BEAR

Protein Gene BEAR (12 / 6 months)

Fold Change P-Value

Increased from 6 months to 12 months

Annexin A1 ANXA1 3.82 2.81E-03

Decreased from 6 months to 12 months

Alpha-1-antitrypsin SERPINA1 0.73 1.51E-02

Complement component C7 C7 0.58 2.73E-02

Apolipoprotein C3 APOC3 0.56 1.87E-03

Leukocyte elastase inhibitor SERPINB1 0.42 3.84E-02

Peptidylprolyl isomerase A PPIA 0.07 6.66E-03

https://doi.org/10.1371/journal.pone.0212662.t004
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also found to correlate with greater cartilage lesion area when the knees from both groups

were pooled (Fig 2).

While there were no statistically significant differences in protein abundance between the

surgical groups at 6 months after surgery, the makeup of the synovial fluid proteome, and spe-

cifically the top 20 most abundant proteins in the fluid, were similar but not identical in the

Table 5. Biological pathways enriched by differentially abundant proteins at 6 months.

Pathway FDR Proteins

Blood Coagulation 1.18E-

04

Vitamin K-dependent protein C, Prothrombin, Plasminogen,

Coagulation Factor V, Coagulation Factor XII, Alpha-

1-antitrypsin

Proteolysis (ECM Remodeling) 3.50E-

04

Plasminogen, Prothrombin, Vitronectin, Coagulation Factor XII,

Trypsin I, Clusterin, Alpha-1-antitrypsin

Inflammation (Kallikrein-Kinin

System)

7.63E-

04

Inter-α trypsin inhibitor heavy chain

family member 4, Prothrombin, Plasminogen, Coagulation Factor

V, Coagulation Factor XII, Alpha-1-antitrypsin

Inflammation (Protein C Signaling) 7.63E-

04

Vitamin K-dependent protein C, Actin Beta, Prothrombin,

Plasminogen, Coagulation Factor V

Inflammation (Complement System) 7.63E-

04

Complement Component C7, Ficolin, Clusterin, Complement

Factor B, Complement Factor D

Cell Adhesion (Platelet-Endothelium-

Leucocyte Interactions)

1.79E-

03

Vitamin K-dependent protein C, Prothrombin, Plasminogen,

Coagulation Factor V, Vitronectin, Coagulation Factor XII

Proteolysis (Connective Tissue

Degradation)

4.51E-

02

Plasminogen, Vitronectin, Trypsin 1, Alpha-1-antitrypsin

https://doi.org/10.1371/journal.pone.0212662.t005

Fig 2. Associations between macroscopic cartilage damage and secreted proteins concentrations. Correlations between macroscopic cartilage damage area

and the normalized abundance levels of (A) Ig lambda-1 chain C regions, (B) Hemopexin, (C) Clusterin, (D) Coagulation factor 12 and (E) Cartilage

intermediate layer protein 1 for both ACLT and BEAR groups at 6 and 12 months.

https://doi.org/10.1371/journal.pone.0212662.g002
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two surgical groups. Seventeen of the 20 most abundant secreted proteins (Table 1) were the

same in ACLT and BEAR groups, 15 of which have been previously reported to be abundant

in synovial fluid of human knees with OA [8, 11, 24]. For the six differences (three in each

group) in the top 20 secreted proteins, the ACLT knees had 2 additional pro-inflammatory

proteins (Haptoglobin and Pituitary adenylate cyclase-activating polypeptide) while the BEAR

group had two protease inhibitors at 6 months (Plasminogen activator inhibitor 1 and Elafin).

The pro-inflammatory role of Haptoglobin, Pituitary adenylate cyclase-activating polypeptide

(PACAP), Plasminogen activation and Elastase are well documented [25–28]. High synovial

fluid concentrations of Haptoglobin, Plasminogen (or Plasmin) and Elastase have been

reported in arthritic knees [11, 24, 29–31]. PACAP-deficiency in mice has shown to result in

lower inflammation in early arthritis followed by increased immune cell function and bone

formation (e.g. osteophytes) in late arthritis [32]. The presence of Haptoglobin and PACAP

among the most abundant proteins in the ACLT group in addition to the presence of Plasmin-

ogen activator inhibitor 1 and Elafin among the most abundant proteins in the BEAR group at

6 months might be indicative of a more pro-inflammatory environment in ACLT knees at

early stages of the disease. Further studies would be needed to validate this hypothesis.

In addition to proteases and protease inhibitors, Apolipoprotein C3 and Aggrecan core pro-

tein (Aggrecan) were the other two secreted proteins which were uniquely present in the

BEAR or ACLT top 20 abundance lists, respectively, at 6 months (Table 1). Apolipoprotein C3

has previously been identified in the synovial fluid of human knees with OA [24], and its

plasma levels have been found to be elevated in patients with non-progressing radiographic

knee OA compared to those who progress [33]. This is reflected by our finding of Apolipopro-

tein C3 among the most abundant proteins in the non-progressive BEAR group and not in the

progressive ACLT group at 6 months (Table 1). Aggrecan has also been previously detected in

synovial fluid of knees with OA [11, 24]; however, in this case, increased Aggrecan in the syno-

vial fluid has been associated with greater cartilage damage in osteoarthritic joints [34–37].

This is reflected in our study where Aggrecan was among the most abundant proteins in the

ACLT group and not in BEAR or intact groups (Table 1).

At 12 months after surgery, there were significant differences in protein abundance levels

between the BEAR and ACLT groups, with an increase in Vitamin K-dependent protein C

and decreases in Apolipoprotein A4 and CILP seen in the ACLT group. Vitamin K-dependent

protein C is an activator of several matrix metalloproteinases (MMPs), including MMP2, 9

and 13, and has shown to be significantly elevated in the synovium and synovial fluid of

patients with rheumatoid arthritis (RA) and OA [38]. While Apolipoprotein A4 has been

detected in the synovial fluid of human knees with OA [8, 24], their role in OA pathogenesis is

not well understood and warrants further studies. Considering recent reports on the role of

lipid metabolism in the OA development [39, 40], it is possible that apolipoprotein proteins

affects knee OA progression by regulating the lipid metabolism and efflux. CILP is a large

secreted glycoprotein with major role in cartilage scaffolding and new cartilage formation

[41]. Increased CILP synthesis by chondrocytes has also been reported in early-stage OA [42,

43]. which can be indicative of joint response to repair damaged cartilage [44]. The consis-

tently higher abundance of CILP in BEAR knees compared to intact (at 6 and 12 months) and

ACLT (at 12 months) knees may suggest a more chondroprotective environment in repaired

knees (Tables 2 & 3).

In addition, at 12 months, the top 20 most abundant proteins in the ACLT knees had 5

additional pro-inflammatory proteins (Vitamin K-dependent protein C, Prothrombin, PPIA

and Chitinase-3-like protein 1) and 3 fewer anti-inflammatory proteins (Clusterin, Alpha-

2-HS glycoprotein and Annexin A1; Table 1). The pro-inflammatory role of Vitamin K-depen-

dent protein C, Prothrombin, PPIA and Chitinase-3-like protein 1, as well as anti-
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inflammatory role of Clusterin, Alpha-2-HS glycoprotein (Fetuin-A) and Annexin A1 in

arthritic joints are well documented [25–28, 45–61]. Elevated levels of these pro-inflammatory

proteins have been reported in serum and synovial fluid of patients with RA and OA [8, 24, 49,

62–65]. Prophenin-2 is a porcine specific Cathelicidin antimicrobial peptide, with similar pro-

inflammatory properties as LL-37 (the only identified Cathelicidin antimicrobial peptide in

humans), which is regulated by macrophages, polymorphonuclear leukocytes, and keratino-

cytes [66]. A recent study has shown strong overexpression of Cathelicidin in joints of patients

with RA and rats with pristane-induced arthritis [67]. A recent proteomic analysis has also

reported LL-37 among identified synovial fluid proteins in the patients with knee OA [24].

The presence of pro-inflammatory proteins among the most abundant proteins in the ACLT

group and the anti-inflammatory proteins among the most abundant proteins in the BEAR

group at 12 months suggests there may be a greater pro-inflammatory environment in ACLT

knees at a later stage of the disease. This is further supported by the observed significantly

lower abundance of the Vitamin K-dependent protein C in BEAR knees compared to ACLT

and intact groups as well as higher abundance of Annexin A1 in the BEAR knees compared to

intact group.

In comparing the proteomes at 6 and 12 months after surgery (Table 4), there were signifi-

cant increases in IGFBP2 and IGLC1 levels, as well as significant decreases in CILP and Hemo-

pexin levels in the synovial fluid of ACLT knees from 6 to 12 months. IGFP2 is synthesized by

synoviocytes and chondrocytes and regulates Insulin-like growth factor (IGF) [68, 69], a key

promoter of cartilage growth [70, 71]. Increased levels of IGFBPs have been reported in the

synovial fluid of arthritic joints [72, 73], and serum concentration has been correlated with RA

disease severity [74–76]. Hemopexin has a negative modulatory function on T-cell differentia-

tion [77, 78], and exogenous administration of Hemopexin has recently been shown to result

in increased glycosaminoglycan deposition [79]. In contrast to increased synovial concentra-

tions of pro-inflammatory proteins (IGFBP2 and IGLC1) in the ACLT knees, there were sig-

nificant decreases in the synovial concentrations of two pro-inflammatory proteins (PPIA and

complement C7) in the BEAR knees from 6 to 12 months.

Biological pathways enriched by the changes in synovial fluid protein content were related

to blood coagulation, proteolysis, inflammation and cell adhesion (Table 5). Among those,

proteolysis (ECM remodeling) and inflammation (complement pathway) pathways have con-

sistently shown to play an active role in OA pathophysiology [8, 80–83]. The role of remaining

5 enriched pathways in the development of OA is less studied. Recent comparative analysis of

synovial fluid in patients with healthy knees with those with knee OA (both early and late

stages) have shown significant enrichment of blood coagulation pathway by differentially

abundant proteins between the groups [8]. Our group has also shown enrichment of cell adhe-

sion (platelet-endothelium-leucocyte interactions) and proteolysis (connective tissue degrada-

tion) pathways by differentially expressed genes in the synovium and cartilage within 2 weeks

after ACL injury in a minipig model of posttraumatic OA [80, 81]. These findings, in addition

to abovementioned evidence supporting the involvement of the proteins / genes, which

enriched these pathways, in OA pathophysiology underscore their importance as potential tar-

gets to mediate the biologic joint response to injury in an effort to lower the risk of posttrau-

matic OA.

Limitations

Unbiased LC MS/MS proteomics techniques are primarily limited to detection of more highly

abundant proteins within a complex biological matrix. Antibody-based depletion methods

could have been used to improved our ability to quantify lower abundance level proteins by
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removing the top abundance level proteins. However, they can also result in removal of lower

abundance level proteins and ultimately pose challenges in accurate quantification of protein

contents [84]. In our discovery workflow, we wanted to capture a “global” representation of

proteins in the synovial fluid, as such chose to avoid antibody-based depletion. To better com-

pensate and delve deeper into the synovial fluid proteome, additional in-depth and/or targeted

approaches are required to further study less abundant proteins that are likely present but not

detectable or quantifiable using this technique (i.e. Lubricin, matrix metalloproteinases and

cytokines). We have previously used similar MS-based proteomics approach to study the syno-

vial fluid proteome of healthy porcine knees [15]. The substantial overlap between those find-

ings and identified proteins here is reassuring and supports our MS-based protein discovery

approach. However, further efforts are essential for orthogonal validation of the identified pro-

teins in individual samples compared to the pooled samples in independent cohorts. Another

limitation is the cross-sectional nature of the study. While the cross-sectional time points have

enabled us to macroscopically assess the cartilage health, longitudinal analyses are required to

better characterize the changes in synovial fluid proteome in response to joint degeneration

over time. Finally, the current results only support associations between cartilage damage and

certain synovial fluid proteins in early posttraumatic OA. Further functional studies are

required to investigate the mechanistic nature of these associations and to determine the

potential application of suggested targets as biomarkers for OA progression or as disease mod-

ifiers for development of novel therapeutics.

Conclusions

Knees treated with a surgical procedure that results in posttraumatic OA (ACLT group) had

higher concentrations of pro-inflammatory proteins and lower concentrations of anti-inflam-

matory proteins than knees treated with a surgical procedure that does not result in post-trau-

matic OA (bridge-enhanced ACL repair). In addition, the group developing posttraumatic OA

had a lower and declining synovial concentrations of CILP, in contrast to a consistently high

abundance of CILP in repaired knees. These differences suggest that the knees treated with

bridge-enhanced ACL repair may be maintaining an environment that is more protective of

the extracellular matrix, a function which is not seen in the ACLT knees.
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