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Abstract

Background: Malnourished children have increased risk of dying, with most deaths caused by infectious diseases. One
mechanism behind this may be impaired immune function. However, this immune deficiency of malnutrition has not
previously been systematically reviewed.

Objectives: To review the scientific literature about immune function in children with malnutrition.

Methods: A systematic literature search was done in PubMed, and additional articles identified in reference lists and by
correspondence with experts in the field. The inclusion criteria were studies investigating immune parameters in children
aged 1–60 months, in relation to malnutrition, defined as wasting, underweight, stunting, or oedematous malnutrition.

Results: The literature search yielded 3402 articles, of which 245 met the inclusion criteria. Most were published between
1970 and 1990, and only 33 after 2003. Malnutrition is associated with impaired gut-barrier function, reduced exocrine
secretion of protective substances, and low levels of plasma complement. Lymphatic tissue, particularly the thymus,
undergoes atrophy, and delayed-type hypersensitivity responses are reduced. Levels of antibodies produced after
vaccination are reduced in severely malnourished children, but intact in moderate malnutrition. Cytokine patterns are
skewed towards a Th2-response. Other immune parameters seem intact or elevated: leukocyte and lymphocyte counts are
unaffected, and levels of immunoglobulins, particularly immunoglobulin A, are high. The acute phase response appears
intact, and sometimes present in the absence of clinical infection. Limitations to the studies include their observational and
often cross-sectional design and frequent confounding by infections in the children studied.

Conclusion: The immunological alterations associated with malnutrition in children may contribute to increased mortality.
However, the underlying mechanisms are still inadequately understood, as well as why different types of malnutrition are
associated with different immunological alterations. Better designed prospective studies are needed, based on current
understanding of immunology and with state-of-the-art methods.
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Introduction

Malnutrition in children is a global public health problem with

wide implications. Malnourished children have increased risk of

dying from infectious diseases, and it is estimated that malnutrition

is the underlying cause of 45% of global deaths in children below 5

years of age [1–2]. The association between malnutrition and

infections may in part be due to confounding by poverty, a

determinant of both, but also possibly due to a two-way causal

relationship (Figure 1): malnutrition increases susceptibility to

infections while infections aggravate malnutrition by decreasing

appetite, inducing catabolism, and increasing demand for nutri-

ents [3]. Although it has been debated whether malnutrition

increases incidence of infections, or whether it only increases

severity of disease [3], solid data indicates that malnourished

children are at higher risk of dying once infected [2–4]. The

increased susceptibility to infections may in part be caused by

impairment of immune function by malnutrition [5]. The

objective of this study was to investigate the associations of

different types of malnutrition with immune parameters in

children, through a systematic review of the literature.

Since most infections and deaths in malnourished children

occur in low-income settings, the organisms causing disease are

rarely identified. Therefore, little is known about whether these

differ from pathogens infecting well-nourished children, and

whether malnourished children are susceptible to opportunistic
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infections. Although opportunistic infections like Pneumocystis
jirovecii and severe varicella has been reported in malnourished

children [6–7], these studies were carried out before the discovery

of HIV, and may represent cases of un-diagnosed paediatric

AIDS. More recent studies have found that Pneumocystis jirovecii
pneumonia is not frequent in malnourished children not infected

with HIV [8]. However, quasi-opportunistic pathogens like

cryptosporidium and yeast are frequent causes of diarrhoea in

malnourished children [9], and malnourished children have a

higher risk of invasive bacterial infections, causing bacterial

pneumonia [8], bacterial diarrhoea [10–11], and bacteraemia

[12–14], with a predominance of gram negative bacteria. Due to

the high prevalence of invasive bacterial infections, current

guidelines recommend antibiotic treatment to all children with

severe acute malnutrition, even though the evidence behind is not

very strong [14].

Non-immunological factors may also contribute to increased

mortality in malnourished children: reduced muscle mass may

impair respiratory work with lung infections [15]; reduced

electrolyte absorption from the gut [16] and impaired renal

concentration capacity may increase susceptibility to dehydration

from diarrhoea [5]; and diminished cardiac function may increase

risk of cardiac failure [17]. Thus, immune function may only be

one of several links between malnutrition, infections and increased

mortality, but most likely an important one.

Definitions of malnutrition
This review considers childhood malnutrition in the sense of

under-nutrition, causing growth failure or weight loss, or severe

acute malnutrition, either oedematous, or non-oedematous.

Growth failure caused by malnutrition has commonly been

defined by low weight-for-age (underweight), length-for-age

(stunting), or weight-for-length (wasting) [5]. Generally, older

studies diagnosed malnutrition using weight-for-age, while newer

studies tend to use weight-for-length. Recently, mid-upper arm

circumference (MUAC) has been promoted to diagnose severe

acute malnutrition, because of its feasibility and because it predicts

mortality risk better than other anthropometric indices [18]. Other

definitions of malnutrition include specific micronutrient deficien-

cies, intra-uterine growth restriction, and obesity, but these

conditions are outside the scope of this review.

Severe Acute Malnutrition
Two forms of severe acute malnutrition in children exist: non-

oedematous malnutrition, also known as marasmus, characterized

by severe wasting and currently defined by weight-for-length z-

score ,23 of the WHO growth standard, or MUAC ,11,5 cm;

and oedematous malnutrition defined by bilateral pitting oedema

(Figure 2) [19]. Kwashiorkor refers to a form of oedematous

malnutrition, the fulminant syndrome including enlarged fatty

liver, mental changes as well as skin and hair changes [20]. The

term ‘‘marasmic kwashiorkor’’, has been used to describe children

Figure 1. Conceptual framework on the relationship between malnutrition, infections and poverty.
doi:10.1371/journal.pone.0105017.g001
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with both wasting and oedema [21]. It is still unknown why some

children develop oedematous malnutrition, and unclear whether

this form of malnutrition is associated with a different degree of

immune deficiency.

Materials and Methods

A systematic literature search was carried out in PubMed using

combinations of the search terms related to malnutrition and

immune parameters. The full search strategy and the search terms

used are described in Figure 3.

Inclusion criteria were: studies presenting original clinical data

regarding immune parameters in children, aged 1–60 months,

where a comparison was made, either between malnourished and

well-nourished children, or between malnourished children before

and after nutritional rehabilitation. Exclusion criteria were studies

of children with another primary diagnosis such as cancer,

congenital heart disease or endocrine disease. Studies were

accepted where children had co-morbid infections, since this is

typically seen in malnourished children. Articles by RK Chandra

were excluded, due to concerns about possible fraud [22]. Studies

published in peer-reviewed scientific journals, as well as in books

were included. Only articles in English were included.

The search was carried out in August 2013, and updated in

December 2013. The search results were sorted by MJHR, based

on titles, abstracts or full-text-articles. Additional literature was

obtained from reference lists, text books and by personal

communication with experts.

For data retrieval, studies were sorted according to whether they

investigated barrier function (skin and gut), innate immunity or

acquired immune system, and listed in tables based on the specific

immune parameter studied. Some studies were included in more

than one table. The following data was extracted from each article:

year and country, number and age range of malnourished and

well-nourished participants, type of malnutrition and whether

included children fulfilled WHOs current diagnostic criteria for

severe acute malnutrition, whether infections were present,

immune parameter studied, methods used, how the parameter

was associated with malnutrition, and whether children with

oedematous and non-oedematous malnutrition were differentially

affected.

The results of the included articles were summarized for each

immune parameter. Due to the heterogeneous nature of study

designs, participants and outcomes, it was not meaningful to

synthesize the results in a meta-analysis. The main potential bias

was presence of infection. For this reason, presence and effect of

infection was considered for each study as well as for each

outcome. The PRISMA (Preferred Reporting Items for Systematic

Reviews and Meta-Analyses) guideline was followed, except for the

items relating to meta-analysis (Checklist S1).

Figure 2. Clinical picture: two forms of severe acute malnutrition, oedematous and non-oedematous malnutrition.
doi:10.1371/journal.pone.0105017.g002
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Results

The search in PubMed yielded 3402 articles. By contacting

experts in the field, an additional 631 papers were obtained.

Reference list of all papers read were screened for relevant papers

not included in the initial search. Of all the screened papers, 245

met the inclusion criteria (Figure S1). Another 49 articles were

identified which, in addition to children 1–60 months old, also

included older children. These studies were not included in the

main analysis, but used in a sensitivity analysis in which all studies

were included. The result of this additional analysis was essentially

similar to the results obtained with studies only including children

less than 60 month (results not shown). The studies were published

between 1957–2014, mainly in the 1970s and 1980s. Only 33

studies were published after 2003 (Figure 4). The studies included

29 prospective studies that compared malnourished children to

themselves after nutritional recovery, and 216 cross-sectional

studies. Of the cross-sectional studies, 51 were community-based,

comparing immune parameters in children according to nutri-

tional status. The remaining 165 cross-sectional studies compared

hospitalised malnourished children to well-nourished children,

often recruited outside the hospital. In 53 studies, all children

fulfilled WHOs diagnostic criteria for severe acute malnutrition

[23]. The vast majority of these studies included children with

oedematous malnutrition, while only two studies included children

with non-oedematous malnutrition based on the new WHO

growth standard.

The results of each immune parameter are summarized in

Table 1, and the results of individual articles are summarized in

Tables S1–14.

Epithelial barrier function
The barrier function of the skin and mucosal surfaces is

considered the first-line defence of the immune system, upheld by

the physical integrity of the epithelia, anti-microbial factors in

secretions (e.g. lysozyme, secretory IgA and gastric acidity) and the

commensal bacterial flora [24].

Of the articles describing barrier function in malnourished

children, six described skin structure and function, 21 described

structure and permeability of intestinal mucosa, 19 protective

factors in secretions and 11 the microbial flora colonizing mucosal

surfaces.

Skin. Skin barrier has mostly been studied in children with

oedematous malnutrition, who may develop a characteristic

dermatosis, characterized by hyper-pigmentation, cracking and

scaling of the epidermis, resembling ‘‘peeling paint’’, providing a

potential entry port for pathogens [25].

Six articles assessed barrier and immune function of the skin in

malnourished children (table S1). Two articles describing

histology reported atrophy of skin layers, but did not describe

cutaneous immune cells [26–27]. Four articles described the

‘‘cutaneous inflammatory response’’: They made small abrasions

in the skin, and placed microscopy slides over the sites. Similar or

higher numbers of white blood cells migrated onto slides in

malnourished children, predominantly granulocytes and a lower

proportion of monocytes and macrophages [28–31]. This pattern

was noted to resemble a neonatal immature immune response

[30]. All four articles found this pattern in patients with

oedematous malnutrition, while one study found that the response

of non-oedematous children resembled that of well-nourished

[30].

Structure and function of the intestinal mucosa. The

intestinal mucosa of malnourished children was described in 21

articles (table S2). Autopsy-studies from as early as 1965

described a thin-walled intestine in malnourished children, and

noted that ‘‘… the tissue paper intestine of kwashiorkor is well

known to tropical pathologists.’’ [32]. Small-intestinal biopsies

showed thinning of the mucosa [33–36], decrease in villous height

[37–43], altered villous morphology [32] [40] [44] and infiltration

of lymphocytes [32] [34–38]. Electron-microscopy studies found

sparse brush border with shortened microvilli and sparse endo-

plasmatic reticulum [42]. Others found increased intestinal

permeability to lactulose [45–48]. Such an intestine may

predispose to bacterial translocation, and likewise, one of the

included articles described high levels of lipopolysaccharide in the

blood of malnourished children, probably originating from gut

bacteria translocating into the bloodstream [49]. However, the

mucosal atrophy and functional changes did not only occur in

malnourished children. Although sometimes found to be most

severe in malnourished children [33] [35–36] [46–47], similar

Figure 3. Full search strategy in PubMed, including search terms and filters.
doi:10.1371/journal.pone.0105017.g003
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abnormalities were present in apparently well-nourished children

from the same environment [38–40] [43] [50], and frequently

persisted after nutritional recovery [34] [37] [51].

Two articles described immune cells in small intestinal biopsies

from malnourished children in Gambia and Zambia: both

reported increased lymphocyte infiltration, more T-cells, and cells

expressing HLA-DR in malnourished children compared to

English children [37–38]. However, it was similar to Gambian

well-nourished children [38], and unaltered by nutritional

recovery [37]. Both well-nourished and malnourished Gambian

children had high levels of intestinal cytokine expression, but

malnourished children had an increased ratio of cells expression

pro-inflammatory to regulatory cytokines, compared to the well-

nourished Gambian children [38].

The colon was only described in one article, reporting increased

vascularity, atrophy of the mucosa and a tendency to rectal

prolapse in children with oedematous malnutrition [52].

Four articles compared the intestine of children with oedem-

atous and non-oedematous malnutrition: one study from South

Africa found that the histological changes were most severe in

those with oedema [40]. Two articles from Chile found that

children with non-oedematous malnutrition had a thinner mucosa,

whereas children with oedema had more villous atrophy and more

cellular infiltration [35–36]. In contrast, a more recent study from

Zambia found higher numbers of T-cells and cells expressing

HLA-DR in the intestines of children with non-oedematous than

oedematous malnutrition, while the intestines of oedematous

children were deficient in sulphated glycosaminoglycan [37].

Antimicrobial factors in mucosal secretions. Nineteen

articles were published on anti-microbial factors in secretions from

malnourished children (table S3). Secretory IgA (sIgA) was

investigated in 15 studies, of which 11 investigated saliva, urine,

tears, nasal washings and duodenal fluid [53–63] and three

investigated small intestinal biopsies [39–40] [64].

SIgA in saliva, tears and nasal washings was frequently reduced

in severely malnourished children [54–55] [57–58]. One article

from Egypt reported increased levels in children with oedematous

malnutrition [56], but may have overestimated sIgA, since saliva

flow was reduced in malnourished children, and sIgA was

expressed as g/l, whereas other articles expressed it as sIgA as

% of protein content. Studies of sIgA in duodenal fluid showed

conflicting results [57] [59], as did studies quantifying sIgA in

small intestinal biopsies [39–40] [64]. The sIgA content of urine

was increased or normal in severely malnourished children [60–

61]. In mild to moderately underweight children, inconsistent

results were found for sIgA in tears [63] and saliva [53–54] [62–

63].

Tear lysozyme content was found to be reduced in malnour-

ished children [54] [63], while saliva lysozyme was unaffected [53–

54]. Gastric acid secretion was consistently reduced in severely

Figure 4. Number of studies published per 5-year period about immune function in malnourished children.
doi:10.1371/journal.pone.0105017.g004
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malnourished children [65–68], and higher pH was associated

with bacterial colonization of the stomach [65].

Microbial colonization. Microbes colonizing skin and mu-

cosa may protect against infections by competing with pathogens,

by producing specific antimicrobial substances, and by stimulating

host immune function [69]. Despite much recent interest in the

subject, of 11 articles describing the micro-flora in malnourished

children, only four were published during the last ten years (table
S4). All found malnourished children to host a different flora from

well-nourished children. Their mouths and throats contained

more yeast [70–72], and their stomach and duodenum, which in

healthy children is considered to be almost sterile, contained a

large number of microorganisms [72–75]. Although one study

found similar degree of small intestinal bacterial overgrowth in

diarrhoeal patients with and without malnutrition [75], another

found more small intestinal bacteria in malnourished than in well-

nourished children with diarrhoea [72]. While gram positive cocci

predominated in the small intestine of well-nourished children,

malnourished children hosted more gram negative bacteria [65]

and yeast [74].

The colonic flora, containing the vast majority of commensal

bacteria, was described by sequencing bacterial DNA from stool

samples in four recent articles, which consistently found that the

pattern of bacteria was different in malnourished and well-

nourished children [76–79]. More bacteria with pathogenic

potential were found in the malnourished children [77–78], and

their flora was less mature [79] and less diverse [76] [78]. A twin

study from Malawi suggested that micro-flora pattern could also

play a role in developing malnutrition [76]. No articles have so far

reported whether the intestinal flora is different in children with

oedematous and non-oedematous malnutrition.

Innate immune system
The innate immune system delivers an unspecific response

relying on leukocytes (like granulocytes, monocytes and macro-

phages), as well as soluble factors in blood (like acute phase

proteins and the complement system) [24]. Of the articles

describing innate immune response, 38 described number and

function of leucocytes, 25 acute phase proteins and 24 comple-

ment components and activity.

White blood cells of the innate immune system. Thirty-

eight articles described number and function of leukocytes of the

innate immune system (table S5). Most reported similar or higher

numbers of total leukocytes in blood of malnourished children [49]

[80–92], and three found that granulocytes were higher in

malnourished children [81] [86] [93].

Two studies from Nigeria and one from Ghana found no

difference in the mean percentage of natural-killer-cells among

malnourished or well-nourished children [94–96], although two

reported that more malnourished children had abnormally low

numbers of natural-killer cells. In Zambia, levels of dendritic cells

were lower in blood from malnourished children before nutritional

rehabilitation than after, and elevated inflammation markers were

associated with a paradoxical lower level of dendritic cell

activation. This was associated with endotoxin levels in the blood,

and was interpreted as a type of immune-paralysis, related to

inflammation and bacterial translocation [49]. Unfortunately, it

was not assessed whether this was different from well-nourished

children with severe infections.

Chemotaxis of granulocytes was reduced in malnourished

children in three of five studies [80] [83] [97–99], and one study

found a diminished ability to adhere to foreign material [100].

Results for phagocytosis were mixed: five of 12 studies found that

leukocytes of malnourished children had reduced ability to ingest

particles or bacteria [81] [83] [88–89] [97–98] [101–106].

Microbicidal activity of granulocytes was reduced in malnourished

children in five of seven studies [80] [83] [88] [97–98] [103] [107],

while two of three studies found macrophages from malnourished

children to have normal microbicidal activity [89] [108–109].

Neutrophils may kill microorganisms by producing reactive

oxygen compounds; assessable by the Nitroblue Tetrazolenium

(NBT) test, which, however, gave inconsistent results in malnour-

ished children [83] [105] [110–114]. It has been hypothesized,

that reactive oxygen production is involved in the pathogenesis of

oedematous malnutrition [115]; however, the NBT test results did

not show any clear pattern in children with oedematous compared

to non-oedematous malnutrition.

One study found the levels of enzymes, like alkaline and acid

phosphatase, to be increased in leukocytes from children with

malnutrition [116]. More leukocytes of malnourished children

were found to have markers of apoptosis (CD95) [92], and signs of

DNA damage [117–118].

No articles have yet described the expression of pattern-

recognition molecules, like Toll-like receptors in malnourished

children, although these are fundamental to the function of the

innate immune system.

Acute phase response. Acute phase responses is induced by

infection or trauma, and mediated by cytokines like IL-6 and

TNF-a. It involve temporal suppression of acquired, and

amplification of innate immune responses, with secretion of

positive acute phase proteins (APP) like C-reactive protein (CRP),

serum-amyloid-A (SAA), complement factors, a-1-acid-glycopro-

tein or ferritin [119], while levels of other proteins are reduced, as

albumin, pre-albumin, transferrin, a -2-HS-glycoprotein, and a -

fetoprotein. These are sometimes called ‘negative acute phase

proteins’, although it is not clear whether their reduced level are

due to active down-regulation, or because of competition with

production of positive acute phase proteins. Twenty-four articles

described the levels of acute phase proteins in malnourished

children with or without infection (table S6).

Acute phase response in children with infections. Most

studies found elevated positive APP in malnourished children with

infections. This included CRP [120–128], a-1 acid-glycoprotein

[120–121] [129], haptoglobin [120–121] [125] [127] [129] while

the results for ceruloplasmin [125] [130], and a-1-antitrysin were

inconsistent [120–121] [125] [127–129]. Only one study found

lower CRP levels in malnourished than well-nourished children

with similar infections, despite higher levels of IL-6 [129]. So-

called negative APP were uniformly low in children with

malnutrition and infection, including transferrin [94] [127]

[130–133], a-2-HS-glycoprotein [134–136], pre-albumin [122],

fibronectin [132], and a-2-macroglobulin[127].

Acute phase response in children without

infections. Three studies found elevated CRP in malnourished

children without apparent infections [94] [124] [128], while two

studies found similar CRP-levels in malnourished and well-

nourished children [122] [137]. Results for a-1-antitrysin were

inconsistent [128]. So-called negative acute phase proteins like

transferrin [94] [130], a-2-HS-glycoprotein [135], fibronectin

[133] [138] and pre-albumin [122] [138–139] were consistently

reduced in malnourished children, even without infections.

Acute phase response to a controlled stressor. Four

articles described the acute phase response induced by a vaccine.

Two reported a normal [140] or increased [141] febrile response

to measles vaccine in malnourished children. In another study, a

similar rise in APP was seen in malnourished and well-nourished

children [137], in response to a diphtheria-pertussis-tetanus-

vaccination, but the increase in APP was greater when the
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vaccination was repeated after nutritional rehabilitation. The same

was found for the febrile response to a repeated vaccine in

malnourished children [142]. Since no repeated vaccine was given

to well-nourished children, it is unknown whether they would also

have had a stronger response to the second dose.

Complement. The complement system consists of plasma

proteins secreted by the liver that, upon activation, react to recruit

immune cells, opsonize and kill pathogens [24]. Three main

pathways activate the complement system: the classical pathway,

the alternative pathway and the lectin pathway [143], with the

complement protein C3 playing a central role in all three

pathways.

Twenty-four articles described levels or in-vitro activity of

complement proteins (table S7). In 17 of 21 studies, levels of C3

were depressed in malnourished children [89] [94] [99] [106]

[124–125] [127–130] [144–154]. Two studies found C3 to

correlate with albumin [94] [148], and with one exception [94],

C3 levels were lower in children with oedematous than non-

oedematous malnutrition [89] [146] [149] [150–151] [153].

Few studies assessed C6, C9, and factor B, and most found

reduced levels in malnourished children [145] [148–149] [151]

[153], most so in oedematous malnutrition [148–149] [151] [153].

Levels of C1 and C4 were mostly normal in malnourished

children [94] [99] [145] [148] [150–153], while two studies found

reduced levels of C4 in patients with oedematous, but not non-

oedematous malnutrition [89] [149]. Studies assessing C5 showed

inconsistent results [145] [148–149] [151] [153].

Classical pathway activity was either unaffected [106] [145–

146] [152], reduced [148] [155] [156], or reduced only in

oedematous, but not in non-oedematous malnutrition [157].

Alternative pathway activity was reduced in two studies [145]

[156] and unaffected in one [146]. General opsonic activity of

serum was reduced in one study [156]. No articles reported the

activity of the lectin pathway.

Both reduced production and increased consumption may

explain the reduced levels of complement factors. Complement

components are produced by the liver, and their levels correlated

with albumin levels, the production of which is also impaired in

malnutrition [158]. However, increased consumption is also

supported by one study showing high levels of C3d, a by-product

after activation of C3, in malnourished children, most pronounced

in oedematous malnutrition [148].

Acquired immunity
Acquired immunity is characterized by specialized cellular and

antibody-mediated immune responses, generated by T- and B-

lymphocytes reacting with high specificity towards pathogens and

creating long-lasting immunological memory. The acquired

immune system also orchestrates tolerance to self and other non-

pathogenic material like gut bacteria [24]. Of the articles

describing acquired immunity, 12 described the thymo-lymphatic

system, 21 delayed-type hypersensitivity responses (DTHR), 58

lymphocyte subsets in blood, 32 immunoglobulins in blood, 35

vaccination responses and 35 cytokines.

Thymus. The thymus gland is the central lymphatic organ in

the acquired immune system, where maturation and proliferation

of T-lymphocytes take place. The thymus is large at birth and

undergoes gradual involution after childhood [159], with dimin-

ished output of T-lymphocytes [160].

Six articles reported autopsy studies of the thymo-lymphatic

system in malnourished children, published between 1956 and

1988 [161–166] table S8). All reported thymus atrophy in

malnourished children, to an extent termed ‘‘nutritional thymec-

tomy’’ [164]. Histology revealed depleted thymocytes, replace-

ment with connective tissue, and decreased cortico-medullar

differentiation [163] [165–166].

Eight articles reported thymic size measured by ultrasound, in

relation to nutritional status [91] [167–173] (table S9). Five of

these studied children with severe malnutrition and found severe

thymic atrophy [91] [167–170], reversible with nutritional

rehabilitation, although thymic size did not reach normal levels

as fast as anthropometric recovery [91] [170]. Thymic size was

also measured by ultrasound in cohorts of children to determine

patterns of thymic growth [159] [171], in a vaccination trial in

Guinea Bissau [172] and in a pre-natal nutritional supplementa-

tion trial in Bangladesh [171]. These studies confirmed that

thymus size was associated with nutritional status, even in mild

malnutrition. Breastfed children often had a larger thymus than

artificially fed children [174], possibly explained by IL-7 in breast

milk [175], and children with a large thymus were found to have a

higher chance of surviving than those with a small thymus [172]

[176].

Other lymphatic tissue. Six articles reported investigations

of other lymphatic tissue. Four autopsy studies found atrophy of

lymph nodes, spleen, tonsils, appendix and Peyer’s patches,

although not as pronounced as in the thymus. Histology revealed

a reduction in germinal centres and depletion of lymphocytes from

para-cortical areas [161] [163–165]. Two studies in living children

also found that the tonsils were smaller in malnourished than in

well-nourished children [163] [177].

Delayed type hypersensitivity response

(DTHR). Cellular immune function can be examined by dermal

DTHR, the prototype of which is the Mantoux test. Intradermal

application of substances like candida or phyto-hemaglutinin

(PHA) are also used, as well as sensitizing skin with a local contact

sensitizer such as 2-4-di-nitro-clorobenzene (DNCB). Twenty-one

articles reported DTHR in relation to malnutrition (table S10).

The majority of studies found that malnourished children less

frequently developed a positive Mantoux after BCG vaccination

[154] [177–185]. Most also found diminished reactivity to

Candida, PHA and other common antigens [29] [145] [179]

[183] [186–190], and after sensitizing with DNCB [163] [177]

[179] [183] [188] [191–192]. Conflicting results were found for

DTHR in children with different types of severe malnutrition:

Three studies found most impaired response in oedematous

malnutrition [179] [181] [191], while one found that it was worst

in non-oedematous malnutrition [184], and two studies found

similar responses [186] [187].

The proportion of positive DTHR varied from study to study,

both in well-nourished and malnourished children. Inconsistent

results were found in moderately malnourished children [178]

[180–181] [185–187] [193]. Other studies found that DTHR was

improved with zinc supplementation [190] [194–195] diminished

by infections [178] [181] [196], and in slightly older children, a

strong interaction was seen between infections and nutritional

status [197].

Lymphocytes in blood. Fifty-eight articles reported either

total numbers of lymphocytes or lymphocyte subsets in blood

(table S11). Of 16 articles, 13 reported similar or higher levels of

lymphocytes in peripheral blood of malnourished children [80–83]

[85–87] [90] [93] [101] [177] [179] [187] [191] [198] [199].

Three studies found that children with oedematous malnutrition

had more atypical lymphocytes in blood, resembling plasma cells

[81] [87] [93]. Other indicators of functional differences were

higher density [200], different pattern of gene expression [201],

and more markers of apoptosis in lymphocytes of malnourished

children [92] [202].
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T-lymphocytes in blood. Numbers of T-lymphocytes were

described in 29 articles (table S11). Early studies identified T-

lymphocytes as those forming rosettes with sheep red blood cells,

while later studies used monoclonal antibodies to CD3. Using the

rosette-method, 19 of 20 studies found lower levels of T-

lymphocytes [28] [87] [93] [101] [128] [130] [144] [183] [186–

187] [191] [199] [203–210]. Four studies using monoclonal CD3-

antibodies and cell-counting by microscopy also found reduced

levels of T-lymphocytes in malnourished children [144] [167–168]

[207]. In contrast, only one flow cytometry study found lower

levels of T-lymphocytes in malnourished children [211], while four

did not [86] [94] [210] [212]. Accordingly, it seems like the

rosette-based method identifies different T-lymphocytes than flow

cytometry. Some studies found that the numbers of T-lymphocytes

were reduced in acute infections [86] [90] [212].

Lymphocyte response to PHA stimulation. In healthy

children, incubation of lymphocytes with PHA results in T-

lymphocytes to proliferate. Seventeen out of 23 articles reported a

reduced proliferative response to PHA in lymphocytes of

malnourished children [93] [97–98] [101] [147] [154] [163]

[177] [179] [186–187] [189–190] [192] [196] [203] [212–218].

Zinc supplementation improved the response in malnourished

children [190].

CD4+ lymphocytes. With assessment of CD4 counts be-

coming widely available, it has been investigated whether the

number of CD4+ lymphocytes was affected by malnutrition. In

children without HIV, two of four studies using monoclonal

antibodies and microscopy found reduced levels of CD4+
lymphocyte in malnourished children [144] [168] [219] [207],

while all seven flow cytometry-studies except one [211] found

similar or higher levels [86] [90] [91] [94] [198] [212]. Bacterial

infections were noted to reduce the CD4-count [86]. For

malnourished children infected with HIV, it was hoped that re-

nutrition alone could increase their level of CD4+ lymphocytes.

However, a study from Zambia found that CD4 counts declined

during nutritional rehabilitation in HIV-infected malnourished

children without anti-retroviral treatment [198]. Thus, a low level

of CD4+ lymphocytes can probably not be attributed to

malnutrition, regardless of whether the child has HIV or not.

Three studies noted that level of CD4+ lymphocytes were

higher in children with oedematous than with non-oedematous

malnutrition [91] [198] [220], and several studies have noted that

children with HIV were less likely to develop oedematous

malnutrition [198] [220] [221], suggesting that some level of

CD4+ lymphocytes could be required to develop the syndrome.

Activation markers on T-lymphocytes. Most flow cytom-

etry studies assessing surface markers on T-lymphocytes have been

carried out in Mexico, all comparing malnourished infected

children with similarly infected well-nourished children. Malnour-

ished children were found to have fewer effector T-lymphocytes,

identified as cells lacking the ‘‘naı̈ve’’ markers CD62L and CD28

[90], fewer activated T-lymphocytes, with the markers CD69 and/

or CD25 [212] [222] [223], and fewer memory T-lymphocytes

identified by the marker CD45RO+ [86]. In contrast, a study from

Ghana found similar numbers of activated T-lymphocytes,

identified by HLA-DR, in malnourished and well-nourished

children [94].

B-lymphocytes. Articles published before 1990 measured B-

lymphocytes as those forming rosettes when incubated with sheep

erythrocytes and C3, while more recent studies used monoclonal

antibodies to CD20 and flow cytometry. All seven rosette-based

studies found unaffected or higher B-lymphocyte counts in

malnourished children [130] [186] [200] [204] [206] [213]

[224], as did one study using anti-CD20 and microscopy [167].

In contrast, all four studies using flow cytometry found reduced

numbers of B-lymphocytes in malnourished children [86] [94]

[211] [212].

Antibody levels. Thirty-two articles described immunoglob-

ulins in blood of malnourished children (table S12). Nineteen of

27 studies found no difference in IgG antibodies or total c-globulin

between malnourished and well-nourished children [94] [53] [63–

64] [82] [130] [144] [147] [150] [154] [179] [186] [224–238].

Likewise, IgM levels were most frequently similar, or higher in

malnourished than well-nourished children [94] [53] [63–64] [82]

[130] [144] [147] [154] [179] [186] [224–225] [227–238].

IgA was elevated in malnourished children in 19 of 27 studies

[94] [53] [55–56] [63–64] [82] [130] [144] [147] [150] [154]

[179] [224–225] [227–238]. With a few exceptions [150] [232], all

studies found elevated levels of IgA in oedematous malnutrition,

while 11 of 19 studies found that IgA in non-oedematous or

underweight children was normal [94] [53] [55–56] [63] [82]

[130] [144] [150] [154] [179] [224] [227] [230] [233–238]. One

study noted that levels of IgA correlated with the degree of

dermatosis in children with Kwashiorkor [231].

IgE showed no clear pattern, but was elevated in malnourished

children in three of six studies [82] [147] [211] [233] [238–239].

IgD, present in low amounts in healthy children, was elevated in

children with malnutrition in two studies[130] [233], or elevated

in oedematous but not non-oedematous malnutrition [179], while

one study found that it was similar to well-nourished children [82].

Antibody vaccination responses. Thirty-five articles de-

scribed vaccination responses to a specific antigen (table S13).

The articles either reported sero-conversion rates, or antibody titre
response. Studies assessing sero-conversion rates in children with

severe malnutrition found mixed results: Six of 10 studies found

reduced sero-conversion rates in children with severe malnutrition

to typhoid [101] [240], diphtheria [101], tetanus[101] [206],

tetanus-diphtheria-pertussis (DTP) [234], hepatitis B [241],

measles [141] [149] [242] and yellow fever [243–244], and two

studies found that sero-conversion was delayed in malnourished

children [245] [238]. Ten of 11 studies found that severely

malnourished children responded with reduced antibody titres

[101] [141] [149] [206] [233–234] [238] [240–242] [246], despite

some of the studies finding acceptable sero-conversion rates. No

study found that children with oedematous malnutrition had a

normal antibody response to vaccination. One study from 1964

found improved antibody response to DTP in children with

oedematous malnutrition randomized to a high-protein diet [247].

There did not seem to be any specific vaccines whose antibody

response was more affected than others by malnutrition, nor was

there any pattern in terms of responses to live or dead vaccines.

In contrast, mild and moderately malnourished children were

most often found to seroconvert normally when vaccinated against

smallpox [248], diphtheria [101] [178] [249] [284] , DTP [178]

[234], measles [139] [140] [178] [245] [250–255], polio [178]

[256], meningococcus[178] [257], and hepatitis B [258], and 9 of

11 articles reported similar level of antibody titres response in

moderately malnourished, as well-nourished children [101] [140]

[154] [178] [234] [248–249] [252–253] [258–259].

Three of five articles reported similar adverse reactions to

vaccination in malnourished as in well-nourished [140–141] [242]

[245–255]. In contrast, one study found that malnourished

children given measles vaccine frequently developed diarrhoea,

pneumonia and fever, compared to well-nourished children, who,

in turn, more often developed a rash [141].

Results were inconsistent for studies assessing levels of specific

antibodies to non-vaccine antigens, like blood type antigens [260]

malaria [261], H. influenza, E. Coli [235] [262], Ascaris [211],
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Rotavirus and Lipopolysaccharide [262]. Most of these studies

were done in children with moderate malnutrition.

Cytokines. Cytokines are signal molecules acting locally

between immune cells, and sometimes with systemic effects.

Thirty-five articles described cytokines in malnourished children

(table S14).

Early works identified cytokines as factors in serum influencing

various in-vitro functions of immune cells. Thus, three of five

studies found that ‘‘Leucocyte Migration Inhibiting factor’’ was

lower in malnourished children [84] [263–264], that serum from

malnourished children contained an ‘‘E-rosette inhibiting sub-

stance’’ [128] [265], ‘‘lympho-cytotoxin’’ [266], and a substance

inhibiting lymphocyte response to PHA [218] [147] [267–268],

sometimes called IL-1 [269]. Similarly, Interferon (IFN) was

quantified by the antiviral effect of plasma on a cell culture [95]

[196]. In neither of these bioassays, the substance responsible for

the effect was known. More recent studies assessed levels of

cytokines by immunoassays, looking for structurally known

cytokines in plasma [123] [270–272] or in cultured leucocytes

[89], with flow cytometry staining for intracellular cytokines [222–

223], or by identifying mRNA coding for the protein [273–274],

with remarkably consistent results.

Cytokines commonly found to be low in malnourished children

included IL- 1 and IL-2 [222–223] [269–270] [273–274],

although one study found both cytokines to be normal in non-

oedematous malnutrition and lower in oedematous malnutrition

[89]. IFN-c was low in malnourished children in six studies [49]

[222–223] [273–275], unaltered in malnourished children in one

[276], and elevated in one [272]. IL-12 [49] [274], IL-18 and IL-

21 [274], and Granulocyte Macrophage Colony Stimulating

Factor [270] were also found to be lower in malnourished

children. Blunted cytokine response after in-vitro stimulation with

LPS was found in malnourished children [276–278], while

incubation with leptin normalized their pattern of intracellular

cytokines [223].

Other cytokines were mostly found to be elevated in malnutri-

tion: IL10 was elevated in four of five studies [49] [222–223] [272–

273], so was IL-4 [211] [273] [276] and soluble receptors to

Tumour Necrosis Factor-a [123]. IL-8 was elevated [277] or

unaltered [272].

Tumour Necrosis Factor-a (TNFa) [49] [129] [271–273] [276]

[279–280] and IL-6 [120] [122–123] [129] [271–273] [276–278]

were mostly similar or higher compared to well-nourished, most

often in studies of infected children.

Comparing cytokine pattern between children with oedematous

and non-oedematous malnutrition, most found that the difference

from well-nourished was greatest in children with oedematous

malnutrition [84] [89] [123] [265] [269–270] [277], while two

studies found no difference between oedematous and non-

oedematous malnutrition [218] [271].

Leukotrienes (LT) are not strictly cytokines, but immune

modulating molecules derived from long chain polyunsaturated

fatty acids. Levels of LTC4 and LTE4 were higher, and LTB4

lower, in children with oedematous than with non-oedematous

malnutrition, whose levels were similar to well-nourished [281],

and prostaglandin E2 [282] was higher in children with

oedematous malnutrition than in well-nourished.

Discussion

We identified and reviewed 245 articles about immune function

in malnourished children. Some general problems apply to many

of the studies, mostly related to their observational design. For this

reason they can only describe associations, not causalities.

First, many studies were done in severely malnourished children

from hospital settings, who were ill with infections, making it

difficult to disentangle the immunological effect of malnutrition

from the effect of infection. This problem has caused some to

propose that there really is no immune impairment by malnutri-

tion, and that all alterations seen are due to infections or

underlying unknown immune deficiencies, which are also respon-

sible for the poor growth [283]. Enteropathy could be an example

of such an ‘‘invisible’’ condition, causing both immune deficiency

and malnutrition. This hypothesis is difficult to test. However,

some studies did try to account for this problem by selecting

malnourished children without clinical infections, or by comparing

them to well-nourished infected children. In studies from central

Africa in the 1970s and 1980s, some malnourished children may

have suffered from unrecognized paediatric HIV [284], giving

obvious problems for interpretation.

Second, publication bias is a well-known problem, and may

have occurred, particularly in older studies, where some small

studies showed a dramatic effect.

Third, studies used different diagnostic criteria for malnutrition,

making it difficult to determine the children’s degree of

malnutrition as defined by present-day criteria. While children

in 52 of the studies fulfilled WHOs present criteria for severe acute

malnutrition, only two diagnosed children based on the new

WHO growth reference. Those defined as severely malnourished

based on old growth references would most likely also be classified

as severely malnourished today, since the new WHO standard

tend to classify more children as severely malnourished, while

some children then defined as moderately malnourished would be

classified as severely malnourished today. The studies including

children based on weight-for-age probably included children with

stunting and wasting, without differentiating between the two.

Fourth, even using uniform criteria, malnourished children are

a heterogeneous group. Anthropometric measurements are only

crude markers of body composition, which - among other things -

reflect nutrient deficiencies. It is unknown what specific nutrients

were deficient, and to what extent infection contributed. Deficits in

lean tissue and fat tissue are plausibly different physiologic

conditions, and children appearing similarly malnourished may

be so for entirely different reasons, with different immunological

consequences. No articles have so far reported reliable measures of

body composition, simultaneously with markers of immune

function. Probably, the consequence of malnutrition on immune

function may also depend on the pattern and load of infections.

Although most studies were carried out in low-income settings

with high infectious loads, a few were from middle- or high-

income countries. This may also contribute to inconsistencies in

the results.

In spite of these limitations, common patterns emerge from the

studies, summarized below (Figure 5).

Immune parameters apparently not affected by
malnutrition

Total white blood cell and lymphocyte counts in peripheral

blood are not decreased in malnourished children, and granulo-

cytes are frequently elevated. Likewise, T-lymphocytes and CD4

counts appear normal in malnourished children, when measured

by flow cytometry, the gold standard for characterizing cell

subsets. Their levels seem to be determined more by infections

than by nutritional state, and do not reflect the degree of

malnutrition-related immune deficiency, as high infectious mor-

tality is seen in malnourished children, despite unaffected white

blood cell counts [49].
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Malnourished children can mount an acute phase response to

infections, with elevated CRP and low negative acute phase

reactants, and this can also be seen in absence of clinical infection.

Thus, based on available evidence, the acute phase response, if

anything, seems exaggerated rather than diminished. Levels of

IgM and IgG are normal or elevated in malnourished children.

Secretory IgA is not consistently lower in duodenal fluid, and

frequently elevated in urine.

Immune parameters affected by malnutrition
The gut mucosa is atrophied and permeable in malnourished

children. This enteropathy also affects well-nourished children in

poor communities, but probably most severely in malnourished

children. The condition appears similar to tropical sprue described

in adults, and the term enteropathy of malnutrition has been

replaced by the broader term environmental enteropathy [285]. At

present, this condition is thought to result from high pathogen load

rather than nutrient deficiencies, and thus primarily a cause of

malnutrition, particularly of stunting [286] [287].

Production of gastric acid and flow of saliva is reduced in

malnourished children. Secretory IgA is also reduced in saliva,

tears and nasal washings from children with severe, but not

moderate malnutrition. The small bowel of malnourished children

is often colonized with abundant bacteria, and their pattern of

commensal flora is altered. Granulocytes kill ingested microor-

ganisms less effectively. Levels of complement proteins are low in

blood from malnourished children, particularly in children with

oedematous malnutrition, and less in children with moderate

malnutrition.

Lymphatic tissue, particularly the thymus, undergoes atrophy in

malnutrition in a dose-response fashion: thymic size depends on

nutritional status even in milder degrees of malnutrition, and

thymus size is a predictor of survival in children.

DTHR is diminished in malnourished children. Lymphocytes of

malnourished children are less responsive to stimulation with

PHA, fewer are activated and more cells have markers of

apoptosis. Plasma IgA is mostly elevated in malnourished children,

particular in those with oedema. Children with severe, but not

moderate, malnutrition mount a lower specific antibody response

to vaccination, although for most children sufficient to obtain

protection. The lower titres seen in malnourished may be due to a

delay in vaccination response.

Cytokines can be classified as those promoting a Th1 response

of predominantly cellular immunity, and those promoting a Th2-

response of humoral immunity [24]. Although this approach has

somewhat been replaced by other classifications [288], it seems

useful to describe the profile of malnourished children, whose

immune system seems tuned towards a Th2 response, with high

IL4 and IL10, and low levels of IL-2, IL-12 and IFN-c. Elevated

levels of IL-6 and TNFa may primarily be related to infections,

and support the observation that induction of an acute phase

response is intact in malnutrition. A more recent classification

Figure 5. Summary of immune parameters affected and not affected by malnutrition.
doi:10.1371/journal.pone.0105017.g005
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focuses on whether cytokines are predominantly inflammatory or

anti-inflammatory [289]. Malnourished children appear to have

high levels of anti-inflammatory cytokines and less clearly affected

levels of pro-inflammatory cytokines in blood, in contrast to the

predominantly pro-inflammatory cytokine expression in the gut of

malnourished children.

Mechanisms
The mechanisms behind these immunological alterations are

still not adequately understood. Some explain it by lack of energy

and building blocks to synthesize the proteins required [290].

However, lack of building blocks does not explain why some

immune parameters seem intact, or paradoxically elevated in

malnutrition, such as plasma IgA, acute-phase proteins, leucocytes

in blood, and production of Th2 cytokines. If it was simply a

matter of lack of building blocks, all parameters of the immune

system should be equally affected. The fact that the pattern of

cytokines in malnourished children is tuned towards at Th2-

response fits with their high levels of immunoglobulins, reduction

in thymus size and diminished DTHR. Still, the pathophysiology

behind this Th2 skewedness remains unexplained.

Infections could obviously contribute to the changes seen, and

interactions have been noted between infection and malnutrition

in their respective effects on immune parameters [197]. However,

although many of the immunological changes appear to be

synergistically affected by malnutrition and infections, malnutri-

tion also seems to be independently associated with altered

immune function.

Animal studies suggest hormonal factors to be involved in the

immune profile of malnutrition. Leptin [291], prolactin [292] and

growth hormone [293] all stimulate thymic growth and function,

and their levels are low in malnourished children. In support of

this, a recent study found that a low leptin level was associated

with a higher risk of death in malnourished children [272].

Growth hormone therapy increased thymic size and output in

adult HIV patients [294]. In contrast, cortisol and adrenalin

induce thymic atrophy in mice [295–296], and cortisol is high in

children with malnutrition and other forms of stress. It is plausible

that this hormonal interplay is implicated in the immune

deficiency in malnourished children.

This hormonal profile is similar to that of an acute phase

response, where thymus atrophy also occurs, acquired immunity is

temporarily suppressed and innate immunity takes over [296].

This could explain why some malnourished children have elevated

positive APP and most have depressed negative APP in absence of

clinical infections. Zinc deficiency causes thymic atrophy [297–

298], and acute phase responses lower plasma zinc, so zinc status

may contribute to the immune deficiency of both malnutrition and

acute phase responses.

In HIV infection, persisting subclinical inflammation and

immune activation is frequently present, and may be partly

responsible for immune deficiency and disease manifestations

[299]. Given the frequent finding of elevated acute phase proteins

in malnourished children, it seems plausible that a similar state of

subclinical inflammation could be involved in both the impairment

of immune function, and in the vicious circle of catabolism and

deterioration of the nutritional status. However, in spite of

elevated acute phase proteins, most studies have reported

unaffected or even paradoxically lowered levels of activated T-

cell and dendritic cells in malnourished children.

The intracellular receptor, mammalian target of Raptomycin
(mTOR), is present in most cells. It responds to concentrations of

nutrients in the cell’s surroundings, and to other signs of stress,

such as hypoxia, enabling the cell to adapt its metabolism to locally

available nutrients. Immune cells also use mTOR to regulate their

state of activation. Nutrient availability may thereby determine

whether an immune cell is activated [300], and whether T-cells

differentiate towards a pro-inflammatory or a tolerance-inducing

phenotype [301]. Some immune cells may even deplete the micro-

environment of certain nutrients, to manipulate the activation of

mTOR. Accordingly, the significance of nutrients in the micro-

environment expands from simple building blocks to signal

molecules. Obviously, this mechanism could be involved in the

immunological profile in malnutrition. However, no articles have

yet described the activity of mTOR in malnourished children.

A research group working with animal models of malnutrition

has proposed a theory called the ‘‘tolerance hypothesis’’ [302].

This suggests that the depression of cellular immunity in

malnutrition is an adaptive response to prevent autoimmune

reactions, which would otherwise occur as a result of catabolism

and release of self-antigens. Although adaptive in this sense, it

happens at the price of increased susceptibility to infections [303].

However, if this tolerance hypothesis holds true, one would expect

to see occasional break-through of auto-immune reactions in

malnourished children. Such phenomena have apparently not

been studied.

The pathogenesis of oedematous malnutrition is still unknown.

Many immune parameters seem affected to a different degree in

children with oedematous malnutrition, with higher levels of IgA,

higher levels of abnormal antibodies like IgD, poorer vaccination

responses and cytokines more skewed towards a Th2-response;

their complement levels are lower, which may partly be caused by

increased consumption of complement in-vivo. The pattern of

leukotrienes is different in children with oedematous compared to

non-oedematous malnutrition. This immunological profile resem-

bles that seen in autoimmune diseases such as lupus erythematosus

[304–305]. Moreover, elevated immunoglobulins in children with

oedematous malnutrition seem to correlate with its unexplainable

manifestations, like dermatosis and oedema [231] [233]. It could

be speculated whether this syndrome could indeed represent some

kind of autoimmune reaction to malnutrition, perhaps resulting

from a failure to induce efficient tolerance.

Conclusion

In spite of the prevalence of malnutrition, and its fatal

consequences, scientific interest in the immune deficiency of

malnutrition seems dwindling, and little research has been carried

out on the topic during the last ten years. For this reason, most

evidence on the subject relies on immunological methods used 30

to 40 years ago, many of which are no longer in use, and little

research has been done with modern methods, and with the

present understanding of immunology. Moreover, most studies

have looked at isolated aspects of immune function, despite the

fact that the parameters are interdependent, and the division into

innate and adaptive immune function seems to be a simplification.

Thus, our understanding of immune function in malnutrition is

still very limited.

This review illuminates the little that we know about the

immunological alterations associated with malnutrition, and also

points to significant gaps in our knowledge. Future well designed

prospective cohort studies should examine how immune parameters

are related to morbidity and mortality in malnourished children,

with detailed characteristic of nutritional status, preferably body

composition, of infections, enteropathy and of low-grade inflam-

mation. When testing nutritional and medical interventions for

malnutrition, immune parameters should be included as outcomes.

Studies should investigate newer immunological parameters in
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malnutrition, like expression of innate pattern recognition receptors

(as the Toll-like receptor), the lectin pathway of the complement

system and mTOR expression and activity. It should be investigated

whether a small thymus is associated with lower output of recent

thymic-derived T-cells, and how it correlates with hormones like

leptin, cortisol, insulin and Insulin Growth Factor-1. Innate and

adaptive immune parameters should be assessed simultaneously,

taking into account their dynamic interdependency. To understand

whether malnutrition is indeed associated with active down-

regulation of immune reactivity (as formulated in the ‘‘tolerance

hypothesis’’), the balance between regulatory T-lymphocytes and

their counterparts, Th17 lymphocytes should be measured. Finally,

prospective studies among children at risk should assess whether

immune profiles differ in those who subsequently develop oedem-

atous and non-oedematous malnutrition, and it should be

investigated whether children with oedematous malnutrition have

markers suggestive of auto-immune or inflammatory diseases. Such

studies would reduce our current ignorance on the interplay

between malnutrition and infectious diseases.
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30. Freyre EA, Chabes A, Poémape O, Chabes A (1973) Abnormal Rebuck skin

window response in kwashiorkor. J Pediatr 82: 523–526.

31. Edelman R, Suskind R, Olson RE, Sirisinha S (1973) Mechanisms of defective
delayed cutaneous hypersensitivity in children with protein-calorie malnutri-

tion. Lancet 1: 506–508.

32. Burman D (1965) The jejunal mucosa in kwashiorkor. Arch Dis Child 40: 526–

531.

33. Brunser O, Castillo C, Araya M (1976) Fine structure of the small intestinal

mucosa in infantile marasmic malnutrition. Gastroenterology 70: 495–507.

34. Schneider RE, Viteri FE (1972) Morphological aspects of the duodenojejunal
mucosa in protein-calorie malnourished children and during recovery.

Am J Clin Nutr 25: 1092–1102.

35. Brunser O, Reid A, Monckeberg F, Maccioni A, Contreras I (1968) Jejunal

mucosa in infant malnutrition. Am J Clin Nutr 21: 976–983.
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(1985) Evidence for exposure to HTLV-III in Uganda before 1973. Science

227: 1036–1038.

285. Prendergast A, Kelly P (2012) Enteropathies in the developing world: neglected

effects on global health. Am J Trop Med Hyg 86: 756–763. doi:10.4269/

ajtmh.2012.11-0743.

286. Keusch GT, Rosenberg IH, Denno DM, Duggan C, Guerrant RL, et al. (2013)

Implications of acquired environmental enteric dysfunction for growth and
stunting in infants and children living in low- and middle-income countries.

Food Nutr Bull 34: 357–364.

287. Campbell DI, Elia M, Lunn PG (2003) Growth faltering in rural Gambian
infants is associated with impaired small intestinal barrier function, leading to

endotoxemia and systemic inflammation. J Nutr 133: 1332–1338.

288. Basso AS, Cheroutre H, Mucida D (2009) More stories on Th17 cells. Cell Res
19: 399–411. doi:10.1038/cr.2009.26.

289. Opal SM, DePalo VA (2000) Anti-inflammatory cytokines. Chest 117: 1162–
1172.

290. Manary MJ, Yarasheski KE, Smith S, Abrams ET, Hart CA (2004) Protein

quantity, not protein quality, accelerates whole-body leucine kinetics and the
acute-phase response during acute infection in marasmic Malawian children.

Br J Nutr 92: 589–595.

291. Howard JK, Lord GM, Matarese G, Vendetti S, Ghatei MA, et al. (1999)

Leptin protects mice from starvation-induced lymphoid atrophy and increases

thymic cellularity in ob/ob mice. J Clin Invest 104: 1051–1059. doi:10.1172/
JCI6762.

292. De Mello-Coelho V, Savino W, Postel-Vinay MC, Dardenne M (1998) Role of
prolactin and growth hormone on thymus physiology. Dev Immunol 6: 317–

323.

293. Savino W, Postel-Vinay MC, Smaniotto S, Dardenne M (2002) The thymus
gland: a target organ for growth hormone. Scand J Immunol 55: 442–452.

294. Hansen BR, Kolte L, Haugaard SB, Dirksen C, Jensen FK, et al. (2009)
Improved thymic index, density and output in HIV-infected patients following

low-dose growth hormone therapy: a placebo controlled study. AIDS Lond

Engl 23: 2123–2131. doi:10.1097/QAD.0b013e3283303307.

295. Barone KS, O’Brien PC, Stevenson JR (1993) Characterization and

mechanisms of thymic atrophy in protein-malnourished mice: role of
corticosterone. Cell Immunol 148: 226–233. doi:10.1006/cimm.1993.1105.

296. Haeryfar SM, Berczi I (2001) The thymus and the acute phase response. Cell

Mol Biol Noisy–Gd Fr 47: 145–156.

297. Golden MH, Jackson AA, Golden BE (1977) Effect of zinc on thymus of

recently malnourished children. Lancet 2: 1057–1059.

298. Chevalier P (1995) Zinc and duration of treatment of severe malnutrition.
Lancet 345: 1046–1047.

299. Miedema F, Hazenberg MD, Tesselaar K, van Baarle D, de Boer RJ, et al.
(2013) Immune Activation and Collateral Damage in AIDS Pathogenesis.

Front Immunol 4: 298. doi:10.3389/fimmu.2013.00298.

300. Cobbold SP (2013) The mTOR pathway and integrating immune regulation.
Immunology. doi:10.1111/imm.12162.

301. Peter C, Waldmann H, Cobbold SP (2010) mTOR signalling and metabolic
regulation of T cell differentiation. Curr Opin Immunol 22: 655–661.

doi:10.1016/j.coi.2010.08.010.

302. Monk JM, Steevels TAM, Hillyer LM, Woodward B (2011) Constitutive, but
not challenge-induced, interleukin-10 production is robust in acute pre-

The Immune System in Children with Malnutrition

PLOS ONE | www.plosone.org 18 August 2014 | Volume 9 | Issue 8 | e105017



pubescent protein and energy deficits: new support for the tolerance hypothesis

of malnutrition-associated immune depression based on cytokine production in
vivo. Int J Environ Res Public Health 8: 117–135. doi:10.3390/ijerph8010117.

303. Monk JM, Richard CL, Woodward B (2011) A non-inflammatory form of

immune competence prevails in acute pre-pubescent malnutrition: new
evidence based on critical mRNA transcripts in the mouse. Br J Nutr: 1–5.

doi:10.1017/S0007114511004399.

304. Lo MS, Zurakowski D, Son MB, Sundel RP (2013) Hypergammaglobulinemia

in the pediatric population as a marker for underlying autoimmune disease: a
retrospective cohort study. Pediatr Rheumatol Online J 11: 42. doi:10.1186/

1546-0096-11-42.

305. Chen M, Daha MR, Kallenberg CGM (2010) The complement system in
systemic autoimmune disease. J Autoimmun 34: J276–J286. doi:10.1016/

j.jaut.2009.11.014.

The Immune System in Children with Malnutrition

PLOS ONE | www.plosone.org 19 August 2014 | Volume 9 | Issue 8 | e105017


