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Artificial intelligence in COVID-19 drug repurposing
Yadi Zhou*, Fei Wang*, Jian Tang*, Ruth Nussinov, Feixiong Cheng

Drug repurposing or repositioning is a technique whereby existing drugs are used to treat emerging and challenging 
diseases, including COVID-19. Drug repurposing has become a promising approach because of the opportunity for 
reduced development timelines and overall costs. In the big data era, artificial intelligence (AI) and network medicine 
offer cutting-edge application of information science to defining disease, medicine, therapeutics, and identifying 
targets with the least error. In this Review, we introduce guidelines on how to use AI for accelerating drug repurposing 
or repositioning, for which AI approaches are not just formidable but are also necessary. We discuss how to use AI 
models in precision medicine, and as an example, how AI models can accelerate COVID-19 drug repurposing. Rapidly 
developing, powerful, and innovative AI and network medicine technologies can expedite therapeutic development. 
This Review provides a strong rationale for using AI-based assistive tools for drug repurposing medications for 
human disease, including during the COVID-19 pandemic.

Introduction
The artificial intelligence (AI) pioneers of the 1950s 
foresaw building machines that could sense, reason, and 
think like people—a proof-of-concept known as general 
AI.1 The rapid growth in computing power and memory 
storage, an unprecedented wealth of data, and the 
development of advanced algorithms have led to sub-
stantial breakthroughs in AI. AI applications cover 
diverse fields, such as computer vision, voice recognition, 
natural language understanding, and digital pathology 
data analysis. Similarly, AI has been revolutionising drug 
discovery by extracting hidden patterns and evidence 
from biomedical data. Pharmaceutical companies and 
start-ups have used AI for drug discovery and develop-
ment.2 For example, IBM’s Watson Health platform 
searches for drugs from vast amounts of textual data, 
including laboratory data, clinical reports, and scientific 
publications.3

In this Review, we focus on AI technologies for 
a specific domain in drug discovery—that of drug repur-
posing—which offers rapid and cost-effective solutions 
for therapeutic development. These merits are especially 
clear in the COVID-19 global pandemic caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
where de-novo drug discovery is almost infeasible 
(figure 1). Thus, the pandemic is a good opportunity for 
introducing advanced AI algorithms combined with 
network medicine for drug repurposing.

Emerging challenges and opportunities in drug 
discovery
One study estimated that pharmaceutical companies 
spent US$2·6 billion in 2015, up from $802 million in 
2003, for the development of a new chemical entity 
approved by the US Food and Drug Administration 
(FDA).4 The increasing cost of drug development is due 
to the large volume of compounds to be tested in 
preclinical stages and the high proportion of randomised 
controlled trials (RCTs) that do not find clinical benefits 
or with toxicity issues. Given the high attrition rates, 
substantial costs, and low pace of de-novo drug discovery, 
exploiting known drugs can help improve their efficacy 

while minimising side-effects in clinical trials. As Nobel 
Prize-winning pharmacologist Sir James Black said, “The 
most fruitful basis for the discovery of a new drug is to 
start with an old drug”.5

Drug repurposing, also termed drug repositioning, 
reprofiling or re-tasking, is a strategy for identifying new 
indications for approved or investigational (including 
clinically failed) drugs that have not been approved  
(panel). Because the safety of these drugs has already 
been tested in clinical trials for other applications, repur-
posing known drugs can bring medications to patients 
much faster and with less cost than that of developing 
new drugs. For decades, academic institutions and 
science funders have championed the idea that screening 
libraries of existing drugs with various tests could 
uncover new applications, and have made observations 
that have led to medicines designed for one disease 
finding uses in another. Well known examples include 
sildenafil citrate for erectile dysfunction,6 thalidomide for 
multiple myeloma,7 and remdesivir for treatment of 
COVID-19.8 Indeed, the increasing number of reposi-
tioned medications led to the idea that a systematic 
(hypothesis-free) screen of all known drugs might 
uncover additional compatible targets.

The strategy of drug repurposing is a powerful solution 
for emerging diseases,9 such as COVID-19. Yet, without 
foreknowledge of the complete drug-target network, 
development of promising and affordable approaches for 
effective treatment of complex diseases is challenging.10 
Because drug targets do not operate in isolation from the 
complex system of proteins that comprise the molecular 
machinery of the cells with which they associate, each 
drug–target interaction (panel) should be examined in an 
integrative context (figure 2).11 Therapeutic interventions 
need to consider the perturbation of disease system 
properties (termed network medicine [panel]), and have 
little to do, functionally speaking, with genetic and 
genomic events alone.12 Observations and advances in 
network medicine further indicate that perturbations of 
cellular systems and the human interactome (panel) 
underlie the disease, which is the essence of drug 
discovery and develop ment.12 Knowledge of the interplay 
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between drug targets and human diseases can provide 
clues for possible drug repurposing because drugs that 
target one disease might target another through a shared 
functional protein–protein interaction network.11 For 
example, SARS-CoV-2 requires host cellular factors (such 
as angiotensin I converting enzyme 2 [ACE2], trans mem-
brane serine protease 2 [TMPRSS2], and furin; figure 1) 
for successful replication during infection.13,14 Systematic 
targeting of the viral protein and host protein interactions 
(the SARS-CoV-2 interactome) offers a novel strategy for 
effective drug repurposing for COVID-19. A SARS-CoV-2 
virus–host interactome that contains 332 high-confidence 
protein–protein interactions between 26 viral proteins 
and human proteins was structed using affinity puri-
fication mass spectrometry.15 69 drug candidates were 

prioritised that can target the host proteins in the 
SARS-CoV-2–host interactome.15 Experimental assays 
validated the antiviral activities of two sets of agents: 
mRNA translation inhibitors (ie, zotatifin) and sigma-1 
and sigma-2 receptor regulators (ie, haloperidol).

In another study,16 a network-based methodology that 
quantifies the interplay between the virus–host inter-
actome and drug targets in the human interactome 
network suggested 16 repurposed drug candidates for 
potential treatment of COVID-19.16 This finding calls for a 
detailed approach, including AI and network medicine, 
and raises the question of not only which protocols to 
consider, but also which factors to scrutinise, and broadly, 
how to integrate the disciplines (figure 2).

AI algorithms and recent advancements
Deep learning architecture
Deep learning is a subfield of machine learning that 
refers to the paradigm of exploring the data with layers of 
linear and non-linear transformations organised in a 
hierarchical way.17 The most widely used deep learning 
model is artificial neural networks, wherein the basic 
building block is an artificial neuron that non-linearly 
transforms the weighted sum of input feature variables.

Fully connected feedforward neural network (FNN) is 
an architecture in which the artificial neurons are 
connected layer-by-layer from input features to output 
targets. A weight is associated with each connection and is 
optimised by minimising the prediction loss of the output 
targets through backpropagation on training samples.18 
FNNs are typically used for data samples represented as 
vectors. For example, Aliper and collea gues19 used FNN to 
classify drugs into pharma ceutical therapeutic classes 
based on the drugs’ transcriptomic profile vectors. 
Lenselink and colleagues20 compared the performance of a 
diverse set of algorithms on the prediction of molecule 
and target activity with the ChEMBL database.20 The 
authors showed that the inclusion of target data can lead 
to better models. FNN can achieve better performance 
than that of con ventional machine learning methods, 
such as logistic regression.

In the case of images being the input where each pixel 
is a feature variable, FNNs become infeasible as the 
number of weights becomes far too large. However, 
convolutional neural network (CNN; panel) is particularly 
suitable for image processing. Instead of fully connecting 
neurons in adjacent layers, CNN uses filters (small 
matrices of weights) that apply a convolution operation 
on local patches of the images, which greatly reduces the 
number of weights. CNN has been used to analyse 
chemical images to obtain insight into drug therapeutic 
functions.21 For example, AtomNet predicts the binding 
affinity of small molecules to proteins on the basis of the 
structural information extracted by CNN.22

Biological sequences are another widely explored type 
of data for drug repurposing. However, neither FNN nor 
CNN appropriately consider the sequential nature of the 

Figure 1: Overview of AI-assisted drug repurposing for COVID-19
AI algorithms can be used for drug repurposing, which is a rapid and cost-effective way to discover new therapy 
options for emerging diseases. Reproduced by permission of Cleveland Clinic Center for Medical Art and 
Photography. AI=artificial intelligence. PARP1=poly-ADP-ribose polymerase 1. NR3C1=nuclear receptor 
subfamily 3 group C member 1. AAK1=AP2-associated protein kinase 1. MTNR1A=melatonin receptor 1A. 
TMPRSS2=transmembrane serine protease 2. ACE2=angiotensin I converting enzyme 2. NRP1=neuropilin 1. 
NSP14=non-structural protein 14.
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data. Recurrent neural networks (RNNs) are specifically 
designed for sequences in which the main building block 
is a recurrent cell appearing at each timestamp or seq-
uence location that retains past information while 
learning new information in a sequence. RNN models 
have been used for generating focused molecule libraries 
for drug discovery, with the molecules represented as 
sequences using  simplified molecular input line entry 
system codes.23 Gao and colleagues24 developed a hybrid 
approach of graph neural network and RNN to predict 
drug–target interactions. Beck and colleagues25 developed 
a hybrid CNN and RNN model called Molecule 
Transformer-Drug Target Interaction to predict whether 
any commercially available antiviral drugs could work in 
SARS-CoV-2.The authors computationally identified 
several known antiviral drugs, such as atazanavir, rem-
desivir , efavirenz, ritonavir, and dolutegravir, for the 
potential treatment of SARS-CoV-2 infection.

Graph representation learning
A classic way to repurpose drugs is through network 
medicine, which includes the construction of medical 
knowledge graphs containing relationships between 
different kinds of medical entities (eg, diseases, drugs, 
and proteins) and predicts new links between existing 
approved drugs and diseases (eg, COVID-19). Methods 
that are based on graph embedding have been gaining 
attention for link prediction in graphs26 that represent 
nodes and edges as low-dimensional feature vectors.27–30 
Using the feature vectors of drugs and diseases, we can 
easily measure their similarities and therefore identify 
effective drugs for a given disease. One challenge for the 
graph embedding method is scalability. Real-world 
(knowledge) graphs are usually large. The number of 
entities in a medical knowledge graph could be as many 
as several million. Existing machine learning systems 
such as TensorFlow and PyTorch are mainly designed for 
data with regular structures but not for large-scale graphs. 
Therefore, several systems that are specifically designed 
for learning representations from large-scale graphs have 
been developed. For example, Zhu and colleagues31 devel-
oped a high-performance system named GraphVite that 
could be promising for future drug repurposing because 
the system can efficiently pro cess tens or even hundreds 
of millions of nodes.

Increasing interest exists in developing graph repre-
sentation learning techniques for drug repurposing. Sosa 
and colleagues32 constructed a medical knowledge graph 
of drugs, diseases, genes, and proteins from the bio-
medical literature and used graph embedding tech niques 
for predicting the links between drugs and diseases. Gysi 
and colleagues33 developed a method that was based on 
graph neural network and presented a case study on 
SARS-CoV-2 with 81 potential repurposing candidates 
identified. BenevolentAI’s knowledge graph is a large 
repository of structured medical information, including 
num   erous connections extracted from the scientific 

Panel: Terms and concepts

Drug–target network
A bipartite graph composed of approved drugs and proteins linked by drug–target 
binary associations.

Drug repurposing
A strategy for identifying new indications for approved or investigational (including 
clinically failed) drugs that have not been originally approved or dedicated (also termed 
drug repositioning, reprofiling or re-tasking).

Disease module
Represents a group of nodes (ie, proteins or genes) whose perturbation can be linked 
to a particular disease (eg, COVID-19) phenotype.

Systems pharmacology
An inter-discipline that applies systems biology principles and data science techniques 
in pharmacology.

Human interactome
The set of physical protein–protein interactions (the interactome) in human cells.

Network medicine
A discipline that seeks to redefine disease and therapeutics from an integrated perspective 
using systems biology and network science methodologies, offering important 
applications to drug design.

Node or vertex
The basic unit of graphs. Usually visualised as circles (or in other shapes), nodes represent 
basic entities, such as drugs and proteins.

Edge or link
A basic unit of graphs that connects two nodes. Usually visualised as lines (with arrows if 
directed), edges represent the relationships (eg, protein interaction) between the nodes.

Network proximity
Measures the distances between two modules, such as drug–target and disease–gene 
modules. Several proximity measures have been defined, such as shortest, closest, 
separation, kernel, and centre measures.11

Artificial intelligence (AI)
The study of building machines or programmes that exhibit human intelligence in doing 
specific or general tasks.

Machine learning algorithms
A subset of AI algorithms that can learn from data, therefore removing the need for 
explicit instructions on how to do certain tasks.

Deep neural networks
A general term referring to multilayer neural networks.

Convolutional neural networks
Neural network architectures specifically designed for analysing image data, which 
generally include multiple layers of convolutional layers and pooling layers.

Graph representation learning
Specific deep learning techniques that are developed for learning feature representations 
of graph structure data.

Visible neural network
A new generation of visible approaches that aim to guide the structure of machine 
learning models with an increasingly extensive knowledge of a biological mechanism.
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literature by machine learning.34 BenevolentAI predicted 
that baricitinib, a drug used to treat rheumatoid arthritis, 
could be a potential treatment for COVID-19 through the 
inhibition of AP2-associated protein kinase 1 (encoded by 
AAK1; figure 1). A team constructed a com pre hensive 
COVID-19 knowledge graph (termed CoV-KGE) that 
included 15 million edges across 39 types of relationships 
connecting drugs, diseases, proteins, genes, pathways, 
and expressions of genes and proteins35 from a large 
scientific corpus of 24 million PubMed publications. 
Using Amazon Web Services’ computing resources and 
graph representation learning techniques, the team 
identified 41 repurposed drug candidates (including dexa-
methasone and melatonin) for COVID-19 treatment. To 
achieve a high prediction performance, the construction 
of a high-quality medical knowledge graph is essential, 
which itself is a promising direction for future research.

Repurposed drugs for COVID-19 are under 
investigation
Several examples exist of repurposed drugs being or 
having been tested in clinical trials for COVID-19, 
including antiviral drugs and host-targeting therapies 
(figure 1). A detailed discussion of repurposed drugs for 
COVID-19 can be found in a review by Sanders and 
colleagues.36

Antiviral drugs
Remdesivir, a monophosphate prodrug of an active 
C-adenosine nucleoside triphosphate analogue, was origi-
nally discovered for the potential treatment of Ebola virus 
disease.36 Remdesivir has shown promise in the treatment 
of COVID-19, prompting emergency use clearance from 
the FDA, although indication is limited to severe disease 
only. The FDA made this decision on the basis of early 
research showing that the drug might help speed up 
recovery for hospitalised patients with COVID-19. 
Mechanistically, remdesivir was shown to inhibit the viral 
RNA-dependent RNA polymerase (figure 1).37 A double-
blind, randomised, placebo-controlled trial of intravenous 
remdesivir in adults hospitalised with COVID-19 showed 
that remdesivir significantly shortens the median recovery 
time to 11 days, compared with 15 days in the placebo 
group.8 These preliminary findings support the use of 
remdesivir for patients who are hospitalised with 
COVID-19 and require supplemental oxygen therapy. 
However, another randomised, open-label, phase 3 trial 
involving hospi talised patients not requiring mechanical 
ventilation did not show a significant difference between a 
5-day course and a 10-day course of remdesivir.38 Further 
investigation of the clinical benefits of rem desivir for 
patients with COVID-19 in different patient subgroups 
with or without mechanical ventilation is needed to iden-
tify the shortest effective duration of therapy. Additionally, 
whether remdesivir can shorten the recovery course of 
individuals with early COVID-19 is unknown. A study 
using machine learning and statistical analysis approaches 
discovered that mefuparib (CVL218), a poly-ADP-ribose 
polymerase 1 inhibitor (figure 1), blocked SARS-CoV-2 rep-
lication without obvious toxic effects in vitro.39 The antiviral 
activity of mefuparib is more potent at viral entry and 
similar at viral post entry compared with remdesivir, 
suggesting the drug to be a potential anti-SARS-CoV-2 
drug candidate.

Toremifene, a first-generation selective estrogenic 
receptor modulator that is non-steroidal, was approved 
for the treatment of breast cancer in 1997.40 A network 
medicine analysis identified toremifene as a top candi-
date for the treatment of COVID-19.16 In vitro assays 
indicated that toremifene blocked various viral infections 
at micromolar concentration, including Middle East 
Respiratory Syndrome coronavirus,41 severe acute respira-
tory syndrome coronavirus,42 and SARS-CoV-2.43 A further 
computational biophysics study44 suggested that 
toremifene might block interaction between ACE2 and 
the spike protein of SARS-CoV-2 and might inhibit non-
structural protein 14 of SARS-CoV-2 (figure 1), mechanis-
tically supporting the drug’s antiviral activities. The 
mean plasma concentration of toremifene during admin-
istration of 60 mg per day was 0·88 mg/L (2·17 µM) in 
post-menopausal patients with breast cancer40 and the 
peak plasma concentration (>10 µM) of toremifene 
(60 mg per day) was approximately three-times the 
antiviral effect on SARS-CoV-2 (half-maximal inhibitory 

Figure 2: AI for drug repurposing in an integrative context
AI approaches can greatly accelerate drug repurposing by incorporating biological knowledge (eg, human 
interactome, organelles, tissues, and organs). The cogs indicate computer programs and algorithms. Red and black 
circles represent neurons in deep neural networks. Red indicates that this neuron carries important information 
from the biological systems. Green and blue people indicate different subgroups that might have different 
responses to the treatment. The downward arrows show that AI algorithms can use the information from 
multi-level biological systems and drug development pipelines to build more powerful models. The left panel 
shows the biological systems and the right panel shows the drug development pipeline AI=artificial intelligence.
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concentration of 3·58 µM).43 In summary, toremifene, 
identified by CoV-KGE35 and network medi cine16 app-
roaches, offers a potential drug candidate to be tested in 
COVID-19 clinical trials.

Host-targeting therapy
SARS-CoV-2 causes up-regulation of systemic inflam-
mation,45 in some cases culminating in a cytokine storm, 
underscoring the high potential for treatment success 
by using a drug targeting inflammation and immune res-
ponse (including baricitinib, dexamethasone, and 
melatonin; figure 1). By combining findings based on 
network medicine and large-scale patient data analysis 
from the COVID-19 patient registry at the Cleveland Clinic, 
Cleveland, OH, USA, resear chers found that melatonin 
intake was associated with a 50–60% reduced likelihood of 
a positive laboratory test result for SARS-CoV-2.46 
Dexamethasone is a gluco corticoid recep tor (figure 1) 
agonist approved by the US FDA for a variety of 
inflammatory and autoimmune conditions.47 Dexa metha-
sone was identified as a top repurposed drug candidate by 
CoV-KGE.35 The ran domised trial48 of COVID-19 therapy 
trial showed that dexamethasone reduced death by a third 
in patients requiring invasive mechanical ventilation (95 
[29%] of 324 patients vs 283 [41%] of 683 patients; rate ratio 
0·64 [95% CI 0·51–0·81]) and by a fifth in individuals 
requiring oxygen without invasive mechanical ventilation 
(298 [23·3%] of 1279 patients vs 682 [26·2%] of 2604 
patients; 0·82 [0·72–0·94]). However, dexamethasone did 
not reduce mortality in COVID-19 patients not receiving 
respiratory support. Altogether, these data suggest that 
targeting excessive host inflammation by immune 
modulators or anti-inflam matory drugs offers a therapeutic 
strategy for severe COVID-19, warranting testing in large-
scale RCTs.

Drug combinations for COVID-19
Monotherapies, including remdesivir8,38 and hydroxy-
chloroquine,49 have shown little or no clinical benefit for 
patients with COVID-19. Because the immune system 
plays key roles in the worsening health and death of 
patients with COVID-19,50 combining inflammatory or 
immune modulators (ie, boosting host immunity) with 
antiviral drugs might offer an effective treatment for 
patients with COVID-19. Drug combinations, offering 
increased therapeutic efficacy and reduced toxicity, play 
an important role in treating infectious diseases, inclu-
ding COVID-19 (eg, remdesivir plus baricitinib 
[NCT04401579]). However, our ability to identify and vali-
date effective combinations is limited by a huge increase 
in the number of possible drug pairs. Using a network-
based metho dology,51 scientists identified three potential 
drug combin ations for COVID-19,16 including sirolimus 
plus dactinomycin, mercaptopurine plus melatonin, and 
toremifene plus emodin. These combinations are based 
on theoretical analysis using the interactome and have 
not been tested in preclinical or clinical studies. The same 

team further observed that com bining melatonin and 
toremifene showed potential for use in the treatment of 
COVID-19.52 The selective estrogen modu lation and 
melatonin in early COVID-19 (SENTINEL; NCT04531748) 
trial is being done at the Cleveland Clinic to test the 
clinical efficacy of combining melatonin and toremifene 
therapy in patients with early COVID-19.52 Using 
BenevolentAI’s knowledge graph,34 baricitinib was identi-
fied as potential treatment for COVID-19. At least two 
phase 2 randomised, double-blind trials of baricitinib 
alone or as part of combination therapy with antiviral 
drugs (eg, remdesivir) are underway for patients with 
moderate and severe COVID-19 (NCT04373044 and 
NCT04401579).

Real-world evidence to test drug responsiveness
Another important aspect of using AI for drug repur-
posing is the use of real-world data, such as electronic 
health records, in searching for effective repurposed 
drug candidates. Electronic health records are patient 
clinical data that are routinely collected, such as demo-
graphics, diagnoses, medications, procedures, and lab-
oratory test results, stored in digital form, which can be 
exchanged and accessed securely.53 Extensive discussions 
have taken place on leveraging real-world data for drug 
discovery and development.54 On the one hand, patients 
in real-world data are more representative of patients 
who will receive the prescription when the drug is on the 
market than patients in RCTs are, who are enrolled on 
the basis of strict inclusion and exclusion criteria. On the 
other hand, typically treatment and control groups are 
required to precisely estimate the treatment effects. 
However, for certain scenarios, such as remdesivir trials 
for COVID-19, only a single treatment group is possible, 
which makes estimating the treatment effect difficult.55 
In this case, because of the inclusion of many diverse 
patients, real-world data contain rich information for 
synthesising a potential control group, which can then be 
compared with the treatment group in an RCT to help 
estimate the treatment effects.

Despite the promises of real-world data, deriving 
insights from real-world data that are similar to those 
from RCTs is challenging because real-world data have 
higher dimensionality (including confounding factors), a 
broader population, and usually lower data quality com-
pared with RCT data. Propensity score, which calculates 
the likelihood of the patient receiving the treat ment from 
a set of potential confounding factors using logistic 
regression, is the standard technique to do patient 
matching.56 However, the calculation of the likelihood of 
the patient receiving the treatment from such a set is 
much more complicated in real-world data because of the 
associated challenges such as high dimensionality, longi-
tudinality, irregularity, and incompleteness. In this case, 
the advanced machine learning models can estimate 
propensity scores more accurately than traditional log-
istic regression-based propensity score matching 
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approaches can.57,58 Moreover, other types of matching 
tech niques, such as patient similarity analytics,59 also 
hold promise in these complicated scenarios.

The initiative to build national or international elec-
tronic health records repositories for COVID-19 research 
has been undertaken. One such repository is the 
international consortium 4CE, which includes the elec-
tronic health records of patients from 96 hospitals across 
five countries. All participants’ electronic health records 
are matched to a common data model with Integrating 
Biology and the Bedside60 or Observational Medical 
Outcomes Partnership (OMOP).61 A retrospective cohort 
study of 1438 patients with laboratory-confirmed 
COVID-19 admitted to hospital in metropolitan New York, 
USA, revealed that treatment with hydroxychloro quine, 
azithromycin, or both, compared with neither treatment, 
was not significantly associated with differences in in-
hospital mortality for patients with COVID-19.49 From a 
COVID-19 registry of nearly 20 000 patients with 
1600 COVID-19-positive patients from the Cleveland 
Clinic Health System electronic health records, and using 
a user-active comparator design and propensity score 
adjustment for confounding, melatonin usage was shown 
to be associated with a reduced likelihood of a positive 
SARS-CoV-2 test result by RT-PCR assay.46 Mancia and 
colleagues62 showed that angiotensin-converting enzyme 
inhibitors (ACEIs) or angiotensin II receptor blockers 
(ARBs) were not associated with the risk of COVID-19. An 
independent study revealed that the use of ACEIs or ARBs 
were not associated with an increase of the likelihood for a 
positive COVID-19 test or an increase in the COVID-19 
severity using New York University Langone Health 
electronic health records.63 RCTs are underway to test the 
clinical benefits of melatonin in patients with COVID-19 
(NCT04409522 and NCT04353128).

Discussion, perspective, and future directions
For decades, translational science has faced the challenge 
of how to translate research findings into new effective 
medicines and technologies that rapidly deliver the 
medicines. This challenge has encouraged basic and tran-
slational sciences to work together towards this pivotal 
aim. Generations of scientists have struggled to make 
headway in de novo drug discovery. In principle, a strategy 
involving drug repurposing, in which a drug has already 
been tested and approved by the US FDA, can overcome 
the barriers of de novo drug discovery. However, the 
volume of approved or clinically failed drugs is large, 
emphasising the difficulty of which drug to select that 
would be highly effective for the disease in question.

Challenges in drug repurposing
Despite the enthusiasm for drug repurposing in treating 
COVID-19, challenges remain. Cellular or animal assays 
might not reflect the host environment of the virus 
infection in humans. Also, repurposed drugs might 
have been optimised for a particular target, dosing, or 

tissue in the original indications. Rapid clinical tests of 
existing antiviral, antimalarial, and immunomodulatory 
drugs have been done or are underway against 
COVID-19. Many trials did not optimise the drug’s 
clinical benefits and biological questions because of 
their expedient design, lack of clinical endpoints, small 
number of patients enrolled (thus lack of statistical 
power), and more.64 For example, hydroxy chloroquine 
shows potential anti-SARS-CoV-2 activities in in vitro 
assays.65 However, hydroxychloroquine has shown very 
little or no efficiency in preclinical66 and clinical trial 
studies.49 Few reproducible preclinical animal models 
and gold-standard clinical outcome measures in 
COVID-19 trials might also result in some failures to 
find clinical benefits. Tools and analyses with greater 
sensitivity are also required to detect differences between 
drugs and placebos, especially as more mildly affected 
patients with COVID-19 are included in trials. The 
presence of heterogeneous populations with different 
genetic backgrounds might also affect outcomes of 
clinical results. Possible factors contributing to these 
clinical trial findings that should be accounted for in 
future trials include targeting the wrong pathobiological 
or pathophysiological mechanisms in COVID-19; using 
drugs that do not engage with the intended target 
(including virus proteins and virus–host and protein–
protein interactome); intervening at the wrong stage of 
the disease, including early, mild, moderate, and severe 
illnesses; lacking translatable pharmacodynamic and 
pharmacokinetic (ie, poor lung penetration) biomarkers; 
depending on in vitro antiviral activities and not using 
appropriate animal models with poor predictive efficacy; 
not addressing the rapid disease progression of 
COVID-19 in a short period; and not accurately moni-
toring the complexity of the clinical and biological char-
acteristics to therapeutic intervention.

Although AI-based drug repurposing is in the develop-
mental stage, several examples have shown encouraging 
results, including baricitinib identified by BenevolentAI,34 
dexamethasone48 predicted by CoV-KGE,35 and melatonin 
from network medicine-based findings (figure 1).46 The 
development of effective and robust in vitro and in vivo 
models can reduce the failure rate of drug repurposing 
between preclinical studies and clinical trials for 
COVID-19.67,68 Genotype-informed drug repurposing 
(termed personalised drug repurposing) might further 
improve the success rate of clinical trials.69

Challenges in biological interpretation
Given the highly complex and regulated nature of drug 
development, a long-term vision is needed when devel-
oping AI applications in drug repurposing that could 
increase efficiency and effectiveness in the various pro-
cesses involved, and reduce the barriers between the 
numerous research components in the ecosystem to 
create new therapy options. AI technologies, such as vis-
ible neural networks,70 incorporate the AI model’s inner 

For more on 4CE see 
https://www.covidclinical.net

https://www.covidclinical.net
https://www.covidclinical.net
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workings into real systems of biomedical sciences (eg, 
human and animal). For example, visible machine 
learning approaches might guide model structures of 
data heterogeneity in the life sciences and translate 
patient data to successful therapies.71 Biological systems 
are complex and hierarchical (figure 2), composed of 
multiple levels such as sequences, protein complexes, 
cells, tissues, organs, and organisms. Drug discovery is a 
complicated process involving multilevel interactions 
between chemical compounds and biological systems. 
Therefore, a potential way of building an effec tive and 
interpretable model of drug discovery is to enrich the 
biologically-inspired visible neural network model72 with 
drug-related entities such as chemical compounds and 
diseases. The biomedical knowledge on how different 
entities interact with each other at different levels can be 
leveraged to guide the design of the corresponding com-
puting modules.35 Compared to current deep learning 
models which try to model the entire system with a 
complex model at once, this divide-and-conquer scheme 
models the different components in the complex system 
and how these components interact with each other in 
an explicit and transparent way. The model parameters 
can be optimised in an end-to-end way as in other deep 
learning models.

Challenges in data and model harmonisation
Data harmonisation refers to the process of standardising 
and integrating information from disparate sources to 
form a unified database. Data harmonisation is a crucial 
step for guaranteeing that the machine-learning based 
models that are developed are widely applicable in 
different scenarios. Establishing a high quality data 
model (which is a prerequisite for organising and stan-
dardising the data) is the foundation for the harmon-
isation process. National and international efforts aim to 
build common data models such as the national patient-
centered clinical research network72 and the observational 
health data science and informatics programme.73 Fast 
healthcare interoperability resources74 represent another 
type of standard, which defines how these data should be 
exchanged.

In addition to data harmonisation, model harmon-
isation, which defines a unified standard for storing the 
computational models, is also an important aspect to 
enhance the generalisability and utility of the compu-
tational drug repurposing tools. The open neural network 
exchange (ONNX) is an example of such efforts aiming 
to build model exchanging standards that are inter-
operable. ONNX defines implemented models as an 
extensible acyclic graph model. Each node on the graph 
is a call to built-in operators with inputs and outputs 
defined using standard data types.

Challenges in data sharing and security
With the enhanced availability of health-related data (esp-
ecially patient data), concerns have been raised regarding 

data security and privacy.75 For example, demographics 
and DNA sequencing data have an increased risk of 
making patients identifiable. Efforts should be made to 
scrutinise each stage in the data life cycle. For example, 
questions pertaining to what type of data will be collected; 
whether the data are necessary; who will collect the data; 
how the data will be used, stored, and transferred; what 
the rights are of the person whose data are being collected, 
and others, should be addressed carefully. Additionally, 
regulations and transparency are crucial for appropriate 
data collection and use, and so is an increased public 
aware ness. Towards this goal, federated learning76 could 
be a promising direction, which trains algorithms across 
decentralised edge devices (eg, individual mobile phones) 
or servers hosting different local samples (eg, data owned 
by different samples). Data samples are not shared or 
centralised and only the trained models are communi-
cated, which might improve data security and privacy of 
patient data for drug–disease outcome validation in drug 
repurposing.

Personalised drug repurposing
Advances in pharmacogenetics and pharmacogenomics 
indicated that disease treatment would be considerably 
improved if therapies were guided by individual’s genomic 
profiles. This hypothesis has garnered initial success in 
some diseases, including cancer.77 Responsive ness to a 
drug is influenced by genetic, epigenetic, and environ-
mental factors. SARS-CoV-2 infection has shown large 
inter-individual variabilities, ranging from asymp tomatic 
to severe and lethal disease. One possible hypothesis is 
that human genetics might determine clinical charac-
teristics and drug responses.69,78 For example, analysis of 
approximately 81 000 genomes and exomes from the 
general population suggested that hydroxychloroquine or 
chloroquine might only work for TMPRSS2-absent pat-
ients who are infected by SARS-CoV-2.69 An international 
team showed that hydroxychloroquine has antiviral 
activity in the kidney cells of African green monkeys 
without TMPRSS2 expression (VeroE6) but not in the 
model of reconstituted human airway epithelium devel-
oped from primary nasal or bronchial cells.67 Additionally, 
another team showed that chloroquine does not block 
SARS-CoV-2 infection of the TMPRSS2-positive lung cell 
line Calu-3.68 These preliminary findings highlight the 
importance of pharma cogenomics studies in improving 
clinical benefits and the success rate of drug repurposing. 
A COVID-19 host genetics initiative is underway 
to generate, share and analyse data in a search for the 
genetic determinants of COVID-19 susceptibility, severity, 
and outcomes, and personalised treatment. Therefore, 
AI techniques could leverage massive genetic and 
genomic data to identify human genetic determinants of 
SARS-CoV-2 patho genesis, which presents a unique 
opportunity for drug repurposing in precision medicine 
and personalised treatment for individuals with COVID-19 
(figure 3).

For more on the open neural 
network exchange see 
https://onnx.ai/

For the COVID-19 host genetics 
initiative see https://www.
covid19hg.com

https://onnx.ai/
https://onnx.ai/
https://www.covid19hg.com
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https://www.covid19hg.com
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The future of AI-informed drug repurposing
Drug selection among the many approved ones, while 
avoiding time-consuming searches, can present uncer-
tainty. To date, AI’s potential ability to identify new 
candidate therapies that can be made available for clin-
ical trials rapidly and, if approved, merged into health 
care is unparalleled, making AI a centrepiece of adv-
anced technologies. Because of this, AI is a promising 
method for accelerating drug repurposing for human 
diseases, espe cially emerging diseases, such as 

COVID-19. With the availability of big data, including 
biological, clinical, and open data (scientific publications 
and data repositries), novel AI techniques capable of 
leveraging these large sets of biomedical data are in 
high demand. Pharmaceutical scientists, computer 
scientists, statisticians, and physicians are increasingly 
involved in developing and adopting AI-based tech-
nologies for the rapid development of therapeutics. AI 
approaches, coupled with big data, have the potential to 
substantially improve the efficiency and effectiveness of 
drug repurposing and aid medical decision making of 
therapeutic benefits with real-world evidence for 
various complex human diseases, such as COVID-19 
(figure 1) and Alzheimer’s disease.79 However, chal-
lenges remain in developing these AI tools, such as 
data hetero geneity and low quality, and insufficient data 
sharing by pharma ceutical companies, as well as the 
security and inter pretability of the models. We expect 
future successful AI models for drug repurposing to be 
accurate in terms of the generated outcomes, integrative 
of disparate information types and sources, inter-
operable in diverse deployment settings, inter pretable 
of internal working mechanisms, and robust to noise 
and adver -sarial attacks.
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