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ABSTRACT

Although recent developed algorithms have inte-
grated multiple signals to improve sensitivity for in-
sertion and deletion (INDEL) detection, they are far
from being perfect and still have great limitations
in detecting a full size range of INDELs. Here we
present BreakSeek, a novel breakpoint-based algo-
rithm, which can unbiasedly and efficiently detect
both homozygous and heterozygous INDELs, rang-
ing from several base pairs to over thousands of base
pairs, with accurate breakpoint and heterozygos-
ity rate estimations. Comprehensive evaluations on
both simulated and real datasets revealed that Break-
Seek outperformed other existing methods on both
sensitivity and specificity in detecting both small and
large INDELs, and uncovered a significant amount of
novel INDELs that were missed before. In addition,
by incorporating sophisticated statistic models, we
for the first time investigated and demonstrated the
importance of handling false and conflicting signals
for multi-signal integrated methods.

INTRODUCTION

Researches on genomic structural variations (SVs), rang-
ing from a few base pairs to chromosome-scale variants,
have greatly broadened our knowledge of human genome
(1,2). Although single-nucleotide polymorphisms represent
the most frequent class of genomic variation, it is generally
acknowledged that human genomes differ more as conse-
quence of SVs (3). Among these non-single base pair varia-
tions, insertions and deletions (INDELs), especially smaller
ones (4,5), are a common and functionally important type
of sequence polymorphism and worth special attention (6).

Recent advances in high throughput sequencing tech-
nologies have enabled large-scale sequencing of personal
genomes at low cost and offered new prospects for exploring
the impact of INDELs on the genetic landscape of various
diseases (1). Identification of INDELs from deep sequenc-
ing data is the first crucial step toward investigating the rela-
tionship between genotype and phenotype. Till now, based

on the identification of discordant patterns in sequencing
data, there exist four basic strategies to identify INDELs, (i)
decreased or increased paired-end mapping (PEM) distance
caused by insertion or deletion events (7,8), (ii) depth of cov-
erage (DOC) that focuses on the INDEL-induced gains or
losses of mapped reads, (iii) split read (SR) that searches for
split alignments of unmapped or clipped reads and (iv) de
novo assembly of abnormally mapped reads to recover IN-
DEL containing genomic segments (3,9). By employing one
or more strategies above, a number of algorithms and com-
putational tools have been developed and applied to various
genome sequencing projects (10–14).

However, sequencing-based accurate identification of IN-
DELs still remains challenging. First of all, due to the nat-
ural limitation of the four basic strategies, all the currently
available methods cannot detect a full size range of INDELs
(3,9). Based on their recognition signatures, INDELs can
be empirically divided into three categories, (i) very small
INDELs (1–9 bp) that can be well recognized by most of
standard tools such as GATK (15) and SAMtools (16), (ii)
small INDELs (10–40 bp) that fall in the range of 3-fold of
standard deviation of library insert size and (iii) large IN-
DELs (>40 bp). The detection of very small INDELs (a
couple of bp long) is quite straightforward and well char-
acterized (15,17), whereas the detection of small and large
INDELs is much more challenging. PEM-based methods
are not efficient in recognizing small INDELs that cannot
cause significant change in abnormally mapped PEM dis-
tance. Likewise, the minimum size of detectable INDELs
for DOC-based methods is limited by predefined window
size (3). Both SR-based and assembly-based approaches
perform well on small INDEL detection. However, for
large deletions, especially for those involved in repetitive re-
gions, these approaches lack both sensitivity and specificity
(3,12,18). Most recently, several tools have been developed
to overcome the shortcomings of single signature based al-
gorithms through various combinations of multiple signals.
To our knowledge, however, most of these tools focus only
on the optimization of either small or large INDEL detec-
tions decided by their dependency on the PEM information.
For example, a most recently developed algorithm LUMPY
(11) integrates three signals (PEM, DOC and SR) to im-
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prove the sensitivity of SV discovery, but it does not work
for small deletions and all sizes of insertions.

The four widely adopted signals for INDEL detection
may be conflicted when calling variants from complex re-
gions. Due to the complexity of human genomes and de-
ficiency of alignment tools, true INDEL signals may be
weaken if INDEL-supporting read pairs are unmapped,
and even worse, erroneously mapped reads may lead to false
or conflicting signals. Most existing methods are optimized
in recovering INDELs with weak signals through combina-
tion of multiple signals. Nonetheless, none of these methods
tested their ability in identification of INDELs with non-
consistent signals. Moreover, a new challenge is brought by
the development of cancer genomics and sequencing of het-
erogeneous samples, which require an unbiased estimation
of INDEL heterozygosity (19,20). Although several exist-
ing methods are competent at heterozygous INDEL identi-
fication, very few of them possess the ability to estimate the
INDEL heterozygosity.

Unlike existing multi-signal integrated methods that
firstly determine INDEL types before estimating break-
point (BP) intervals, here we present a novel BP-based al-
gorithm (termed BreakSeek), which can detect and cluster
soft-clipped reads into BP candidates. All BP candidates are
then linked into pairs as INDEL candidates using PEM in-
formation. INDELs are called only when two linked BPs
can be successfully paired under a Bayesian decision model,
which evaluates the likelihood of the presence of an INDEL
with consideration of both local distribution of PEM dis-
tance and BP evidence as well as the alignment of SR reads.
Through comprehensive evaluations on both simulated and
real datasets, BreakSeek is demonstrated to be able to detect
a full spectral range of INDELs with precise BP recognition
and meanwhile can effectively control false discovery rate
(FDR) in ambiguous predictions. Moreover, estimation of
heterozygosity rate (HR) is also achieved in BreakSeek by
incorporating a sophisticated statistical model on PEM dis-
tance and BP-supporting SR reads.

MATERIALS AND METHODS

Overview of BreakSeek

As shown in Figure 1, BreakSeek employs a three-step strat-
egy to discover INDELs. Firstly, it recognizes all the par-
tially aligned reads (denoted as breakreads) and clusters
them into BPs. Secondly, BreakSeek utilizes PEM reads sur-
rounding BPs to classify and pair BPs. A Bayesian deci-
sion model is used to filter and classify the INDEL candi-
dates based on both the Expectation–Maximization (EM)
estimation of local PEM distance and breakread signals.
Smith–Waterman (SW) alignment of breakreads from the
two BPs is used to check and confirm the deletion candi-
dates. Thirdly, all identified INDEL candidates are further
evaluated by a dynamic scoring system that combines all
signals (PEM, BP and SW alignment) and qualified candi-
dates are reported as authentic INDEL calls.

BP recognition

All partially aligned reads (breakreads) are collected and
clustered into BP candidates. Typically, there exists four

types of breakreads, namely, the MS, SM, MDM and MIM
breakreads defined by how they are clipped when aligned
to the reference (16). Here, M, S, D and I represent match,
soft clipped, deletion and insertion, respectively. For exam-
ple, for a 31 bp deletion, a MS breakread with 100 bp length
mapped near the left BP may reveal the existence of the BP
in its CIGAR as 76M24S. Another MDM breakread span-
ning the deletion may have 42M31D58M as its CIGAR.
More formally, a breakread is a tuple br = (pos, ssize, type,
seq, mapq), where br.pos is the extrapolated BP position,
br.ssize records the clipped size of the breakread, br.type
∈{L, R}marks whether the supporting BP is the left or right
BP according to the CIGAR pattern, br.seq is the read se-
quence used later in BP pairing and br.mapq is the mapping
quality of the breakread. BP is then defined as a cluster of
such breakreads that break at almost the same position on
the reference sequence with at most several base pair dis-
tances.

For INDELs, the breakread signature of the two BPs is
highly recognizable. The left BP of an INDEL is always
dominated by MS breakreads. That is, reads spanning the
left BP of the INDEL break at the BP and all bases to
the right of the BP or spanning the inserted/deleted region
are clipped. Similarly, the right BP is represented by SM
breakreads. The MIM and MDM breakreads only accom-
pany small INDELs, which can be entirely covered by a sin-
gle read. Such breakread patterns can be easily explored by
parsing the CIGAR of all reads. Moreover, the exact BP po-
sition can be acquired through calculation with the start ge-
nomic coordinates and parsed CIGAR values. More specif-
ically, for left BP indicating by MS breakreads (br.type =
= L), br.pos is calculated by summing start genomic coor-
dinates and mapped size of the read. For SM breakreads
(br.type = = R), the position of the right BP, br.pos, is sim-
ply the start genomic coordinate of the breakreads.

After recording all the breakread information, these
breakreads are clustered into BP candidates b = (pos, type,
seq, brs) using hierarchical single-linkage clustering with
self-defined distance dist (br1, br2) = |br1.pos−br2.pos|

1+(br1.type==br2.type) .
For a BP candidate b, b.brs is the list of br clustered into BP
b, b.pos is the median of br.pos for all br in b.brs as robust
estimation of BP position, b.type defines whether b is a left
or right BP which is determined later in the Bayesian clas-
sification procedure using both breakread signals and PEM
information, b.seq contains b.seq.l and b.seq.r which are the
br.seq with clipped size br.ssize closest to half read length
among all br in b.brs with br.type be L and R, respectively.
Intuitively, the BP cluster b.brs would be dominated by br
with br.type = R if it is the right BP of a deletion, whereas
for insertion br.type should be equally distributed between
L and R for the two BPs should be collapsed into the same
position when all breakreads are mapped to the reference.

PEM-based BP pairing

Besides being an authentic INDEL BP, BP candidates may
be either BPs of a non-INDEL variation or merely noises
from wrong alignments. To ensure the reliability of INDEL
BPs, PEM information is implemented not only to help fil-
ter false BP signals but also to pair the two BPs of the same
INDEL. For deletions, there should be read pairs spanning
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Figure 1. Outline of the multi-signal integrated BreakSeek framework. (A) A three-step workflow in BreakSeek. (B) Illustrations of the three core algorithms
implemented in BreakSeek. (B1) BP clustering. Breakreads are clustered using single-linkage hierarchical clustering with self-defined distance (see Materials
and Methods). The median position of the breakreads within the same cluster is assigned as the BP position. (B2) Four examples from chr20 of the
NZYGMN dataset illustrate the INDEL classification procedure. A typical deletion with significant deletion-supporting breakreads at both BPs, which
are paired by PE read pairs (colored in cyan). An insertion with evenly number of left and right BP-supporting breakreads companied by read pairs with
reduced PEM distance (colored in green). A deletion with only the right BP recognized using breakreads recovered its missing BP using the EM-estimated
deletion size through SW alignment. A small deletion identified using breakreads. (B3) Smith–Waterman alignment of deletions. For deletions with both
BP identified, two breakreads most evenly split by the BPs are selected to perform the SW alignment. For deletions with only one BP identified, position
of the missing BP is calculated using the reported BP and the EM-estimated deletion size, the clipped segment of the selected breakread is aligned to the
extrapolated missing BP region (see Materials and Methods).

the entire deleted region. Similarly, for small insertions that
are shorter than the insert size, read pairs can also span the
inserted fragment. Accordingly, all possible pairings of BP
candidates supported by spanning read pairs are picked and
ranked according to the supported read pairs as INDEL
candidates.

Here an INDEL candidate c = (bp, pems) consists of
two components: a pair of BPs c.bp = (c.bp.l, c.bp.r) and
a list of read pairs spanning one or both BPs. Let rl be the
read length, all pem = (st, ed, mapq) in c.pems must sat-
isfy c.bp.l.pos in (st + rl, min(st+l,ed)-rl) and/or c.bp.r.pos
in (max(st, ed-l) + rl, ed-rl), where l is the fragment length
of the read pair, and in an ideal deletion case, l = ed-st -
(d.bp.r - d.bp.l). Since the real fragment length l is inaccessi-

ble, practically l is estimated by l̂ = L̄ + 4 × σ̂ (L) where L is
a sample of estimated fragment length of normally mapped
read pairs on reference. A minimum of three read pairs is
needed to each INDEL candidate. The only difference be-
tween INDEL candidates is that for insertions bp.l and bp.r
are already collapsed into the same BP, while deletions tend
to have two distinct BPs.

Bayesian INDEL classification and INDEL candidate filter-
ing

Intuitively, there should be at most three kinds of read pairs
near INDELs. The INDEL-supporting read pairs, non-
INDEL-supporting normal read pairs for heterozygous IN-
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DELs and erroneously mapped reads due to the complex-
ity of DNA sequences and limits of current alignment tools.
To identify INDEL-supporting read pairs and to estimate
INDEL size, an EM algorithm is performed on local dis-
tribution of PEM distances for each INDEL candidate to
group read pairs into false alignments, non-INDEL or IN-
DEL supported read pairs.

Conditioned only on read pairs mapped nearby, we as-
sume that the fragment length L of read pair p from all true
positive INDELs follows the following mixture distribution

(1 − α − β) ferr(p) + αNnormal(L; μN, σ 2
N)

+βNindel(L; μindel, σ
2
N),

(1)

where Nnormaland Nindel share the same variance σ 2
N as the

systematic change in fragment length caused by INDELs
does not affect the variance. For homozygous INDEL, α
should be close to 0. For false positive INDEL candidates
with no INDEL-supporting read pairs, the mixture model
(1 − α) ferr(p) + αNnormal(L; μN, σ 2

N) should perform bet-
ter. The EM algorithm is performed to evaluate the fitness
of the two models, which is also included in the following
Bayesian filtration and classification of INDEL candidates.
The EM-estimated mixture weights, α and β, are used in
estimation of heterogeneity, and the EM-estimated INDEL
size μindel − μN is used to determine the missing BP for IN-
DELs with only one BP identified by breakread patterns.

Although it is unable to directly calculate the den-
sity of the probability that a read pair p is erroneously
aligned, ferr(p) in Equation (1) is empirically set to

be Nnormal

(
μN − σN × min

(
min(p.mapq)

30 , 3
)

; μN, σ 2
N

)
based

on an assumption that any read pair with estimated frag-
ment length significantly discordant with both μN and μindel
is likely to be false alignment. BPs from other type of SVs
rather than INDEL can also be filtered for their supporting
read pairs heavily concentrate on the false alignment term,
which makes 1 − α − β unignorable.

For a BP b = (pos, type, seq, brs) itself, under the as-
sumption that all fragments are sampled uniformly during
sequencing, the clipped size br.ssize for all br in b.brs should
be uniformly distributed on {1,2,. . . ,rl} where rl is the read
length. With enough breakreads,

∑
br∈b.brs

br.ssi ze is asymp-

totically normally distributed.
Let θU and σ 2

U be the mean and variance of the discrete
uniform distribution U (1, rl) of br.ssize for any soft-clipped
breakread br. The distribution of SL = ∑

br∈c.bp.l.brs
br.ssi ze

and SR = ∑
br∈c.bp.r.brs

br.ssi ze for the two BPs of a deletion

candidate c = (bp,pems), given the number of deletion-
supporting breakreads nL = #{br |br ∈ c.bp.l, br.type ==
L}and nR = #{br |br ∈ c.bp.r, br.type == R}, are asymp-
totically of normal distributions SL ∼ N (nLθU , nLσ 2

U ) and
SR ∼ N (nRθU , nRσ 2

U ), respectively.
The distribution of SL and SR for an insertion candidate

conditioned on the number of supporting breakreads n =
nL + nR are also asymptotically of i.i.d. normal distribution
N

( n
2 θU , n

2 σ 2
U
)
.

For deletion candidates, all breakreads br
from {br |br ∈ c.bp.l, br.type == R} ∪ {br |br ∈

c.br.r, br.type == L} are regarded as noises caused by
false alignment with probability perr (br ) = 10− br.mapq

10 .
Let DL, DR, I, N indicate whether a BP b is a deletion

left or right BP, an insertion BP or noise caused by false
alignment. For an INDEL candidate c = (bp,pems) and
for b in {c.bp.l, c.bp.r}, the BP type b.type is determined
by argmax

b.type∈{DL,DR,I,N}
P(b.type|(b, pems)). By Bayesian for-

mula, P(b.type|(b, pems)) = P((b,pems)|b.type)
K in which K =∑

b.type∈�

P((b, pems)|b.type) is infeasible and � is the all pos-

sible situations of b.type with {DL, DR, I, N} ∈ �, we have

b.type = argmax
b.type∈{DL,DR,I,N}

P((b, pems)|b.type)

= argmax
b.type∈{DL,DR,I,N}

{P(pems|b.type)P(b|b.type)} (2)

s.t.

⎧⎪⎨
⎪⎩

μindel > μN, if b.type ∈ {DL, DR}
μindel < μN, if b.type = I
1 − α − β < ε, if b.type �= N
1 − α < ε, if b.type = N

where

P(pems|b.type �= N)

= ∏
p∈pems

{
(1 − α − β) ferr (p) + αNnormal (Lp; μN, σ 2

B)
+βNindel (Lp; μindel , σ

2
N)

} (3)

P(pems|b.type = N)
= ∏

p∈pems

{
(1 − α) ferr (p) + αNnormal (Lp; μN, σ 2

N)
}

(4)

P(b|b.type = DL)
= N (SL; nLθU , nLσ 2

U ) × ∏
br∈{br |br.type=R,br∈b.brs}

perr (br ) (5)

P(b|b.type = DR)
= N (SR; nRθU , nRσ 2

U ) × ∏
br∈{br |br.type=L,br∈b.brs}

perr (br ) (6)

P(b|b.type = I) = N
(
SL; nL+nR

2 θU , nL+nR
2 σ 2

U
)

×N
(
SR; nL+nR

2 θU , nL+nR
2 σ 2

U
) (7)

P(b|b.type = N) = ∏
br∈{br |br.type=L,br∈b.brs}

perr (br )

× ∏
br∈{br |br.type=R,br∈b.brs}

perr (br ) (8)

All INDEL candidates c = (bp,pems) with c.bp.l.type =
DL, c.bp.r.type = DR and |(c.bp.r.pos−c.bp.l.pos)−(μindel−μN)|

μindel−μN
< δ,

which defines the maximum tolerable discrepancy in dele-
tion size estimation between the breakread-based approach
and PEM-based estimation, are kept as valid deletion can-
didates. Similarity, All INDEL candidates c = (bp, pems)
with bp.type = I and μindel < μNare classified as valid in-
sertion candidates.

Alignment-based filtration of deletion candidates

Naturally, breakreads supporting the left or right BP of
the same deletion, though distantly mapped, should share
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the same segment for they are originally sampled from
the same region where the deletion occurs (Figure 1B).
Therefore, for a typical deletion c, the overlapping re-
gion of breakreads from the two BPs should match per-
fectly. Smith–Waterman alignment is performed to get the
best alignment of breakreads selected from the two BPs,
c.bp.l.seq.l and c.bp.r.seq.r, if the two sequences fail to match
base-to-base linearly. All badly aligned deletion candidates
with less than 1

4rl matches or with over five mismatches are
filtered.

For a deletion c = (bp, pems) with only one breakpoint
bp, which happens if the other BP lies within a repeat re-
gion, the deletion size is extrapolated using μindel − μN from
EM estimation on PEM distances. Hence, location of a
missing BP is searched from the region[bp.pos + (μindel −
μN) − 1.5σN, bp.pos + (μindel − μN) + 1.5σN] if bp.type =
L or [bp.pos − (μindel − μN) − 1.5σN, bp.pos − (μindel −
μN) + 1.5σN] if bp.type = R. The Smith–Waterman align-
ment is implemented to align the clipped segment of the
most evenly clipped breakread from breakpoint bp to the
above region to determine its missing BP.

INDEL scoring and calling

After alignment-based filtration, all the remaining INDEL
candidates are supported by breakread and PEM patterns,
as well as local sequence alignment for deletions exclusively.
Then, we employ a multi-signal interactive scoring system
to rate the reliability of all signals used during INDEL clas-
sification. The basic idea of this scoring system is that even
with some weak-supported signals, we can still be confident
in INDEL calling if there exist some other strong signals.

For a deletion d, we have Score(d) =
(ScorePEM(d), ScoreBR(d), ScoreAlign(d))T • (1, 2, 4),
where ScorePEM(d) = (α + β)2 (

βn pems
) × wPEM(d) >

pPEMCov,

ScoreBR(d)

=

⎡
⎣

⎛
⎝ ∑

br∈d.bp.l
I(br.type = L) −

( ∑
br∈d.bp.l

I(br.type = R)

)1.4
⎞
⎠

+
⎛
⎝ ∑

br∈d.bp.r
I(br.type = R) −

( ∑
br∈d.bp.r

I(br.type = L)

)1.4
⎞
⎠

⎤
⎦

× wBR(d) > pBRCov

and ScoreAlign(d) = I(#Mismatch <= 3 × wAlign(d)) ×
I
(
#Match > 1

2rl
)
. Here w = (wPEM, wBR, wAlign) is an

empirically defined vector of functions of d determining
the magnification rate of original signals based on the
strength, purity and consistence of the other two patterns
as well as the INDEL size, vector p = (pPEM, pBR) is used
as threshold deciding the minimum level of significance for
the magnified signals. All candidates with Score(d)> = 6
are reported as confident calls. Now that all local PE read
pairs and breakreads are identified into INDEL-supporting
and non-INDEL-supporting groups, the heterozygosity of
the INDEL is estimated by H = #supporting br+λ×β×#pem

#br+λ×#pem ,
where #br/#pem are the number of total breakreads/PE
read pairs near/spanning the BPs, #supporting br is the
number of INDEL-supporting breakreads according to
the INDEL breakread patterns, β is the estimated ratio of

INDEL-supporting PE read pairs from the EM analysis
and λ = indel si ze

σN
is the shrinkage coefficient reducing the

contribution of PEM when the estimated INDEL is small
(<σN).

Design of simulation studies

Performance of BreakSeek and seven other INDEL de-
tection tools, BreakDancer (7), SOAPindel (12), CREST
(14), LUMPY (11), Pindel (18), PRISM (21) and DELLY
(13), on sensitivity and control of False Discovery Rate
(FDR) were firstly compared on four well-designed simu-
lated datasets. The four different types of simulated data
were to focus on the influence of varying library insert size
(300, 400, 500), varying standard deviation of library insert
size (30, 40, 50), read coverage (10,20,30) and global het-
erozygous rate (0.25, 0.33, 0.42, 0.5). An artificial chr20 se-
quence was created by incorporating 3903 non-overlapping
INDELs, with size ranging from 10 bp to 4500 bp, simulated
on chr20 from hg19 using RSVSim (22) with default weight-
sRepeats and weightsMechanisms parameters. All read pairs
were simulated using pIRS v1.1.0 (23) with 100 bp read
length, substitution-error rate 0.005 and 10% insert size, if
not predefined, as standard deviation (sd). The simulated
paired-end reads were aligned to chr20 of hg19 using bwa
0.7.5a-r405 (24) with the bwtsw option for bwa index. The
FASTQ-formatted reads were first mapped to the hg19 ref-
erence using bwa aln and the SAM file was generated using
bwa sampe. For heterogeneous dataset simulation, paired-
end reads simulated from both artificial and real chr20 of
hg19 were combined with different ratios (15/45, 20/40,
25/35 and 30/30).

For above simulation-based performance comparison,
sensitivity and FDR of each method were determined by
directly comparing the method output with the 3903 true
INDELs. A deletion call d was regarded as true positive
if its overlapping region with the true INDEL t is at least
1
2 max(d.si ze, t.si ze) and the minimum bias in BP estima-
tion be less than max(insert si ze sd, 1

5 t.si ze). For inser-
tion, a call i whose bias in estimation of the inserted loca-
tion be less than max(insert si ze sd, min(100, t.si ze)) will
be considered as true positive. The maximum distance be-
tween estimated BPs and the true positions of each INDEL
was also considered to evaluate accuracy in BP estimation
of the six methods.

Real datasets

Paired-end sequence data for individual NA12878 were
downloaded from the Sequence Read Archive (accession
number ERP001229) and aligned to the hg19 human
genome reference sequence using BWA v0.75a-r405 with
default parameters. The NA12878 data contain over 3.1 bil-
lion reads, with a flat distribution of insert size (mean ∼320
bp, sd ∼70 bp). We also used another high-quality human
re-sequencing dataset (NZYGMN), which has a mean in-
sert size distribution of ∼500 bp but with a much lower
standard deviation (∼23 bp). The NZYGMN sequence data
were aligned to the hg19 reference sequence using BWA
v0.75a-r405 with default parameters. The alignments of
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both datasets were imported to the INDEL detection tools
for further performance evaluations.

Parameter settings in the INDEL detecting tools

For both simulated and real datasets, read length, data cov-
erage and mean insert size which were pre-estimated from
chr20 of the datasets and were shared by all the meth-
ods to avoid bias in performance due to the randomness
in parameter estimation. For the latest version of DELLY
(v0.6.3), the default settings (-s 9) were used. For SOAPin-
del, ext was set to 1000 to allow detection of INDELs
smaller than 1 kb. For BreakSeek, CREST, Pindel and
PRISM, the default setting was used given pre-estimated
insert size mean and sd. For PRISM, -p was set to 4. For
LUMPY, according to its requirement, all unmapped and
soft-clipped reads with at least 20 clipped bases were ex-
tracted from BWA output using split unmapped to fasta.pl
with –b 30. The extracted reads were then realigned us-
ing YAHA with maxHits 2000, wordLen 11 and minMatch
15. Discordant paired-end alignments and split-read align-
ments were also extracted independently from BWA output
and the YAHA (25) output with minimum weight for a call
4, trim threshold 0.0, pre-estimated insert size mean and sd,
read length, min non overlap set to read length, discordant z
4, back distance 20, weight 1 and min mapping threshold 20,
respectively, to meet the requirements of the LUMPY (pe
+ sr) method. Since LUMPY prefers to report BP inter-
vals with probability for each call, only BPs with the max-
imum likelihood were treated as positions of its INDEL
calls. From outputs of all methods, only INDELs with at
least four supported reads (if provided) were selected as
valid calls. The inGAP software (26,27) was used to visu-
alize the pair-end mapping details of INDELs for manual
checking.

PacBio long reads based validation of INDELs on the
NA12878 dataset

For real dataset-based benchmark studies, INDEL d1 and
d2 reported by different methods were considered the same
if there exists at least one bp overlap with min(d1.si ze,d2.si ze)

max(d1.si ze,d2.si ze) ≥
1
4 and the minimum distance in the two estimated BPs
be less than max(insert si ze sd, 1

10 min(d1.si ze, d2.si ze)).
For the NA12878 dataset, results of all methods were
further verified through BLASR and BLAST alignments
of PacBio long reads to the hg19 genome. A deletion
call d was considered validated if there exist at least two
PacBio long reads split-mapped to the deletion region
(d.start – 1000, d.end + 1000), with the gap (g) sat-
isfying min(g.end, 1000 + d.si ze) − max(g.start, 1000) ≥
1
2 d.si ze. That is, the deletion suggested by PacBio read
alignments should have at least 1

2 d.si ze bp overlap with
the predicted deletion d. Similarly, an insertion call i was
considered validated if there exist at least two PacBio long
reads split-mapped to the insertion region (i.start – 1000,
i.end + 1000), with the gap satisfying min(g.end, 1000 +
i.si ze) − max(g.start, 1000) ≥ 1

2 i.si ze. That is, the inser-
tion suggested by alignments of PacBio reads should

have at least 1
2 i.si ze bp overlap with the predicted in-

sertion i. An example of verified deletion is shown in
Supplementary Figure S1. The PacBio long reads are
available at ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/
technical/working/20131209 na12878 pacbio/Schadt/.

PCR validation of BreakSeek exclusive calls on the
NZYGMN dataset

Twenty-five deletions from BreakSeek exclusive calls were
randomly selected for PCR validation (Supplementary Ta-
ble S1). For each deletion, a pair of primers was designed
to amplify the target region. Through PCR amplification,
bona fide deletions would be validated since there would be
PCR product (with length the predicted size – deletion size)
shorter than the expected/original product length with re-
duced size matched the deletion size. For heterozygous dele-
tions, there would be two amplified bands. Ambiguous dele-
tion calls were further validated through Sanger sequenc-
ing.

RESULTS

Simulation studies

To comprehensively evaluate the performance of Break-
Seek, we designed and simulated genomic sequencing
datasets with varying insert size, standard deviation,
sequencing depth and HR, and compared Break-
Seek with seven widely used methods. BreakDancer,
Pindel/DELLY/PRISM and SOAPindel represent three
typical INDEL detection algorithms, which adopt PEM,
split-red and assembly strategies, respectively. CREST and
LUMPY integrate multiple INDEL signals, which can
significantly improve prediction accuracy (11,14).

Firstly we tested how insert size and its standard devia-
tion could affect the sensitivity and specificity of INDEL
detection. As shown in Supplementary Figures S2 and S3,
with the increase of insert size or its variance, the sensi-
tivity of INDEL detection using BreakDancer decreased,
whereas the other tools are not sensitive to insert size vari-
ance. We secondly evaluated the effect of sequencing depth
on the prediction performance, and found that the sensitiv-
ity of BreakSeek and BreakDancer slightly reduced at low
sequencing depth (10-fold). This is mainly due to the two
tools utilize PEM information for INDEL prediction. With
the increase of sequencing depth to 20-fold, BreakSeek
managed to achieve high sensitivity and specificity on both
INDEL detection, which outperformed all the other seven
methods. Strikingly, BreakSeek could successfully detect a
full spectral range of INDELs from a few dozen bases to
kilobases. In contrast, neither LUMPY nor CREST could
recognize insertions, and both tools had very low sensitivi-
ties to detect small deletions ranging from 10 to 50 bp. Pin-
del and PRISM had good performance on deletion detec-
tion, whereas they failed to recognize long insertions. The-
oretically, the assembly based approach SOAPindel has no
preset limitations on INDEL size. However, its ability to de-
tect large INDELs was greatly confined by the predefined
parameter (-ext) (12). As shown in Figure 2, even with a
loose parameter (-ext 1000) that aims to detect all INDELs

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20131209_na12878_pacbio/Schadt/
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Figure 2. Performance comparisons between BreakSeek and seven other widely used INDEL detection tools on simulated datasets with varying sequencing
depth. INDELs were divided into six groups according to their sizes, and the sensitivity of methods for each group was calculated and presented separately.
BP accuracy was calculated based on the deviation of estimated BP position from its actual position.

shorter than 1 kb, SOAPindel still failed to detect 90% of
INDELs longer than 500 bp. Taken together, our algorithm
BreakSeek has much better and more stable performance on
detecting both small and large INDELs than the other five
tools.

Notably, BreakSeek, Pindel, PRISM, SOAPindel and
CREST could accurately detect BP locations for INDELs.
In contrast, the estimation of deletion BPs predicted by
LUMPY and BreakDancer was much less reliable, in which
over 20% of deletions were deviated from their actual loca-
tions by at least 50 bp.

We further simulated deletions with various allele fre-
quencies to assess the performance of BreakSeek to detect
heterozygous deletions and to estimate HR. As shown in
Supplementary Figure S4, the sensitivity of the five methods
did not vary much when deletion allele frequency reached
33%. We also compared the estimations of HR by these
methods. Since Pindel, PRISM, DELLY and LUMPY did
not provide HR estimation, these methods were removed
from the comparison. Although CREST cannot estimate

INDEL HRs directly, it does output the number of soft-
clipped reads and local sequencing depth. Hence, we calcu-
lated approximate HRs for CREST by summing the num-
ber of soft-clipped reads divided by the local sequencing
depth. As shown in Supplementary Figure S4, BreakSeek
performed as good as the assembly based method (SOAPin-
del) on HR estimation, whereas the CREST-derived HRs
were highly biased toward underestimation. Using only the
breakreads information and EM-based analysis of PEM
distances, BreakSeek achieved comparable accuracy on HR
estimation at much less computational cost than the assem-
bly based SOAPindel.

INDEL detection and PacBio long reads based validation on
NA12878

The NA12878 dataset sequenced at ∼50× coverage (Euro-
pean Nucleotide Archive, ERA172924) was adopted to ex-
amine the performance of INDEL detection by the seven
methods. Since BreakDancer cannot detect most of small
INDELs, it was excluded for subsequent comparisons. In
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addition, we used the Pacific Biosciences (PacBio) long
reads of NA12878 to validate all reported INDELs. Since
it is hard to estimate the size of long insertions and thus
to validate long insertion with confidence, here we focused
on the comparison of small INDELs (< = 40 bp) and
large deletions (>40 bp). As shown in the simulation stud-
ies, DELLY, LUMPY and CREST can hardly detect small
INDELs. Therefore, benchmark studies on small INDELs
were mainly confined to BreakSeek, SOAPindel PRISM
and Pindel.

For small insertions ranging from 10 to 40 bp, only
BreakSeek, PRISM, Pindel and SOAPindel could make
predictions. As shown in Figure 3A, BreakSeek predicted
fewer insertions than the SOAPindel and Pindel, but with
much higher validation rate. As expected, small insertions
identified by all the four methods had the highest valida-
tion rate (61.0%). It should be noted that the validation rate
of small insertions identified by BreakSeek and at least one
another method (52.5%) ranked the second, which is much
higher than that of INDELs shared by any of the other
methods (26.7%). Similarly, for small deletions, BreakSeek
outperformed the other four methods on both sensitivity
and specificity. For large deletions, CREST has the high-
est validation rate (84.8%). However, it reported fewer dele-
tions than the other four methods and the number of val-
idated deletion of BreakSeek (2680), SOAPindel (2170),
LUMPY (2455), Pindel (2597) and PRISM (2469) are over
38.2%, 11.9%, 26.6%, 34.0% and 27.3% more than that of
CREST (1938), respectively. The performance of BreakSeek
and LUMPY was comparable on detecting large deletions.
On the simulated datasets, Pindel and PRISM (Supplemen-
tary Figure S5) showed high sensitivity and specificity in de-
tecting both small and large deletions. For the real dataset
NA12878, however, Pindel identified much more false pos-
itives than all the other tools, partly because it lacks an ef-
ficient strategy to filter noise signals. For all the three cate-
gories, the number of INDELs identified by BreakSeek and
another tool simultaneously (shown in yellow) was signifi-
cantly higher than that without BreakSeek (shown in light
green). This indicates that the INDELs detected by Break-
Seek are more likely to be supported by other independent
tools, which is further confirmed by its high validation rate
in PacBio data.

Contribution of PEM and BP signals in detection of large
deletions

From performance comparison based on the NA12878
dataset, we noticed that the five methods are much less con-
cordant on detection of large deletions (>40 bp) than small
INDELs. For example, small INDELs called by all the three
methods (BreakSeek, SOAPindel and Pindel) made up of
over 69.5% and 74.2% of total BreakSeek predictions, re-
spectively. In contrast, only 50.9% of large deletions pre-
dicted by BreakSeek were validated by both SOAPindel and
Pindel. To figure out why these methods tend to be discor-
dant on detection of large deletions, we specifically explored
the PEM and BP patterns in large deletions using a new
dataset (NZYGMN). The reason for using this dataset, in-
stead of NA12878, is that NZYGMN has a better sequenc-
ing library quality with much smaller variance of insert size

and the access to DNA samples for experimental valida-
tion. In order to focus on the discrepancies caused by choice
of different strategies, apart from our BreakSeek, split-read
based Pindel, assembly based SOAPindel, and the highly ro-
bust multi-signal based CREST were included. A LUMPY-
included analysis is also performed and presented in Sup-
plementary Figure S6, which is highly concordant with re-
sults in Figure 4.

We firstly applied the four methods to detect deletions
from the PEM results of NZYGMN to the human reference
genome. As expected, Pindel identified the highest num-
ber of deletions among the four methods, whereas CREST
identified the lowest number of deletions (Figure 4A). Sec-
ondly, we evaluated the goodness of deletion calls from each
Venn diagram partition by checking the concordance of
breakreads, PEM information and local DOC. Intuitively, a
perfect true positive deletion call should meet the following
criteria: (i) it maintains a reasonable number of breakreads
near the two BPs, (ii) there should be sufficient read pairs
spanning both BPs (the deleted region) as well as read pairs
spanning only one of the two BPs for heterozygous dele-
tions, (iii) the reported deletion size should be concordant
with the size estimated based on the PEM distance spanning
the deleted region. Therefore, to get a glance at the relia-
bility of deletion calls for each Venn diagram partition, we
checked (i) the number of breakreads adjacent to the two
BPs, (ii) the number of read pairs spanning single BP ver-
sus those spanning both BPs, (iii) the concordance between
the reported deletion size and the expected size by the EM
algorithm.

As shown in Figure 4B, the deletions reported by all the
four methods had an average of 25 breakread supports.
Moreover, the reported size of these deletions is roughly
similar to their estimated size based the EM algorithm.
BreakSeek predictions (including Rows I, V and VI) were
more likely to be true positives since the distributions of
both breakreads and PEM signatures were highly concor-
dant with the expected patterns. Notably, as shown in the
third column of Figure 4B, the plots of the number of read
pairs spanning one BP versus the number of read pairs
spanning two BPs could classify predicted deletions into
three groups: (i) homozygous deletions only had read pairs
spanning the two BPs and thus were distributed along the y
axis, (ii) heterozygous deletions scattered near the y = x line
according to their HR and (iii) questionable and probably
false positive calls were distributed on the x axis, which did
not have PEM support. Obviously, a significant amount of
deletion calls along the x axis, with no read pairs spanning
the supposed deleted region, were reported by SOAPin-
del and/or Pindel (Category II, III and IV). In addition
to such discordance with PEM information, there also ex-
isted SOAPindel/Pindel calls with no breakreads near both
BPs as well as calls with highly inconsistent EM-estimated
size. To validate the accuracy of deletions only predicted
by BreakSeek, we randomly selected 25 of them and vali-
dated through PCR and Sanger sequencing. As shown in
Supplementary Table S1, at least 20 could be experimen-
tally validated, indicating the high accuracy of our Break-
Seek method.

To closely examine the effect of PEM and BP signals
on deletion calling, all reported deletions by the four
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Figure 3. Performance comparisons of INDEL detection on the NA12878 dataset. Venn diagrams of small insertion, small deletion and non-small deletion
calls were presented in subfigures (A), (B) and (C), respectively. All three diagrams were partitioned and marked with unique colors to highlight INDELs
detected exclusively by BreakSeek (orange), SOAPindel (purple), Pindel (green), LUMPY (pink) and PRISM (brown), and calls recovered by all methods
(red), INDELs detected by at least two methods other than BreakSeek (lightgreen) as well as calls detected by both BreakSeek and at least one but not all
of the other methods (yellow). The line and bar charts below the Venn diagram show the validation rate using PacBio long reads. Both the validation rate
and the number of validated (dark gray) and unvalidated INDEL calls (light gray) were summarized and presented by methods and by Venn partitions.

methods were classified into 16 classes according to their
strength in signals of BPs and PEM information (Supple-
mentary Table S2). For a reported deletion, its PEM sig-
nal will be considered as ‘reject’ if the EM-estimated dele-
tion size is less than –1 * sd (standard deviation of in-
sert size, sd), indicating reduced PEM distance caused by
insertions. Deletions with EM-estimated size greater than
sd will be considered to have supportive PEM signals. If
the absolute difference between the method-reported dele-
tion size and EM-estimated size is small enough (less than
1/3*min(reported size, EM-estimated size)) and the num-
ber of deletion-supporting read pairs is more than 40% of
read depth, the PEM signal will be regarded as strongly
supportive. The BP signals are classified according to the
percentage of deletion-supporting breakreads among all lo-
cal breakreads. For a deletion, its BP signal will be re-
garded as rejecting or supportive if there are less than 40%
or more than 60% breakreads supporting the deletion, re-
spectively, and strongly supportive if there are over 1

2 read
depth deletion-supporting breakreads contributed to more
than 80% of local breakreads. In this way, we classified the
deletions into 16 classes, and then used them to explore
the characteristics of deletions reported by different meth-
ods. As shown in Figure 4C, based on the compositions
of the six Venn diagram partitions, we can clearly see that

not only classes with similar Venn diagram compositions
were grouped together, but also deletions called by each
method were classified based on the strength of support-
ive signals. Most BreakSeek calls (including exclusive and
the two shared calls labeled as orange, yellow and red) had
supportive or at least non-conflicting BP and PEM signals,
whereas a large number of Pindel and SOAPindel exclusive
calls (shown in green and purple) had weak or even conflict-
ing signals. Notably, deletions called by all methods (shown
in red) were predominant in the first two classes with strong
BP and PEM supports.

Weak PEM and BP signals associated with repetitive ele-
ments

For predicted deletions with weak or no supports, we fur-
ther examined the mapping details and repetitive structure
of the reference sequence around the predicted deletions.
Considering that most of Pindel exclusive calls were not
supported by PEM signals (Figure 4B and C), we specu-
lated that these calls are likely to be artifacts of false map-
ping of SR. Hence, for each Pindel exclusive deletion call,
we extracted the left 50 bp and right 50 bp segments of ref-
erence sequence at both BPs, and mapped them back to the
8 kb (default maximum detectable size and search range
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Figure 4. Summary of performance on detection of large deletions on the NZYGMN dataset. (A) Large deletion calls reported by the four methods
were presented in a Venn diagram and were colored into seven partitions. (B) For each Venn partition, column I records distribution of total number of
breakreads from both BPs of the deletion calls. Column II presents the scatterplot of reported deletion size (x) versus EM-estimated size (y) with colored
density, and column III shows the scatterplot of total PE read pairs spanning only single BP (x) versus the number of read pairs spanning both BPs (y).
(C) Hierarchical clustering of deletion calls by all four methods according to their similarity in the composition of calls from each Venn partition. Deletion
predictions were classified into 16 groups according to their strength of PEM and BP signals.

of large deletions indicated by max range index for Pindel)
region of the reference genome covering the ‘deleted’ re-
gion. By counting the number of all possible combinations
of mappings of the two segments, we found that segments
of over 40.8% of Pindel exclusive calls had multiple map-
ping choices (Supplementary Figure S7). This indicates that
without PEM and BP supports, SR mapping alone as im-
plemented in Pindel does not guarantee filtering all false
positive predictions.

A typical example of such situation is shown in Figure
5A, where Pindel reported a deletion on chr3: 102,527,314 -
102,527,548 in NZYGMN. This region is covered by a 681-
bp tandem repeat with repeat unit size of 26 bp. Read pairs
were abnormally mapped to this region, as revealed by the
blue and green links. However, after correcting the mapping
positions of all read pairs to where provided them the most

likely PEM distances, as shown in Figure 5B and C, the dis-
tribution of corrected PEM distances matched the distribu-
tions of normal read pairs, indicating that there should be
no deletion in this region, which was further experimentally
confirmed.

Besides these false positive calls resulting from false PEM
and SR signals, there also exist true deletions missed by
most methods because of weak signals. Figure 5D shows
a BreakSeek exclusive deletion on chr7: 101,060,883 -
101,060,948 in NZYGMN, which contains a tandem repeat
region. Although there are very few breakreads near the
right BP, BreakSeek successfully recovered the left BP based
on the EM-estimated deletion size. Through the BP clus-
tering procedure, BreakSeek determined its right BP, where
the breakreads could be uniquely aligned to the two bound-
aries of the tandem repeat (Figure 5F). As shown in Figure
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Figure 5. Examples of two large deletion calls on NZYGMN with orig-
inal and corrected distribution of local PEM distance. (A) Visualization
of PEM of a false positive call by Pindel using inGAP. (B) Comparison
of the original and corrected local PEM distribution near the Pindel call.
Abnormally mapped read pairs were corrected based on their optimal EM-
estimated PEM distance. (C) Visualization of corrected PEM of the Pin-
del call. The chromatogram of amplified sequence confirms that there is no
deletion in this tandem repeat region. (D) Visualization of PEM of a Break-
Seek exclusive call. (E) Comparison of the original and corrected local
PEM distribution near the BreakSeek call. (F) SW alignment of deletion-
supporting breakreads. PEMs were visualized using inGAP, read pairs
with normal PEM distances were linked by gray lines, read pairs with ab-
normally long PEM distances (> mean + 3*sd) were marked by blue lines
and read pairs with abnormally short PEM distances (< mean - 3*sd) were
linked by green lines.

5E, PEM distances of read pairs supporting the deletion
should be reliable since they did not vary much even after
the Maximum Likelihood Estimation (MLE) based correc-
tion. BreakSeek employs a Bayesian scoring system that fil-
ters unconfident deletion calls by evaluating not only the
strength of each signal but also the their cleanness and con-
sistence with each other. Therefore, unlike any other PEM
or SR-based methods, BreakSeek is able to recognize such
deletions with week or conflict supports and filter false pos-
itives through deletion pairing and Bayesian classification
system.

Heterozygosity estimation in NA12878 and NZYGMN

To evaluate the performance of BreakSeek on determining
the HR of deletions, we used both BreakSeek and SOAPin-

del to estimate HR for each heterozygous deletion. Because
the other methods (Pindel, PRISM, DELLY, LUMPY and
CREST) do not provide such estimation, these methods
were not included in the comparison. Unlike performance
comparison and validation of INDEL detection, direct
evaluation of the accuracy in HR estimation is currently
impractical. SOAPindel estimates HR based on the local
assembly of deleted regions, and thus the HRs estimated by
SOAPindel are likely to proximal to the real HRs. Therefore,
we directly compared BreakSeek HR results to SOAPindel
estimations.

Impact of the distribution of PEM distance to the het-
erozygous estimation of BreakSeek was examined by com-
paring the overall differences between SOAPindel and BP
estimation on SOAPindel-reported ‘heterozygous’ calls. As
expected, HR estimation of INDEL calls on the NZYGMN
dataset is more accurate than that on the NA12878 dataset,
since the PEM-based statistical inference should be more
reliable in NZYGMN with a sharp insert size distribution
(Supplementary Figure S8A). As shown in Supplementary
Figure S8B, HR estimation by BreakSeek was almost sim-
ilar to that estimated by SOAPindel in NZYGMN. In con-
trast, HRs were underestimated by BreakSeek in NA12878,
which was presumably caused by the misclassification of
deletion-supporting read pairs to normal ones due to the
large standard deviation of PEM distances in NA12878.

BreakSeek running time

BreakSeek was implemented in Python 2.7 as a stan-
dalone program (https://sourceforge.net/p/breakseek/). We
summarized running time of BreakSeek and the other four
methods applied to the ∼50X NA12878 dataset on a super-
computer with 2.13 GHz Intel Xeon processors. Any pre-
processing to the SAM/BAM file required for the meth-
ods was included. As shown in Supplementary Figure S9,
it took SOAPindel, even when running parallelly using 10
CPUs, significantly much more time than the other four
methods running in a single process. In most cases, the
running time of our BreakSeek was comparable to that of
LUMPY and was slightly shorter than the running time of
Pindel. It should be noted that the running times of almost
all methods on chr10 are exceptionally longer than the times
on other chromosomes of similar size. This is likely due to
the ultra-high sequencing depth in certain regions of chr10.

DISCUSSIONS

In this study, we developed a novel multi-signal integrated
probabilistic model for INDEL detection, which provides
accurate BP prediction with single-nucleotide resolution.
With a novel Bayesian classification system and the SW
alignment based filtration for deletions, our algorithm
BreakSeek outperforms existing INDEL discovery meth-
ods on its sensitivity and specificity, particularly for detect-
ing full size range of INDELs. Moreover, BreakSeek, based
on both breakreads and EM estimation of PEM, can un-
biasedly and efficiently estimate the HR for predicted IN-
DELs.

Although most multi-signal integrated methods like
LUMPY already implemented unequal weights for differ-
ent signals and some even supported user-defined weights,

https://sourceforge.net/p/breakseek/
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none of these methods realized that the weight for each sig-
nal should be adaptive to the size of potential variation.
Unlike existing methods, in our BreakSeek, all signals are
treated and valued differently according to their sensitivity
and reliability in detection of small and large INDELs.

For small INDELs, split-read or related breakread pat-
terns are greatly efficient, whereas PEM and DOC signals
make little contribution when the INDEL size is smaller
than the standard deviation of insert size or DOC win-
dow size. Implementation of statistical methods on span-
ning read pairs and average gains and losses within the
DOC window would be misleading, because the system-
atic change in fragment length and local coverage caused by
the INDEL is insignificant compared to random variation.
Multi-signal based methods like LUMPY can hardly detect
small INDELs (Figures 2 and 3) for they are optimized for
large SV calling and keep the same PEM/SR weight in de-
tecting SV of all sizes. Well aware of the fact that the number
of small INDELs overwhelmingly surpasses that of large
INDELs (Supplementary Figure S10) (28–32) and SR sig-
nal is more efficient in small INDEL detection than PEM
and DOC, our BreakSeek focuses on the recognition of
breakread patterns when calling small INDELs, with PEM
information for confidence evaluation. Comprehensive per-
formance evaluations on both simulated and real datasets
confirm that this BP-based strategy is more efficient for
small INDEL detection.

PEM signal is useful and robust for large deletion detec-
tion, whereas the SR alignment based methods (e.g. Pindel)
are much less efficient. Without information about the IN-
DEL size, Pindel performs a brute force search over a pre-
defined region to determine the locations for a pair of BPs.
This is not only time-consuming but also cap the maximum
size of its detectable INDELs. In addition, most PEM in-
tegrated methods like LUMPY prefer to report intervals of
BP instead of the exact positions for each call, since PEM
information is used mainly to narrow the BP intervals. For
large INDEL detection, our BreakSeek method is not only
much more efficient than non-PEM based methods like Pin-
del, but also provides more accurate BP estimation than
most multi-signal integrated methods like LUMPY. More-
over, BreakSeek further maximizes the advantage of PEM
on large INDEL detection by performing an EM estima-
tion on PEM distances of all read pairs. Given sufficient
read pairs (> = 30X), this procedure not only provides accu-
rate and reliable estimation of INDEL sizes but also makes
estimation of HRs applicable since all read pairs are natu-
rally classified into either INDEL-supporting or INDEL-
rejecting read pairs if heterozygous INDELs are present.
One shortcoming of BreakSeek is that the HR estimation
can be biased if the sequencing depth is not sufficient or the
standard deviation of library insert size is too large.

How to handle weak or conflicting signals is a signifi-
cant challenge for multi-signal integrated methods, partic-
ularly when calling INDELs in or adjacent to repetitive re-
gions. However, many existing multi-signal based tools fo-
cus on increasing sensitivities through combination of all
available information, which works well in recognizing true
variants with weak but concordant signals. However, none
of these methods pays attention to conflicting signals. As
shown in Figure 5, signals of most deletions reported by

Pindel and/or SOAPindel exclusively were actually against
the existence of the reported deletion. Some of them could
be true positive, yet in most cases deletion candidates with
incongruous signals, usually caused by wrong mappings as-
signed by alignment tools near repeat regions, are likely to
be false positives. This may partly explain why Pindel al-
ways works great on clean simulated datasets but tends to
have a much higher FDR on real datasets (Figures 2–4). In
this study, we proposed a new and sophisticated scoring-
based approach to distinguish bona fide variants from false
positive calls among INDEL candidates with discordant
signals. The scoring procedure, in consideration of differ-
ent patterns in terms of both signal strength and cleanness,
is adopted in BreakSeek to evaluate the reliability of all
three types of signals. For INDEL calls with unconvincing
evidence, only those either with weak but clean and con-
sistent signals or with acceptable incongruent signals but
are accompanied by strong and reliable signals are consid-
ered as confident calls. For example, some large deletions
with one BP within repeat region that causes missing or
false breakread signals can be recognized if they are sup-
ported by reliable PE read pairs spanning the repeat region.
We highly recommend that all existing and future methods
should check and optimize their performance on recogniz-
ing bona fide variants from candidates with false or conflict-
ing signals.

Taken together, besides the benefits from combination of
multi-signals, our work on the optimization of adaptive sig-
nal weights and recognition of INDELs with discordant sig-
nals further improved both the sensitivity and FDR in IN-
DEL detection. INDELs detected by our BreakSeek with
accurate BP position can be quite useful for downstream
genomic and transcriptomic researches such as aberrant
splicing and dysregulation of transcript isoform expression
caused by INDELs (33–35). We believe the method pre-
sented in this study would be useful to the genomics and
bioinformatics community not only by providing accurate
and reliable detection of INDELs at single base resolution
with unbiased HR estimation, but also by offering a com-
prehensive framework of INDELs unexplored before.
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