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Abstract: The idea that a common pathology underlies various neurodegenerative diseases and
dementias has attracted considerable attention in the basic and medical sciences. Polyglutamine
binding protein-1 (PQBP1) was identified in 1998 after a molecule was predicted to bind to polyglu-
tamine tract amino acid sequences, which are associated with a family of neurodegenerative disorders
called polyglutamine diseases. Hereditary gene mutations of PQBP1 cause intellectual disability,
whereas acquired loss of function of PQBP1 contributes to dementia pathology. PQBP1 functions in
innate immune cells as an intracellular receptor that recognizes pathogens and neurodegenerative
proteins. It is an intrinsically disordered protein that generates intracellular foci, similar to other
neurodegenerative disease proteins such as TDP43, FUS, and hnRNPs. The knowledge accumulated
over more than 20 years has given rise to a new concept that shifts in the equilibrium between
physiological and pathological processes have their basis in the dysregulation of common protein
structure-linked molecular mechanisms.

Keywords: PQBP1; intellectual disability; neurodegenerative diseases; innate immunity; intrinsically
disordered protein

1. Introduction
1.1. History of the Concept of Polyglutamine Disease

Albert La Spada, Kenneth H Fischbeck, and their colleagues were the first to develop
the concept of polyglutamine (polyQ) disease by discovery of the causative gene for X-
linked spinobulbar muscular atrophy (SBMA)/Kennedy’s disease [1]. The identified gene
was an androgen receptor, in which the CAG repeat expansion was linked to patients
but not healthy siblings in the same family. The CAG repeat was located in the exon and
transcribed into a mutant protein with polyQ repeats. Thereafter, multiple causative genes
of neurological and neuromuscular diseases–which included Huntington’s disease [2] and
spinocerebellar ataxia [3]–that involve the expansion of triplet repeats were discovered,
either in translated exons or untranslated regions, including introns. To date, more than
40 triplet diseases have been identified. Triplet diseases caused by repeat expansions in
untranslated regions include Fragile X syndrome, which is caused by an elongation of a
CGG repeat in the 5′ untranslated region of the FMR1 gene on the X chromosome, and
myotonic dystrophy, which is caused by a CTG repeat in the untranslated region. Triplet
diseases caused by repeat expansions in exons include Huntington’s disease, spinocerebel-
lar ataxia types 1, 2, 3, 6, 7, and 17 (SCA1, 2, 3, 6, 7, and 17), dentatorubropallidoluysian
atrophy (DRPLA), and Kennedy’s disease/SBMA, which are called polyQ diseases because
abnormal proteins–including those with polyQ repeats–are thought to be linked to toxic-
ity [4–7]. Many studies have supported this hypothesis by demonstrating that abnormal
polyQ proteins induce toxicity via the formation of nuclear/cytoplasmic aggregates or
inclusions [8–10]. Furthermore, X-ray diffraction revealed that the polyQ sequence, which
adopts a β-sheet structure, functions as a polar zipper to generate aggregates [11].

Int. J. Mol. Sci. 2022, 23, 6227. https://doi.org/10.3390/ijms23116227 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23116227
https://doi.org/10.3390/ijms23116227
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms23116227
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23116227?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 6227 2 of 14

The concept of polyQ disease has raised further questions regarding the mechanisms of
toxicity. The first idea was “sequestration”, whereby normal proteins are co-segregated into
the inclusion body of polyQ proteins and lose their physiological functions [12]. The second
idea was that mutant polyQ proteins acquire higher (or lower) affinity for their binding
partner molecules [13], and such gains in abnormal interactions (or loss of physiological
interactions) lead to gains in toxicity.

In fact, some polyQ disease proteins interact with target proteins via sequences other
than the polyQ tract [14,15]. Insertion of the polyQ sequence into an unrelated gene (e.g., the
hypoxanthine phosphoribosyltransferase gene) induces neurodegeneration and inclusion
body formation in knock-in mice [16]. However, it remains unclear whether the functional
depletion of the protein due to abnormal aggregation or the gain of abnormal interactions
with a new target protein due to inserted polyQ sequence caused neurodegeneration.
Analyses using yeast cells have revealed that flanking sequences can have an effect on
the toxicity of polyQ peptides [17], although it is uncertain whether the aggregation or
the binding to a polyQ-interacting target is affected. Nevertheless, huntingtin (Htt)-exon
1 transgenic mice expressing an elongated CAG repeat peptide flanked with short sequences
induce neurodegeneration [18], and the expression of polyQ peptides fused to fluorescent
proteins is toxic in nematodes in a polyQ length-dependent manner [19,20], which suggests
direct toxicity of the polyQ sequence. However, it remains unclear overall whether the
change of aggregation or that of interaction causes the pathology.

1.2. History of the Discovery of PQBP1

PolyQ sequences are present in several transcription-related proteins, such as the tran-
scription initiating factor TFIID/TATA-binding protein, glucocorticoid receptors, octamer-
binding POU transcription factors, and the CREB-binding protein. Moreover, it is predicted
that a certain cofactor binds to the polyQ sequence of Oct-2 because the polyQ sequence
functions as an activation domain [21].

Therefore, our group hypothesized that certain molecules that interact directly with
the polyQ repeat sequence mediate toxicity via their functional depletions and that such
molecules are involved in the common pathogenesis of various polyQ diseases. To verify
this hypothesis, we performed two-hybrid screening using a human embryonic brain
cDNA library constructed on the pJG4–5 plasmid with a normal-length polyQ sequence
(GAL-Q26-APP) derived from brain-specific transcription factor Brn2 as bait [22]. The
proteins discovered were named PQBP1, PQBP2, PQBP3, PQBP4, and PQBP5 [20] and
possessed polar amino acid-rich sequences, but no common structure or binding motif for
interaction with the polyQ sequence [22].

Among these PQBPs, PQBP1 has been most extensively investigated. The cellular
and biological functions of PQBP1 have been elucidated according to two specific do-
main structures of PQBP1, and various animal models of PQBP1 have been developed
and investigated. Mutations of the human PQBP1 gene were shown to cause intellectual
disability and other relevant symptoms. In addition, PQBP1 has been implicated in neu-
rodegenerative diseases, including Alzheimer’s disease (AD) [23], tauopathy [24], and
polyQ diseases [25], as a common mediator across multiple disease pathologies. In this
review, we introduce the most recent overview of such accumulated knowledge of PQBP1,
and present future prospects.

2. Molecular Structure and Cellular Function of PQBP1

PQBP1 has a WW domain (WWD) that is homologous to the SH3 domain in local
protein structure and target sequence recognition [26–32], and a specific C-terminal domain
(CTD) that is highly degenerated and classified as a low complexity domain/region [33] or
an intrinsically disordered protein [34–36]. PQBP1-WWD is conserved from C. elegans to
mammals and recognizes a short proline-rich sequence in various target proteins [27,31,37],
which include some of the repeat sequences in the C-terminal tail of RNA polymerase II
(Pol II) [25]. Because the interaction with Pol II occurs in a phosphorylation-dependent
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manner, PQBP1 preferentially binds to active Pol II with a phosphorylated tail, which
transcribes and elongates pre-messenger RNA [25].

PQBP1-WWD is used for interaction with WWD-binding protein 11 (WBP11)/Npw38-
binding protein (NpwBP). The interaction with WBP11 may be relevant to RNA splicing
because mass analysis of different stages of spliceosomes assembly has revealed that PQBP1
and WBP11 are simultaneously incorporated into the B complex and released from the
B * complex [38,39].

The CTD is unique to PQBP1 yet conserved across species in PQBP1 homologs [40].
Molecular structure analysis of the PQBP1-CTD revealed that it is highly disordered [41].
Circular dichroism (CD), nuclear magnetic resonance (NMR), and ensemble optimization
method (EOM) analyses also confirmed that PQBP-CTD is an intrinsically disordered
domain [42]. Therefore, PQBP1 is an intrinsically disordered protein (IDP). PQBP1 self-
assembles via the intrinsically disordered structure of the CTD whilst it can revert to
a monomer [42].

The target of PQBP1-CTD was identified as U5-15kD, a component of the U5 spliceo-
some, using yeast two-hybrid screening [43]. In an independent study of yeast, PQBP1 was
also identified as a binding protein of Dim1p–a homolog of U5-15kD [44]–which further
confirmed the relationship. The interaction of PQBP1 with the splicing protein is wellcoor-
dinated with transcription. PQBP1 is recruited to the C-terminal tail of Pol II during active
transcription, which is consistent with the observation that transcription of pre-mRNA is
directly coupled with RNA splicing by hnRNPs and spliceosomes on the C-terminal tail of
Pol II. A recent structural biology study revealed that the YxxPxxVL motif in PQBP1-CTD
is essential for its interaction with U5-15kD [41,45]. Interestingly, the interaction motif is
lost in all frameshift type mutations in a human intellectual disability called Renpenning
syndrome [45], as described later in this review.

Hepta and di amino acid repeats are contained [46] between PQBP1-WWD and
PQBP1-CTD. Human mutations that cause intellectual disability are concentrated at the
repeat sequences, as described later in this paper, presumably because repeat sequences in
the genome may cause mutations during replication or recombination. Most mutations
lead to a deficiency of PQBP-CTD or a decrease in PQBP1 protein level due to non-sense
RNA decay [47]. Therefore, the links between the roles of PQBP1-WWD and PQBP1-CTD
and between the roles of PQBP1-CTD and the whole PQBP1 molecule would be essential
for cellular functions related to intellectual ability and brain size.

3. PQBP1 Is an Intrinsically Disordered Protein with a Low Complexity Domain

As described above, PQBP1 is an intrinsically disordered protein (IDP) that does not
compose a rigid tertiary protein structure [38,41], but forms intracellular foci similar to
nuclear bodies [25] and stress granules [44]. PQBP1 alone can form nuclear foci sequestered
from nucleoplasm; however, it can also co-assemble with ataxin 1 (Atxn1) into a nuclear
granule, in which the two proteins are separated in a lamellar structure by liquid–liquid
phase separation (LLPS) [25,40].

Recently, the involvement of IDPs, such as FUS, hnRNPA1, and TDP43, in the pathol-
ogy of neurodegenerative diseases has attracted considerable attention [48–50]. LLPS of
disease causative proteins–which occurs because of the physical characteristics of low
complexity (LC) sequences with a high content of specific amino acids–has been proposed
as an alternative mechanism for aggregation instead of the classical fibril formation [51].
LLPS may also initiate Tau aggregation [52]. The concept of LLPS enables so-called “ag-
gregates” to behave more dynamically between the soluble state and the assembly state.
In this regard, PQBP1 is a pioneering molecule of neurodegeneration-related IDPs that is
challenging the paradigms of the aggregation hypothesis [25,40].
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4. Expression Profile of PQBP1 during Development and in Adulthood

In adult mice, PQBP1 is expressed throughout various organs [46]. In the brain,
the expression level is high in regions with dense neuronal populations, such as the
hippocampus and cerebellar granular layer, and in situ hybridization has revealed that
among the various cell types in the brain, mRNA expression is highest in neurons [46]. In a
single cell, the PQBP1 protein is predominantly located in the nucleus of cells; however,
it can be translocated to the cytoplasm [46]. Interestingly, PQBP1 is concentrated in RNA
granules and translocated to stress granules under certain cellular stresses [53].

During development, PQBP1 is expressed throughout various organs but most highly
in the central nervous system [54]. In the developing brain, the highest expression at the
mRNA level has been detected in the ventricular and subventricular zone (VZ/SVZ), where
neural stem progenitor cells exist [54]. Previously, we further confirmed that among the
various central nervous system regions, the highest expression at the protein level is in
the VZ/SVZ [55,56]. Furthermore, the PQBP1 expression level is high in developmental
bone marrow [54]. These results are consistent with the role of PQBP1 in stem cell prolifera-
tion [56], synapse regulation [23], and bone development [57], which are relevant to human
symptoms described in the following section.

5. Human Gene Mutations and Intellectual Disability

In 2003, the European X-linked MR consortium led by Profs. Kalscheuer and Ropers
discovered a genetic linkage between PQBP1 gene mutations at Xp11.23 and the onset of
intellectual disability in patients from five of 29 families with syndromic and non-syndromic
forms of X-linked mental retardation [47]. The families carrying PQBP1 mutations were
clinically similar to Renpenning syndrome [58]. Subsequently, a number of other research
groups confirmed the genetic linkage between PQBP1 and intellectual disability [59–66].
This included other intellectual disability syndromes, such as Golabi-Ito-Hall syndrome [64],
Hamel syndrome, Proteus syndrome, and Sutherland-Haan syndrome, which led to the
concept of the Renpenning syndrome spectrum [61,67]. Mutations of PQBP1 are now
categorized into two types (Figure 1). The first type of mutations includes deletion or
duplication of dinucleotide repeats or deletion of twenty nucleotides in the hepta-amino-
acid repeat regions, which result in a reading frame shift and non-sense RNA decay [47].
The second type of mutation detected in Golabi-Ito-Hall syndrome is the substitution of
tyrosine 65–a critical residue of WWD for protein interaction [59]–to a cysteine (Tyr65Cys),
which results in structural change, losing the WWD-mediated protein interaction [68–70].

Renpenning syndrome spectrum diseases share intellectual disability, microcephaly,
lean body, short stature, and small testes as major symptoms (Figure 2). The intellectual
disability in patients with these diseases ranges from mild to severe. The microcephaly of
Renpenning syndrome spectrum is primary microcephaly without architectural changes in
the cerebral cortex [56]. A rare case of PQBP1-linked microcephaly with periventricular
heterotopia has been reported, although the patient’s brother did not show periventric-
ular heterotopia [62]. Therefore, PQBP1-linked microcephaly is associated with cortical
thickness expansion rather than cortical surface expansion.
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Figure 1. Domains of PQBP1 and human mutation sites. Reported human mutations of PQBP1 gene
are summarized in correspondence with domains. A point mutation at Tyrosine 65 critical for the
structure of WW domain causes Golabi-Ito-Hall syndrome. Deletions or insertions in the polar amino
acid rich domain or in the C-terminal domain cause frame shifts, which lead to the reduction of
mRNA due to non-sense RNA decay and cause Renpenning syndrome. Point mutations at the tail of
the C-terminal domain also cause Renpenning syndrome, while the direct effect on PQBP1-mRNA
and -protein remains unknown.

Figure 2. Clinical symptoms and frequency of patients carrying PQBP1 mutations. Clinical features
of patients carrying PQBP1 gene mutations are summarized. Intellectual disability (ID) and micro-
cephaly are almost essential, while lean body and short stature are highly frequent. The real incidence
of patients carrying PQBP1 gene mutations is not determined. However, a report by de Brouwer and
colleagues [66] suggested it to be relatively high.
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The frequency of all PQBP1 gene mutations has not yet been determined, although
Renpenning syndrome spectrum is a rare disease (personal communication). However, one
report has suggested that the Renpenning syndrome spectrum occurs at a relatively high
frequency, near that of Rett syndrome [71] (Figure 2).

Flynn et al. reported duplication of the PQBP1 gene and a phenotype-like Ren-
penning’s syndrome in a patient [72]. SNP microarray analysis (500 K) of the patient
showed a 4.7 Mb duplication at Xp11.22–p11.23, including the PQBP1 gene, which was
further confirmed to be duplicated using Multiplex Ligation-dependent Probe Amplifi-
cation (MLPA) [67]. The patient was diagnosed with intellectual disability and exhibited
myoclonic seizures and hyperactivity at two years of age, but normal social behavior at
four years of age and moderate intellectual disability (IQ: 35–47) at 11 years of age [72].
Although the patient did not have microcephaly, CT revealed mild cerebral atrophy, and
EEG showed a pattern of generalized seizure activity [72]. Another group reported a family
with duplication of Xp11.22–p11.23, which includes FTSJ1 and PQBP1 [73]. The family
comprised male and female patients with moderate intellectual disability and develop-
mental speech delay [73]. Although not confirmed in these patients’ brains, the possible
overexpression of PQBP1 proteins in such patients may be relevant to the phenotypes
observed in the Drosophila transgenic model [74].

6. Animal Models and Molecular/Cellular/Biological Functions of PQBP1

Various animal models have been developed up to now. In transgenic mice with
human PQBP1 driven by ubiquitous gene expression regulatory elements, PQBP1 over-
expression exhibited a delayed and slow progressive motor neuron disease-like pheno-
type [75], while the phenotype is observed in a restrictive number of transgenic mice and
may be difficult to be generalized. Subsequent microarray analysis of the motor neuron
degeneration process in these mice revealed that mitochondrial abnormalities might occur
in neurons [76].

PQBP1 knockdown (KD) mice have also been developed [77], in which a transgene
expressing a 498 bp double-stranded RNA produces, when cleaved, endogenously multiple
siRNAs that suppress PQBP1. This selectively reduces the level of PQBP1 protein to nearly
50% of that in control mice [77]. The KD mice exhibit abnormal anxiety-related behaviors
during the light/dark search, and open-field tests and significant reductions in anxiety-
related cognition in the repeated elevated cruciform maze and novel object recognition
tests [77]. However, the KD mice did not reveal obvious abnormalities of endoderm-derived
organs [77].

Although a generation of PQBP1 knockout mice has not been developed, three con-
ditional knockout mouse models of PQBP1 have been reported [23,24,56]. PQBP1-cKO
mice generated using nestin-Cre have microcephaly and exhibit cognitive dysfunctions [56].
Detailed analyses have revealed that the total cell cycle time of neural stem progenitor cells
(NSPCs) is elongated, and the frequency of cell division is decreased before delivery [77].
This mechanism is distinct from previously established mechanisms of microcephaly, such
as depletion of neural stem cells by enhanced differentiation to neurons, increased cell
death of NSPCs and/or neurons, and impaired migration of differentiated neurons, all
of which do not exist in Pqbp1-cKO mice [77] (Figure 3). Comprehensive analyses of
Pqbp1-cKO mice have revealed that the expression profiles of cell cycle-relevant genes
and synapse-relevant genes are widely affected due to loss of PQBP1 [77]. Surprisingly,
Pqbp1-cKO mice generated by nestin-Cre exhibit a small body size. Bone CT showed a
reduction in bone mass, and bone histology revealed impaired bone formation and defi-
ciency of chondrocytes in Pqbp1-cKO mice [57]. The bone phenotype might be derived
from an abnormality of mesenchymal stem cells, a part of which expresses nestin [57].
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Figure 3. The mechanism of PQBP1-linked microcephaly and the three major mechanisms of micro-
cephaly published previously. (Upper left) In normal state, neurons are produced from neural stem
cells at the constant differentiation rate. (Lower left) The microcephaly mechanism of PQBP1-cKO
mice is shown. Due to the elongation of total cell cycle time, even though the differentiation rate
is not changed, the total number of neurons produced from neural stem cells is reduced. The right
side panels show previously known mechanisms of microcephaly. (Right upper) In the case where
the differentiation rate to neurons is increased, the neural stem cell pool is depleted earlier than in
normal state, and the total number of neurons produced from neural stem cells is reduced. (Right
middle) When cell death of neural stem cells occurs, the total number of neurons produced from
neural stem cells is reduced. (Right lower) When migration of differentiated neurons is impaired,
the cortical layer structure becomes abnormal, and the abnormality leads to microcephaly.

Synapsin 1-Cre Pqbp1-cKO mice exhibit cognitive dysfunctions, but not microcephaly [23].
This phenotype is quite similar to that of AD model mice, except for Aβ aggregation and
neuronal cell death [23]. This similarity will be discussed later in this review, with reference
to AD pathology. CX3CR1-Cre Pqbp1-cKO mice were generated to deplete PQBP1 in
innate immune cells [24]. Investigation of the phenotypes of CX3CR1-Cre Pqbp1-cKO
mice has been focused on the change of response of microglia to Tau [24], which will be
described later.

Furthermore, the suppression of a Drosophila homolog of PQBP1 (dPQBP1) by the
insertion of piggyBac has produced a Drosophila model [78]. Interestingly, this Drosophila
model revealed impaired learning acquisition in olfactory conditioning test, while the short-
term, medium-term, long-term, and anesthesia-tolerant memories were not impaired [78].
The underlying mechanism was identified to be reduced expression of the NMDA receptor
subunit 1 in projection neurons [78]. These results discovered a new type of cognitive
disturbance in which dPQBP1 regulates learning acquisition in projection neurons [78].

In nematodes, two PQBP1 homologs are dominantly located in intestinal fat storage
cells [79], and one of the mutants showed a reduction in lipid storage and changes in lipid
species [79]. These findings suggest that the nematode model is suitable for lean body
analysis of human PQBP1 mutants.
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The Pqbp1-cKO mouse models are highly useful for analyzing the pathology and are
actually very informative. Their phenotypes are also highly similar to those of human
patients. However, if we look at historical development of mouse models for other neurolog-
ical diseases, humanized knock-in mouse models and primate models might be generated
in the future. In this sense, it is of note that there is no humanized knock-in mouse model so
far, nor is there a mouse model for a point mutation mimicking Golabi-Ito-Hall syndrome.

7. Acquired Reduction in PQBP1 Contributes to Cognitive Abnormalities in AD

Atxn1, whose mutation in the CAG repeat causes SCA1, has been shown to interact
with PQBP1 and inhibit its role in transcriptional regulation [25]. PQBP1 interacts with
Htt, the causative gene product of Huntington’s disease [12,46], which suggests that these
polyQ proteins induce abnormal changes in mRNA transcription and splicing related to
synapse functions, similarly to the PQBP1 deficiency in cKO mice.

A homologous pathology was recently revealed in AD by comprehensive phosphopro-
teome analysis at the ultra-early phase of AD [80]. Extracellular amyloid plaques, which
are a pathological feature of AD in model mice, are observed gradually from the age of
three months, and cognitive dysfunction becomes apparent at the age of six months. Extra-
cellular amyloid-beta and symptoms are not observed at one month of age. Comprehensive
phosphoproteome analysis has revealed that several proteins are already abnormally phos-
phorylated at the age of one month [23,81].

One such protein is Serine/Arginine Repetitive Matrix 2 (SRRM2), a scaffolding
protein for multiple splicing factors, in which the phosphorylation of Ser1068 is abnormally
increased in the ultra-early stage of AD [23]. SRRM2 is a protein normally localized to
the nucleus; however, this abnormal phosphorylation results shifts its localization to the
cytoplasm by blocking the interaction between SRRM2 and the T-complex protein subunit
α, which is essential for nuclear translocation [23]. Moreover, the deficiency of SRRM2
destabilizes and reduces PQBP1 in the nucleus of neurons [23]. Eventually, the series of
changes directly and severely affects the transcription and splicing patterns of synapse-
related genes, as was shown in a PQBP1-conditional knockout model. Furthermore, both
PQBP1 and SRRM2 are downregulated in cortical neurons of both human AD patients
and AD mouse models. Consistently, treatment of these two AD mouse models (i.e.,
5xFAD and APP-KI mice) with AAV-PQBP1 restored RNA transcription and splicing, the
synaptic phenotype, and cognitive impairment. These results support the possibility that
the acquired reductions in the PQBP1 level are the direct cause of cognitive decline in
dementia [23].

8. Relationship between Immune Response and PQBP1

Recently, PQBP1 has received attention for its importance as a new immunoregulatory
factor [24,82]. Dendritic cells (DCs) that produce immune responses to viral infection are
triggered by cyclic GAMP synthase (cGAS) activity-dependent responses when infected
with HIV-1. PQBP1 acts as an intracellular receptor binding directly to reverse-transcribed
HIV-1 cDNA and initiates innate immune responses [82] (Figure 4). In fact, primary human
monocyte-derived DCs from patients with Renpenning syndrome have also been shown to
exhibit significantly reduced innate immune responses to HIV-1 [82].

Most notably, a molecular mechanism similar to the one mentioned above was ob-
served in microglia, the innate immune cell in the central nervous system [24]. The Tau
protein, which is known to be involved in the pathogenesis of various neurodegenerative
diseases including AD and tauopathy, was found to be recognized by PQBP1 in brain
microglia and to induce intracellular signaling of the cGAS-STING pathway to induce
expression of cytokine genes such as TNF, IL-6 and type 1 IFN for brain inflammation [24]
(Figure 4). In mice, the suppression of PQBP1 restricted to microglia in the brains of
CX3CR1-Cre cKO mice was shown to suppress Tau protein-induced brain inflamma-
tion [24]. This demonstrates the potential of targeting PQBP1 as a new common therapy
for neurodegenerative diseases.
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Figure 4. PQBP1 functions in the nucleus of neurons and the cytoplasm of microglia. (Left) In neurons,
PQBP1 functions as an adaptor between transcription and splicing. Immediately after hnRNA (pre-
mRNA), splicing complexes assemble for cleavage of intron. PQBP1 binds to the C-terminal tail of
RNA polymerase II in a phosphorylation-dependent manner and promotes the splicing of specific
types of hnRNAs. PQBP1 is known to directly interact with U5-15kD in U5 spliceosome. (Right) In
microglia, PQBP1 is known to play another role as an intracellular receptor for pathogens. PQBP1
recognizes cDNA of HIV to trigger cGAS-STING signaling pathway for inflammation. Recently it
is shown that PQBP1 recognizes the Tau protein, which is implicated in Alzheimer’s disease and
various Tauopathies in a similar manner than if the Tau were a pathogen. It is yet to be investigated
whether PQBP1 triggers cGAS-STING pathway in neurons or whether PQBP1 regulates splicing
in microglia.

9. Future Perspectives

An increasing number of experimental and clinical reports have demonstrated the
significance of PQBP1 in the biological processes of neurons, microglia, and other cell
types, as well as its impact on various types of human diseases. PQBP1 is a representative
IDP that is involved in neurological and immunological diseases, which suggests that
further studies into PQBP1 could lead to breakthroughs in our understanding of how IDPs
function in human diseases. Despite more than 115 reported studies on PQBP1 during
the last 20 years (https://pubmed.ncbi.nlm.nih.gov/?term=pqbp1 (accessed on 20 April
2022)) [22], our knowledge of the functional mechanism of PQBP1 still remains insufficient
relative to its importance in a growing number of human diseases.

Databases relevant to PQBP1 offer new research possibilities to investigate the func-
tions of this protein. For instance, an examination of various SNP databases (https:
//www.hgvs.org/central-mutation-snp-databases (accessed on 20 April 2022)) indicates
that the effects of a large number of SNPs in the PQBP1 gene are yet to be investigated
(https://www.ncbi.nlm.nih.gov/snp/?term=PQBP1, (accessed on 20 April 2022)). So far,
there is no knowledge as to how such SNPs influence intellectual disabilities, neurodegen-
erative diseases, or intelligence. Moreover, protein–protein interaction databases include
interacting partners yet to be investigated (https://thebiogrid.org/115393/summary/
homo-sapiens/pqbp1.html (accessed on 20 April 2022)), such as amyloid precursor protein,
the causative gene product of AD [83–85], and the precursor to the pathological signature
of AD (Aβ); bromodomain containing 4, a chromosome-binding protein during mito-
sis [86–90]; and cleavage and polyadenylation specific factors 6 and 7, a factor regulating
3′ RNA cleavage and polyadenylation processing [91–94]. Investigations into these poten-
tial partner proteins will open new avenues for research into biological and pathological
mechanisms of PQBP1. Moreover, it would be very interesting if we can reveal how in-
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teracting proteins or RNAs are changed by gene mutations of PQBP1, and the findings
will lead to further understanding of molecular basis of intellectual disabilities and other
neurological disorders.
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