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Abstract The transcription factor SoxE is mainly

expressed in the gonad and involved in the regulation of

gonad development and sex determination in animals.

Here, we used the silkworm ovary-derived BmN4-SID1

cell line to survey the roles of the silkworm SoxE protein

(BmSoxE) and predict its candidate binding targets. RNAi-

mediated silencing of BmSoxE expression suppressed cell

proliferation in BmN4-SID1 cells. A further cell cycle

analysis revealed that this inhibition of cell proliferation

was largely due to cell cycle arrest in G1 phase when

BmSoxE expression was blocked in BmN4-SID1 cells.

Genome-wide microarray expression analyses demon-

strated that the expression levels of a set of genes were

significantly altered following BmSoxE RNAi. More than

half of these genes contained conserved binding sites for

HMG box domain of the Sox proteins and were predicted

to be candidate binding targets for BmSoxE. Importantly,

some of the candidate targets may be associated with the

effect of BmSoxE on cell proliferation. Several candidate

target genes showed gonad-specific expression in silkworm

larvae. Taken together, these data demonstrate that

BmSoxE is required for cell proliferation in silkworm

BmN4-SID1 cells and provide valuable information for

further investigations of the molecular control exerted by

the BmSoxE protein over cell proliferation and gonad

development in the silkworm.
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Introduction

The Sox transcription factor family has been well studied in

animals and demonstrated to be involved in various physi-

ological processes, including sex determination, gonad

development, embryogenesis, nervous system development,

and chondrogenesis [1, 2]. Structurally, each Sox protein

contains a highly conserved high-mobility group box (HMG

box) domain, which is required for the recognition and

binding of a conserved DNA motif, (A/T)(A/T)CAA

(A/T)G, in the upstream untranslated region (UTR) of its

target genes. A series of studies have demonstrated that Sox

proteins function as either activators or repressors to activate

or inhibit the transcription of their targets, respectively

[3, 4]. Evolutionarily, the Sox proteins found in animals can

be subdivided into 10 groups, designated A to J, based on

their sequence similarities [5].

The group E Sox proteins (hereafter, SoxE proteins)

have been comprehensively studied. In mammals, the SoxE

proteins include three members: Sox8, Sox9, and Sox10,

which are involved in multiple developmental programs,
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such as testis development, sex determination, and nervous

system development [2]. Recently, several reports have

focused on the identification of binding targets of the SoxE

proteins. For example, in mice, Sox9 was observed to

activate the transcription of Amh and Vanin-1 during testis

development [6], and Col2a1 during chondrogenesis [7].

Sox10 in mice can regulate the expression of Connexin32

and Connexin47 in oligodendrocytes during myelination

[8] and that of MEF2C during melanocyte development

[9]. The direct transcriptional targets of Sox10 include

genes encoding proteolipid protein, extracellular superox-

ide dismutase, and pleiotrophin in rat Schwannoma cells

[10]. Moreover, genome-wide analysis has revealed hun-

dreds of genes that are potential binding targets for Sox9

and/or Sox8 in mice and rats [11, 12]. Because of the

functional redundancy of the different SoxE proteins in

mammals [13], it may be difficult to determine their

targets.

Among insects, homologs of the mammalian SoxE pro-

teins have been identified in Drosophila melanogaster, Apis

mellifera, Tribolium castaneum, Anopheles gambiae, and

Bombyx mori [14–18]. One member of the SoxE protein

family has been found in insects, with the exception of

A. mellifera, which exhibits two group E genes that most

likely arose through gene duplication in an ancestral lineage

[17, 18]. A previous study in D. melanogaster confirmed that

SoxE mutations affect the proper morphogenesis of the testis

during the pupal stage and markedly reduce the size of the

adult testis [19]. More importantly, the replacement of

mouse Sox10 with D. melanogaster SoxE was able to rescue

neural crest and oligodendrocyte development [20],

revealing conserved roles of the SoxE proteins between

vertebrates and invertebrates. However, the signaling path-

ways and functions of insect SoxE proteins remain poorly

understood. In particular, no identified binding targets of

insect SoxE proteins have been reported, either at the indi-

vidual or cellular level.

The silkworm (B. mori) is an excellent model for

studying insect biology [21]. We previously observed that

the silkworm SoxE (BmSoxE) gene is highly expressed in

the gonad [14]. Recently, the whole-genome sequence and

genome-wide microarray expression data for the silkworm

are available [22, 23]. Additionally, the silkworm ovary-

derived BmN4-SID1 cell line, which harbors the SID1 gene

from Caenorhabditis elegans that shows an increased

efficiency in the uptake of extracellular double-stranded

RNA (dsRNA) in the RNA interference (RNAi) analysis of

genes of interest, has been established [24]. In this study,

we performed RNAi-mediated knockdown of BmSoxE

expression in BmN4-SID1 cells and observed that BmN4-

SID1 cells were markedly compromised in terms of cell

proliferation and cell cycle progression following this

procedure. Microarray analysis demonstrated that the

expression of numerous genes was down- or up-regulated

following BmSoxE RNAi. A portion of these genes con-

taining binding motifs for the HMG box domain of the Sox

protein were considered as candidate targets of the

BmSoxE protein and may be involved in the BmSoxE-

mediated regulation of cell proliferation.

Materials and methods

Cell lines

The cultured silkworm ovary-derived BmN4 cell line and

the BmN4-SID1 transgenic cell line were used in our

experiment [24]. The BmN4 cell line was derived from the

silkworm ovary and used to examine subcellular localiza-

tion of the BmSoxE protein and profile BmSoxE expres-

sion. The BmN4-SID1 cell line was established via

introduction of the C. elegans SID1 gene, which can

greatly enhance the uptake of dsRNA from host cells into

BmN4 cells [24]. Thus, the BmN4-SID1 cell line has been

shown to possess high efficiency in the uptake of exoge-

nous dsRNA [24]. The BmN4-SID1 cell line was used to

perform RNAi knockdown of the BmSoxE gene. The

BmN4 and BmN4-SID1 cell lines were maintained at

27 �C in IPL-41 medium (Sigma, USA) supplemented with

10 % fetal bovine serum (Life Technologies, USA).

BmSoxE expression profiling and subcellular

localization in BmN4 cells

A semi-quantitative RT-PCR (reverse transcription-poly-

merase chain reaction) experiment was performed to

determine whether the BmSoxE gene was expressed in

BmN4 cells. Extraction of total RNA, cDNA synthesis, and

RT-PCR analysis were performed according to a previ-

ously described procedure [25]. The silkworm glyceralde-

hyde-3-phosphate dehydrogenase (BmGAPDH) gene was

selected as a control. The primers employed in the analysis

are provided in Online Resource 1.

For the analysis of subcellular localization, the open

reading frame (ORF) of the BmSoxE gene was cloned into

the pENTRTM11 vector (Invitrogen) to construct an entry

plasmid. The nucleotide sequence of the plasmid was

confirmed via DNA sequencing. Then, the entry plasmid

harboring the BmSoxE gene was used to construct a des-

tination vector with the pi2VW plasmid containing Venus

fluorescence protein via a Gateway reaction [26]. BmN4

cells were transfected with 100 ng of the expression plas-

mid harboring the Venus-fused BmSoxE gene. On the 3rd

day after transfection, the treated cells were seeded onto a

cover slip coated with poly-L-lysine, fixed with 3.7 %

4770 Mol Biol Rep (2014) 41:4769–4781

123



formaldehyde in phosphate-buffered saline (PBS) for

10 min, and permeabilized with 0.1 % Triton X-100 in

PBS for 5 min. Cellular DNA was stained with DAPI

(Invitrogen, USA). Finally, light and fluorescence micros-

copy images were captured using an Olympus DX51

microscope (Olympus, Japan).

RNAi knockdown of BmSoxE expression in BmN4-

SID1 cells

The synthesis of dsRNAs targeting EGFP (enhanced green

fluorescent protein; dsEGFP) or BmSoxE (dsBmSoxE) and

the dsRNA treatment of BmN4-SID1 cells were performed

according to a previously described protocol [26]. We

collected BmN4-SID1 cells at different time points,

including the 1st, 3rd, 5th, and 7th days after dsBmSoxE or

dsEGFP treatment, for further analysis.

Cell proliferation assay

For cell proliferation assays, approximately 3.0 9 103

BmN4-SID1 cells were seeded into 96-well plates and

cultured in a final volume of 100 ll of IPL-41 medium.

dsBmSoxE or dsEGFP (control) were added to the medium

at a final concentration of 0.5 lg/ml. The cells were labeled

with 10 ll of WST-8 solution (Cell counting Kit-8; Doj-

indo) for 12 h before the indicated time points, including

the 1st, 3rd, 5th, and 7th days after dsRNA treatment.

The absorbance was measured at 450 nm in a 96-well

spectrophotometric plate reader according to the manu-

facturer’s protocol, and proliferation curves were plotted

using the absorbance at each time point. All of the exper-

iments were performed in triplicate. The data were com-

pared between the treated and the corresponding control

groups using Student’s t test, and a p value \0.05 was

considered statistically significant.

Flow cytometry assay

To analyze the effect of BmSoxE RNAi on the cell cycle,

the cell cycle distribution was determined by measuring the

cellular DNA content using a flow cytometer according to a

previously described procedure [24].

Microarray analysis

BmN4-SID1 cells were cultured in IPL-41 medium to

which dsBmSoxE or dsEGFP were added and harvested

after 7 days of incubation. Total RNA was then isolated

using TRIzol reagent (Invitrogen, USA). Approximately

1 lg of RNA from each sample was subjected to reverse

transcription using M-MLV Reverse Transcriptase

according to the manufacturer’s instructions (Promega,

USA). The efficiency of the knockdown of the BmSoxE

gene was evaluated via RT-PCR using specific primers as

described in Online Resource 1. The BmGAPDH gene was

employed as an endogenous control.

For the microarray experiment of gene expression pro-

filing, the hybridization and data acquisition were per-

formed by CapitalBio Corp (China). Three biological

replicates were conducted. Raw microarray data were

normalized according to a previously described method

[23]. A gene was considered to be expressed in any treat-

ment if its signal intensity exceeded signal intensity units

of 200 after subtracting the background and normalizing

the raw microarray data. The fold change in expression

level for a gene following BmSoxE RNAi was calculated

by comparing the normalized expression intensity of a gene

after BmSoxE RNAi to the intensity of the same gene

following EGFP RNAi. The significance (p value) of the

expression change in a gene was evaluated using paired t-

test and further adjusted using the Benjamini-Hochberg

method [27–29]. Finally, a gene was defined as a candidate

for being significantly down- or up-regulated if its change

in expression level was greater than 2.0-fold (i.e., showing

an intensity ratio less than 0.5 or greater than 2.0) with a p

value \0.05. All of the microarray data presented in this

study have been deposited in the GEO database under

accession number GSE53240.

For validation of the microarray data, we randomly

selected five down-regulated and five up-regulated genes

following BmSoxE RNAi from the list provided in Online

Resource 2 and performed RT-PCR experiments. The

cDNA templates subjected to RT-PCR were identical to

those employed in the microarray analysis. The primers are

listed in Online Resource 1.

The tissue-specific expression patterns of the genes that

were down- or up-regulated after BmSoxE RNAi were

profiled based on the microarray expression data in mul-

tiple tissues in silkworm larvae on 3rd day of the 5th instar

[23].

The online program WEGO (http://wego.genomics.org.

cn/cgi-bin/wego/index.pl) [30] was used to perform GO

(Gene Ontology) annotations of functional categories for

the selected genes.

Searching for conserved binding sites of the HMG box

domain

We fetched the sequences from the approximately 2.5 kb

upstream UTR regions of the translation initiation sites of

genes showing altered mRNA expressions following

BmSoxE RNAi in BmN4-SID1 cells. These sequences were

subjected to search for the conserved recognition and
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binding motif of the HMG box of Sox proteins using the

online MatInspector program (http://www.genomatix.de;

Core similarity threshold 0.8), which is a tool that searches

for the binding sites of transcription factors [31]. The

online WebLogo program (http://weblogo.berkeley.edu/)

was used to display consensus binding sequences [32].

Results

BmSoxE localized to the nuclei of BmN4 cells

To determine the subcellular localization of the BmSoxE

protein in silkworm ovary-derived BmN4 cells, we carried

out transient expression of the BmSoxE protein fused to the

C-terminus of Venus fluorescence protein. The result

showed that the BmSoxE protein localized to cell nuclei

(Online Resource 3a), which is consistent with its tran-

scription factor activity. To examine the roles of the BmSoxE

gene in silkworm ovary-derived BmN4 cells, we first

checked whether the BmSoxE gene was expressed in BmN4

cells. RT-PCR results demonstrated that BmSoxE expression

could be detected in BmN4 cells (Online Resource 3b).

BmSoxE RNAi suppressed cell proliferation in BmN4-

SID1 cells

We performed a series of dsRNA-mediated RNAi experi-

ments examining the BmSoxE gene in BmN4-SID1 cells to

assess the effects of the knockdown of BmSoxE expression

on cell growth. dsBmSoxE and dsEGFP (control) were

introduced separately into BmN4-SID1 cells, and sub-

sequent RT-PCR analysis demonstrated that BmSoxE

expression was completely silenced in the BmN4-SID1

cells on the 7th day after dsBmSoxE treatment (Fig. 1).

Intriguingly, the number of BmN4-SID1 cells decreased

markedly on the 7th day after BmSoxE RNAi compared

with BmN4-SID1 cells treated with dsEGFP (Fig. 2a). To

analyze the effects of BmSoxE RNAi on cell proliferation

in further detail, we collected BmN4-SID1 cells at different

time points, including the 1st, 3rd, 5th, and 7th days after

BmSoxE RNAi. The cell proliferation curves depicted in

Fig. 2b revealed that BmSoxE RNAi began to suppress cell

proliferation on the 3rd day, and significant inhibition was

achieved on the 7th day, consistent with the findings pre-

sented in Fig. 2a.

To investigate whether the silencing of BmSoxE expres-

sion affected cell cycle progression, we harvested BmN4-

SID1 cells at the indicated time points after incubating them

with dsBmSoxE or dsEGFP and performed flow cytometry

analysis. Compared with EGFP RNAi, the number of BmN4-

SID1 cells in G2/M phase was decreased by approximately

18 % on the 3rd day after BmSoxE RNAi, followed by an

increase of approximately 22 % in the number of cells at G1

phase and a decrease of approximately 4 % at S phase

(Fig. 2c). This cell cycle arrest at the G1/S phases via

BmSoxE RNAi continued until the 7th day, consistent with the

observations from the cell proliferation curves.

Genome-wide gene expression was altered

after BmSoxE RNAi in BmN4-SID1 cells

We used silkworm genome-wide expression microarray to

profile gene expression changes in BmN4-SID1 cells on the

7th day after BmSoxE RNAi. The results showed that 6,195

and 6,188 genes were expressed in BmN4-SID1 cells

associated with BmSoxE RNAi and EGFP RNAi, respec-

tively. Summarily, a total of 6,275 genes were expressed in

both RNAi experiments. The scatter plots (Fig. 3a) and

clustering patterns (Fig. 3b) of gene expression obtained

from three biological replicates displayed high similarities.

Compared with EGFP RNAi as the control, the

expression levels of 320 genes were significantly altered

following BmSoxE RNAi (Online Resource 2). Among

these differentially expressed genes, 118 were down-reg-

ulated, and 202 were up-regulated. As expected, the

BmSoxE gene was also included in the down-regulated
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Fig. 1 RNAi-based knockdown efficiency of BmSoxE expression in

silkworm BmN4-SID1 cells. A significant reduction of BmSoxE

expression occurred in BmN4-SID1 cells following BmSoxE RNAi

compared with EGFP RNAi (control). BmGAPDH expression was

used as a control
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gene list, further revealing a high efficiency of BmSoxE

RNAi in BmN4-SID1 cells. Moreover, we arbitrarily

selected ten differentially expressed genes to perform RT-

PCR confirmation. Consistent with the microarray data, the

expression levels of most of these tested genes were vali-

dated as being down- or up-regulated following BmSoxE

RNAi (Fig. 4), compared with EGFP RNAi as the control.

Homologous annotation revealed that 88 down- and 140

up-regulated genes presented hits that were homologous to

known genes or domains (Online Resource 2). Of the

down-regulated genes, 16 displayed at least tenfold chan-

ges in expression level, which included genes encoding

protein-glutamine gamma-glutamyltransferase, beta-urei-

dopropionase, gag protein, connectin, nervous system

antigen 2, SEC14, retinol dehydrogenase 12, and SoxE. In

addition, one of the six up-regulated genes that showed a

greater than tenfold change in expression level was anno-

tated as tetraspanin 2A.

GO annotation of functional categories revealed that the

genes expressed in BmN4-SID1 cells following BmSoxE

RNAi or EGFP RNAi mainly possess catalytic and binding

activities and are involved in development, metabolism, col-

oring, and other biological processes (Online Resource 4).

Further comparative analysis indicated that several GO
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Fig. 2 Effects of BmSoxE RNAi on cell proliferation and cell cycle

progression in silkworm BmN4-SID1 cells. a On the 7th day after

BmSoxE RNAi in silkworm BmN4-SID1 cells, the number of cells

was markedly reduced compared with the EGFP RNAi as control.

Scale bar: 50 lm. b Cell proliferation curves for BmN4-SID1 cells

following BmSoxE RNAi at the indicated time points. Data are
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*P \ 0.05; **P \ 0.01; ***P \ 0.001, compared with the corre-

sponding control. c Flow cytometry analysis of the time-course

distribution of the cell cycle following BmSoxE RNAi
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categories were specifically down-regulated following

BmSoxE RNAi, such as antioxidants (peroxidasin,

BGIBMGA000553) among molecular functions, and rhyth-

mic processes (HLF protein, BGIBMGA003874) as well as

growth (expanded protein, BGIBMGA010558) among bio-

logical processes, as shown in Fig. 5a. In contrast, several GO

categories were particularly up-regulated, such as the nutrient

reservoir (arylphorin alpha subunit, BGIBMGA009027) as

well as translation regulator (EFTUD1, BGIBMGA001523)

among molecular function and the immune system process

category (collier, BGIBMGA000883; cuticular protein,

BGIBMGA001862) among biological processes.

Differentially expressed genes containing the conserved

binding motif for the HMG box were considered

as candidate BmSoxE binding targets

We fetched the sequences of the 2.5 kb upstream UTR

regions of the translation initiation sites of the differentially

expressed genes following BmSoxE RNAi and searched for

the conserved recognition and binding sites for the HMG

box of Sox proteins using the MatInspector program. As a

result, we identified binding sites for the HMG box within

the upstream UTRs of 108 differentially expressed genes,

including 42 down-regulated genes and 66 up-regulated
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genes, of which 46 genes possessed at least two binding

sites (Online Resource 2). These differentially expressed

genes containing conserved binding motif for the HMG

box were considered as candidate targets of the BmSoxE

protein.

We extracted the consensus sequences of the binding

sites for the HMG box from the upstream UTRs of can-

didate BmSoxE targets to check their base components

using the online WebLogo program. As shown in Fig. 5b,

the core bases of CAA and G were the same within all of

HMG box binding motifs in the upstream UTRs of both

down- and up-regulated genes.

A set of candidate BmSoxE targets were related to cell

proliferation

Given that the RNAi-based silencing of BmSoxE expres-

sion suppressed cell proliferation in BmN4-SID1 cells, we

searched candidate BmSoxE targets that likely contribute

to the regulation of cell proliferation based on homologous

annotation. Notably, the homologs of 10 significantly

down-regulated genes following BmSoxE RNAi found in

other organisms have been confirmed to be involved in the

regulation of cell proliferation, which included MU2,

Glypican, Mad2, DENN, Gadd45, GlcT-1, Mcm10, TACC,

Peroxidasin, and Nudt1 (Table 1). In addition, we observed

that the homologs of nine significantly up-regulated genes

are also associated with cell proliferation, which included

Tsp2A, SEPW1, Ced-6, TBC1D7, Cyt-b5, Tensin, Orb2,

Vein, and Cyt-c-p (Table 1).

Core genes involved in cell cycle regulation displayed

no significant expression changes following BmSoxE

RNAi

Curiously, we observed that most of the well-studied core

cell cycle regulators involved in cell cycle progression and

DNA replication, which are two cell cycle processes

orchestrating cell proliferation, were excluded from the

collection of differentially expressed genes after BmSoxE

RNAi (Table 1). The two exceptions to this pattern were

Gadd45 and Mcm10, which are core regulators that were

significantly down-regulated after BmSoxE RNAi

(Table 1). Further analysis indicated that most of the core

cell cycle regulators exhibited no significant expression

changes of less than 2.0-fold, and some regulators also

possessed HMG box binding sites within their upstream

UTR regions (Online Resource 5 and Online Resource 6).

Among the cell cycle progression-related genes showing

detectable expression levels in BmN4-SID1 cells associ-

ated with BmSoxE RNAi or EGFP RNAi, seven (i.e., Myc,

skp2, p27, cyclin B, E2F transcription factor 4-like protein,

cdc2-related kinase, and ras) and three genes (i.e., cyclin-

dependent kinase regulatory subunit, cdc25-like protein,

and cyclin A) exhibited relatively greater down-regulation

and up-regulation, respectively, following BmSoxE RNAi

(Online Resource 5).

Additionally, we surveyed the expression patterns of

core genes related to DNA replication and observed that

among the expressed DNA replication-related genes, eight

genes (i.e., Orc2, RfC3, Mcm5, RfC4, RPA70, Mcm6,

Mcm8, and Mcm3) displayed moderate down-regulation

after BmSoxE RNAi, whereas cyclin A exhibited moderate

up-regulation (Online Resource 6).

Candidate BmSoxE targets were expressed

in the silkworm gonad

BmSoxE expression has been confirmed to be enriched in the

silkworm gonad [14]. Based on the analysis of microarray

data of genome-wide gene expression in multiple tissues of

silkworm larvae on the 3rd day of the 5th instar [23], we

observed that 79 of the predicted candidate BmSoxE targets

were expressed in at least one tissue in silkworm larvae, 25

of which were down-regulated (Fig. 6 and Online Resource

7) while 54 were up-regulated (Fig. 7 and Online Resource
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Fig. 4 RT-PCR-based expression profiling of several differentially

expressed genes, RT-PCR experiments were performed to validate

expression changes of ten genes that were differentially expressed

following BmSoxE RNAi, including five down-regulated genes and

five up-regulated genes. BmGAPDH expression was used as a control
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8). Notably, 68 candidate BmSoxE targets, including 19

down-regulated genes and 49 up-regulated genes, were

expressed in the silkworm gonad. Five of the down-regu-

lated candidate targets were specifically expressed in the

silkworm gonad, three of which were annotated as TCF25,

TACC, and as BmSoxE itself. Among the 10 up-regulated

candidate targets with gonad-specific expression, seven

were annotated as His2B, N-acetylneuraminate lyase, EF-

TUD1, Bsf, TXNDC12, Hsp19.5, and RluA-1.

Discussion

SoxE transcription factors have been identified as key reg-

ulators of multiple critical cellular processes, particularly

during testis development in animals [1, 13]. Similar to Sox

proteins from other groups, SoxE proteins play key roles by

regulating the transcription of their binding targets.

Although several targets of the SoxE proteins have been

reported, such findings have been limited in mammals,

mainly coming from mice. Among insects, SoxE has been

shown to be essential for testis development in D. melano-

gaster [19] and to be highly expressed in the silkworm gonad

[14]. However, the signaling pathways of insect SoxE pro-

tein, particularly its binding targets, are largely unknown.

In this study, we focused on the BmSoxE gene from the

silkworm and performed an RNAi analysis in ovary-derived

BmN4-SID1 cells to characterize the roles of BmSoxE in cell

proliferation and to identify its candidate targets. Intrigu-

ingly, the RNAi-mediated silencing of BmSoxE expression

in BmN4-SID1 cells suppressed cell proliferation and

induced G1 cell cycle arrest. These results are similar to the

effects of RNAi knockdown of other genes involved in cell

cycle progression, such as livin in human osteosarcoma cells

[33], cyclin-dependent kinase 6 in medulloblastoma cells

[34], Bmi-1 in laryngeal carcinoma cells [35], NANOG in

breast cancer cells [36], and EZH2 in colon cancer cells [37].

Therefore, the inhibition of cell proliferation observed in

BmN4-SID1 cells following BmSoxE RNAi may derive

from a disruption of cell cycle progression.

Genome-wide microarray analyses revealed that the

expression levels of 320 genes were significantly down- or

up-regulated after BmSoxE RNAi in silkworm BmN4-SID1

cells, indicating that BmSoxE also functions as a positive

or negative regulator of gene expression. Importantly, 108

differentially expressed genes were predicted to possess at

least one conserved binding motif for the HMG box of Sox

proteins in their upstream UTR regions, suggesting that

these genes are candidate binding targets for the BmSoxE

protein. In previous reports in rats or mice, many binding
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Table 1 Candidate BmSoxE targets related to cell proliferation

Categories Probe Gene ID Gene symbol Gene description Ratio P value Number

of binding sites

for HMG box

Down-regulation sw20407 BGIBMGA008152 MU2 Mutator 2 0.15 0.00155 1

sw03953 BGIBMGA003353 Glypican Glypican 0.34 0.00212 2

sw15669 BGIBMGA012734 Mad2 Mitotic spindle assembly

checkpoint protein mad2

0.37 0.04374 1

sw17999 BGIBMGA011241 DENN DENN domain-containing protein 0.37 0.04842 1

sw12865 BGIBMGA013938 Gadd45 Growth arrest and DNA damage-

inducible protein GADD45 alpha

0.37 0.00207 1

sw00999 BGIBMGA009686 GlcT-1 Glucosylceramide synthase 0.41 0.01086 1

sw03921 BGIBMGA007331 Mcm10 Sensitized chromosome

inheritance modifier 19

0.44 0.01286 2

sw04367 BGIBMGA005038 TACC Transforming acidic

coiled-coil-containing protein

0.44 0.00773 1

sw08623 BGIBMGA000553 Peroxidasin Peroxidasin 0.44 0.02598 5

sw13301 BGIBMGA005699 Nudt1 7,8-dihydro-8-oxoguanine

triphosphatase

0.48 0.04450 1

Up-regulation sw10865 BGIBMGA001022 Tsp2A Tetraspanin 2A 19.57 0.00877 1

sw14661 BGIBMGA010104 SEPW1 Thioredoxin-like protein 4.62 0.00003 1

sw08189 BGIBMGA009770 Ced-6 Ced-6 3.52 0.00271 5

sw07012 BGIBMGA010784 TBC1D7 TBC1 domain family, member 7 3.36 0.02036 3

sw09668 BGIBMGA003014 Cyt-b5 Cytochrome b5 3.05 0.02440 1

sw02970 BGIBMGA013563 Tensin Tensin 2.61 0.03828 3

sw19380 BGIBMGA000174 Orb2 Orb2 2.26 0.00240 1

sw12509 BGIBMGA012742 Vein Vein 2.15 0.00441 1

sw15825 BGIBMGA009012 Cyt-c-p Cytochrome c proximal 2.05 0.00023 2
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Fig. 6 Larval tissue-specific expression patterns of candidate

BmSoxE targets that were down-regulated following BmSoxE RNAi

in silkworm BmN4-SID1 cells. The original microarray data used for

expression profiling of candidate BmSoxE targets were derived from

previous reports examining gene expression in multiple tissues of

silkworm larvae (GSE17571). A/MSG, anterior/median silk gland.

PSG posterior silk gland, F female, M Male, Cy5 red-fluorescent dye,

Cy3 green-fluorescent dye. Arabic numerals represent the number of

the biological replicates
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targets have been identified or predicted for three members

of the E group Sox subfamily, Sox8, Sox9, and Sox10,

based on their conserved binding motifs [10–12]. However,

additional evidence should be acquired from ChIP-seq

(chromatin immunoprecipitation sequencing) together with

in vitro EMSA (electrophoretic mobility shift assay) anal-

yses to determine the actual binding properties of the

BmSoxE protein in the transcriptional regulation of its

candidate targets in the future.

Given that BmSoxE is involved in the regulation of cell

proliferation, we speculated that candidate BmSoxE targets

are likely involved in the regulation of cell proliferation. As

expected, we noted that the homologs of many candidate

targets of the BmSoxE protein have been demonstrated to

modulate cell proliferation in other organisms. For example,

as listed in Table 1, there were 10 genes involved in the reg-

ulation of cell cycle progression or DNA replication, includ-

ing MU2 [38], Glypican-1 [39], Gadd45 [40], Mcm10 [41–

43], TACC [44], Peroxidasin [45], Nudt1 [46], SEPW1 [47],

Cyt-b5 [48], Orb2 [49], and Vein [50, 51]. In addition, two

genes were associated with the DNA repair process, namely

MU2 [38] and Gadd45 [40]. Seven genes were related to the

regulation of cell apoptosis/death, which included Mad2 [52],

DENN [53], Gadd45 [54], GlcT-1 [55], Ced-6 [56], tensin

[57], and Cyt-c-p [58]. Furthermore, Tsp2A and TBC1D7 are

responsible for the control of cell growth [59, 60]. Taken

together with the above-mentioned functional cues obtained

through homologous annotation, the expression changes

observed in these cell cycle-related genes following BmSoxE

RNAi indicated not only that that the BmSoxE protein lies in a

pathway upstream of the regulation of the cell cycle, but also

that these candidate BmSoxE targets may cooperatively

contribute to the suppression of cell proliferation in BmN4-

SID1 cells. Therefore, it is worth clarifying how BmSoxE

regulates these candidate targets to control the cell cycle and

cell proliferation in further studies.

Cell proliferation is generally mediated by multiple cell

cycle events [61, 62]. Our results showed that two core
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Fig. 7 Larval tissue-specific expression patterns of candidate

BmSoxE targets that were up-regulated following BmSoxE RNAi in

silkworm BmN4-SID1 cells. A/MSG, anterior/median silk gland.

PSG posterior silk gland, F female, M Male, Cy5 red-fluorescent dye,

Cy3 green-fluorescent dye. Arabic numerals represent the number of

the biological replicates
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regulators of cell cycle, Gadd45 and Mcm10, were inclu-

ded in the candidate BmSoxE target set and were signifi-

cantly down-regulated by BmSoxE RNAi. Previous reports

have demonstrated that Gadd45 is highly expressed in the

G1 phase of the cell cycle [63] and can interact with the

p21 protein, which mediates G1 arrest [64, 65], or with the

PCNA protein, which is required for DNA replication and

repair [65, 66]. Mcm10 has been shown to be associated

with the control of DNA replication [42, 43]. There is a

possibility that BmSoxE may control cell proliferation via

the modulation of Gadd45 and Mcm10 in the cell cycle in

BmN4-SID1 cells. However, the majority of the core reg-

ulators of the cell cycle were excluded from the collection

of candidate BmSoxE targets obtained in the current study.

Several core regulators associated with cell cycle pro-

gression and DNA replication displayed moderately down-

or up-regulated expression after BmSoxE RNAi (Online

Resource 5 and Online Resource 6). We speculate that this

nonsignificant deregulation may also contribute to the

BmSoxE RNAi-induced inhibition of cell proliferation. Our

next aim is therefore to decipher the interactions among

BmSoxE, candidate BmSoxE targets, and cell cycle regu-

lators during cell proliferation, which may provide a

comprehensive understanding of the function and regula-

tion of the BmSoxE protein.

SoxE expression is enriched in the gonad of animals and

predominately regulates gonad development and sex

determination [1, 13]. Based on published microarray data

[23], we found that 15 candidate BmSoxE targets were

specifically expressed in silkworm gonad (Figs. 6, 7).

Notably, the homologs of several gonad-specific candidate

targets have been characterized as being associated with

genital events in other animals. For instance, the mouse

TACC3 gene is abundantly expressed in adult testis and

ovarian cells during gonad growth and development [67].

The expression of the His2B gene is regulated by the

argonaute protein CSR-1 in the C. elegans gonad [68]. BSF

contributes to mRNA stabilization of the bicoid gene,

which encodes a transcription factor that activates the

expression of zygotic genes during D. melanogaster

embryogenesis [69, 70]. Therefore, these findings related to

candidate BmSoxE targets will help us to elucidate the

molecular mechanisms underlying gonad development and

sex determination in the silkworm.

In conclusion, we confirmed that RNAi-based silencing

of the expression of the transcription factor BmSoxE

inhibited cell proliferation in silkworm BmN4-SID1 cells.

Many genes that were differentially expressed following

BmSoxE RNAi contained conserved binding sites for the

Sox protein and were predicted to be candidate binding

targets for the BmSoxE protein. Furthermore, some can-

didate BmSoxE targets may be associated with the regu-

lation of cell proliferation. Our findings should be useful

for deciphering the functions and signaling pathways of

insect SoxE in the regulation of cell cycle progression.
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