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Ecological momentary assessment and other modern data collection technolo-
gies facilitate research on both within-subject and between-subject variability
of health outcomes and behaviors. For such intensively measured longitudi-
nal data, Hedeker et al extended the usual two-level mixed-effects model to a
two-level mixed-effects location scale (MELS) model to accommodate covari-
ates’ influence as well as random subject effects on both mean (location) and
variability (scale) of the outcome. However, there is a lack of existing standard-
ized effect size measures for the MELS model. To fill this gap, our study extends
Rights and Sterba’s framework of R2 measures for multilevel models, which is
based on model-implied variances, to MELS models. Our proposed framework
applies to two different specifications of the random location effects, namely,
through covariate-influenced random intercepts and through random intercepts
combined with random slopes of observation-level covariates. We also provide
an R function, R2MELS, that outputs summary tables and visualization for val-
ues of our R2 measures. This framework is validated through a simulation study,
and data from a health behaviors study and a depression study are used as exam-
ples to demonstrate this framework. These R2 measures can help researchers
provide greater interpretation of their findings using MELS models.
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1 INTRODUCTION

Modern data collection methods such as ecological momentary assessments (EMA) have allowed more detailed examina-
tion of subjects’ heterogeneity both at the between-subject (BS) level (also known as level 2) and the within-subject (WS)
level (also known as level 1).1 Hedeker et al2 extended the commonly used mixed-effects regression model (MRM) into
the mixed-effects location scale (MELS) model that includes both random location effects and random scale effects. Ran-
dom location effects refer to random subject effects on the mean of the response variable, and random scale effects refer
to random subject effects on the WS variability of the response variable. While scale sometimes only refers to standard
deviation, here it is on variance metric.
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Increasingly, researchers are encouraged to report effect sizes in addition to P-values for their study results.3 Stan-
dardized effect size measures are of particular interest as they allow direct comparison of different models. However, to
the best of our knowledge, there are no existing standardized effect size measures specifically for MELS models.

Standardized effect size measures have been developed for MRMs. Earlier pseudo-R2 measures evaluate a model’s
reduction in residual variance from the null model.4 A problem with this approach is that it can result in negative val-
ues and thus become meaningless as shown by Snijders and Bosker.5 Snijders and Bosker5 then resolved this problem by
constructing R2 using model-implied variances. Recently, Rights and Sterba6 introduced a comprehensive framework of
R2 measures for multilevel models using model-implied variances that measure both the total variance of the response
variable explained and level-specific variances of the response variable explained. While this work primarily discusses
cross-sectional multilevel models, their later work accommodates specific features of longitudinal multilevel models.7
Rights and Sterba also introduced supplementary visualization and R functions to help researchers implement their
proposed framework.

Our study extends Rights and Sterba’s framework to two-level MELS models. We develop frameworks of R2 mea-
sures for two forms of MELS models, which differ in their characterization of the random location effects. In the first
form, the model includes random subject intercepts and allows their variance to be influenced by both subject-level
and observation-level covariates. Alternatively, the second form includes random subject intercepts and slopes of
observation-level covariates. For both forms, R2 measures are constructed for both the location model and the scale model.
We also develop an R function, R2MELS, that allows calculation and visualization of R2 measures specifically for MELS
models.

1.1 Mixed-effects location-scale (MELS) models with random intercepts
with covariate-influenced variance

To begin, we review the MELS model for a two-level continuous response variable yij (i = 1, 2, … ,N subjects, j =
1, 2, … ,ni observations) proposed by Hedeker et al:2

yij = 𝛽0 + xT
ij 𝛽 + vi + 𝜖ij, (1)

where 𝛽0 is the fixed intercept of the location model, xij is the p × 1 vector of fixed location effect covariates, and 𝛽 is the
corresponding p × 1 vector of fixed location effects. BS heterogeneity is included via random intercepts vi, also recognized
as the random location effects. 𝜖ij is the observation-level residuals and incorporates WS heterogeneity. vi and 𝜖ij are
assumed to be normally distributed with mean 0 and variances 𝜎2

vi
and 𝜎2

𝜖ij
, respectively.

𝜎

2
vi

is further modeled in log-linear form to account for different BS heterogeneity at different values of covariates:

𝜎

2
vi
= Var(vi|uij) = exp

(

𝛼0 + uT
ij𝛼

)

, (2)

where exp(𝛼0) is the variance of vi when the covariates equal zero, or if the covariates have no influence on the BS variance.
uij is the vector of covariates influencing 𝜎2

vi
, which can contain both subject-level and observation-level covariates. 𝛼

represents the vector of fixed effects associated with uij on 𝜎2
vi

.
For 𝜖ij, both heteroskedasticity at different covariate values and heteroskedasticity between subjects are allowed. The

heteroskedasticity of 𝜖ij between subjects is included via a random scale effect 𝜔i, which is assumed to follow a normal
distribution with a mean of 0 and a variance of 𝜎2

𝜔

. 𝜎2
𝜖ij

is again modeled in log-linear form to ensure positive variance
values:

𝜎

2
𝜖ij
= Var(𝜖ij|wij) = exp

(

𝜏0 + wT
ij𝜏 + 𝜔i

)

, (3)

where exp(𝜏0) is the value of 𝜎2
𝜖ij

when the covariates and the random scale effect equal zero, or when there is neither
any covariate influencing 𝜎2

𝜖ij
nor subject heteroskedasticity of 𝜖ij. wij is the vector of covariates influencing 𝜎2

𝜖ij
. Similar to

uij, wij can contain both subject-level and observation-level covariates. 𝜏 is the vector of fixed effects associated with wij
on 𝜎2

𝜖ij
.

For convenience, Equation (2) can be rewritten in terms of standardized random location effects, denoted as 𝜃1i:
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yij = 𝛽0 + xT
ij 𝛽 + 𝜎vi𝜃1i + 𝜖ij, (4)

and Equation (3) can also be written in terms of standardized random scale effects, denoted as 𝜃2i:

𝜎

2
𝜖ij
= exp

(

𝜏0 + wT
ij𝜏 + 𝜎𝜔𝜃2i

)

, (5)

Since the random location effects vi and random scale effects 𝜔i are not necessarily uncorrelated, 𝜃1i and 𝜃2i are
assumed to follow the following bivariate normal distribution:

(
𝜃1i

𝜃2i

)

∼

((
0
0

)

,

(
1 𝜌v𝜔

𝜌v𝜔 1

))

, (6)

where 𝜌v𝜔 is the correlation between the random location effect vi and the random scale effect 𝜔i.

1.2 MELS models with random slopes of observation-level covariates

Instead of having random intercepts and allowing covariates to influence their variance, random location effects can be
modeled by random intercepts with constant variance and random slopes of observation-level covariates:8

yij = 𝛽0 + xT
ij 𝛽 + zT

ij vi + 𝜖ij, (7)

where we use zij to represent an (r + 1) × 1 vector with the first element of 1 for the random intercept followed by r
observation-level covariates for random slopes. vi, the corresponding (r + 1) × 1 vector of the random location effects,
follows the following distribution:

vi ∼ (0,Σv). (8)

The first element of vi is the random intercept, and the following elements are r random slopes associated with covariates
in zij. The variances of the random intercept and the random slopes, 𝜎2

v0
, 𝜎2

v1
,… , 𝜎2

vr
, are scalars not influenced by any

covariates.
In this form of MELS models, the fixed intercept, fixed location effects, and variance of observation-level residuals are

modeled the same way as in Section 1.1.
Again, we can express the random effects as standardized random effects for convenience. Namely,

vi =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝜎v0𝜃0i

𝜎v1𝜃1i

⋮

𝜎vr𝜃ri

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(9)

and

𝜔i = 𝜎𝜔𝜃𝜔i, (10)

where 𝜃0i, 𝜃1i, … , 𝜃ri, and 𝜃
𝜔i follow a multivariate normal distribution with mean 0, and their variance-covariance matrix

Σ
𝜃

is a (r + 2) × (r + 2) matrix given as:

Σ
𝜃
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 𝜌v0iv1i … … 𝜌v0i𝜔i

𝜌v0iv1i 1 … … 𝜌v1i𝜔i

⋮ ⋮ ⋱ ⋮ ⋮
⋮ ⋮ … ⋱ 𝜌vri𝜔i

𝜌v0i𝜔i 𝜌v1i𝜔i … 𝜌vri𝜔i 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (11)
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where 𝜌vpivqi(p ≠ q; p, q = 0, 1, … , r) is the correlation between vpi and vqi, and 𝜌vpi𝜔i is the correlation between vpi(p =
0, 1, … , r) and 𝜔i.

2 THE PROPOSED METHOD

2.1 Decomposition of observation-level covariates

As mentioned, xij, uij, and wij can contain both subject-level covariates and observation-level covariates, and zij is solely
composed of observation-level covariates. Since an observation-level covariate not centered at the subject level contains
both BS variation and WS variation, and we assume that the covariates are multivariate normally distributed at each level,
we first decompose each of xij, uij, wij, and zij into a BS component and a WS component before deriving their contribution
to the variance of the response. For example,

xij = xi + (xij − xi), (12)

where xi is the vector of subject-level fixed location effect covariates, which characterizes the BS components of
observation-level fixed location effect covariates. Elements of xi are multivariate normally distributed with mean 𝜇x and
variance Φb

x . Analogously, (xij − xi) is the vector of WS components of observation-level fixed location effect covariates,
and its elements are multivariate normally distributed with mean 0 and variance Φw

x .
Similarly, decomposition of covariates influencing the variance of the random intercepts (ie, the BS variance) is given

by uij = ūi + (uij − ūi), where ūi ∼ (𝜇u,Φb
u), and (uij − ūi) ∼ (0,Φw

u ). Decomposition of covariates influencing the WS
variance is similarly: wij = wi + (wij − wi), where wi ∼ (𝜇w,Φb

w), and (wij − wi) ∼ (0,Φw
w). Finally, decomposition of

covariates for random slopes is given by zij = zi + (zij − zi), where zi ∼ (𝜇z,Φb
z ), and (zij − zi) ∼ (0,Φw

z ). The recur-
ring superscript b in the variance matrices represents BS components, and w represents WS components. Note that if
one includes a random slope for an observation-level covariate in xij, the same covariate will also occur in zij, and the
decomposition of this variable will be the same in xij and zij.

2.2 Variance partitioning

2.2.1 Variance partitioning for MELS models with random intercepts with covariate-influenced
variance

For the model described in Section 1.1,

Var(yij) = Var
(

𝛽0 + xT
ij 𝛽 + vi + 𝜖ij

)

= Var
(

(xij − xi)T𝛽 + xT
i 𝛽 + vi + 𝜖ij

)

= Var((xij − xi)T𝛽) + Var(xT
i 𝛽) + Var(vi) + Var(𝜖ij) (13)

since (xij − xi), xi, vi, and 𝜖ij are independent.
The WS variance of the response variable explained by fixed location effects of WS components of observation-level

covariates, denoted as f1, can be derived based on the property of the multivariate normal distribution:9

Var((xij − xi)T𝛽) = 𝛽TΦw
x 𝛽. (14)

Similarly, the BS variance of the response variable explained by fixed location effects of subject-level covariates and BS
components of observation-level covariates, denoted as f2, can be expressed as:

Var(xT
i 𝛽) = 𝛽TΦb

x𝛽. (15)
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In applying these formulas, we substitute Φw
x and Φb

x with their sample estimators.
As shown in Appendix A, the variance of the random intercepts is

Var(vi) = e𝛼0+𝜇T
u 𝛼+

𝛼

T (Φw
u +Φ

b
u )𝛼

2 , (16)

denoted as v. Let m = e𝛼0+𝜇T
u 𝛼 represent the variance of the random intercepts at the mean (both on the BS level and the

WS level) of all covariates influencing the variance of the random intercepts. Note that the mean of the WS component
of a covariate is zero. Then, v −m represents the variance of the random intercepts explained by covariates. To further
decompose v −m, logarithmic transformations are taken:

log(v) − log(m) =
𝛼

TΦw
u𝛼

2
+
𝛼

TΦb
u𝛼

2
, (17)

where v1 = 𝛼

TΦw
u 𝛼

2
represents the log-transformed variance of the random intercepts explained by fixed effects of WS com-

ponents of observation-level covariates. 𝛼

TΦb
u𝛼

2
, denoted as v2, is the log-transformed variance of the random intercepts

explained by fixed effects of subject-level covariates and BS components of observation-level covariates. We use sample
estimators of 𝜇u, Φw

u , and Φb
u in place of these population parameters themselves in practice.

The variance of the observation-level residuals, also known as the scale of the response variable, is

Var(𝜖ij) = e𝜏0+𝜇T
w𝜏+

𝜏

T (Φw
w+Φ

b
w)𝜏+𝜎

2
𝜔

2 , (18)

denoted as e. e0 = e𝜏0+𝜇T
w𝜏 is the variance of the observation-level residuals at the mean (both on the BS level and the

WS level) of all covariates in the scale model, which is also the unexplained scale of the response variable, and e − e0
is the variance of the observation-level residuals explained by covariates and the random scale effects. Similar to the
decomposition of v −m, e − e0 can be further decomposed on the logarithmic scale:

log(e) − log(e0) =
𝜏

TΦb
w𝜏

2
+
𝜏

TΦw
w𝜏

2
+
𝜎

2
𝜔

2
, (19)

where e1 = 𝜏

TΦw
w𝜏

2
is the log-transformed scale of the response variable explained by fixed effects of WS components of

observation-level covariates, e2 = 𝜏

TΦb
w𝜏

2
is the log-transformed scale of the response variable explained by fixed effects of

subject-level covariates and BS components of observation-level covariates, and d = 𝜎

2
𝜔

2
is the log-transformed scale of the

response variable explained by the random scale effects. When applied, the sample estimators of 𝜇w,Φb
w, andΦw

w are used
in Equations 18 and 19.

For simplicity, here the coefficients 𝛽′s, 𝛼′s, and 𝜏′s are assumed to be the same for the BS and WS components of
covariates. However, in some cases, it may be desirable to allow the BS and the WS component of a covariate to have dif-
ferent effects. For this, one can substitute the corresponding coefficients of distinct BS and WS effects in the appropriate
equations. Our R function described in Section 2.4 allows for this possibility. Users would need to specify the BS compo-
nent and the WS component of a covariate as two distinct variables in their dataset and input their corresponding effect
estimates into the function separately.

2.2.2 Variance partitioning for MELS models with random slopes of observation-level covariates

Here, we decompose the variance of the response variable based on the model described in Section 1.2.

Var(yij) = Var(𝛽0 + xT
ij 𝛽 + zT

ij vi + 𝜖ij)

= Var((xij − xi)T𝛽 + xT
i 𝛽 + (zij − zi)Tvi + zT

i vi + 𝜖ij)

= Var((xij − xi)T𝛽) + Var(xT
i 𝛽) + Var((zij − zi)Tvi) + Var(zT

i vi) + Var(𝜖ij) (20)
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given the independence of (xij − xi), xi, vi, and 𝜖ij as well as the independence of (zij − zi) and zi.
The interpretations and derivations for Var((xij − xi)T𝛽) (f1), Var(xT

i 𝛽) (f2), and Var(𝜖ij) (e) are the same as in
Section 2.2.1, while the variance partitioning for the random location effects are given by, with Tr(⋅) representing the trace
of a matrix:

Var((zij − zi)Tvi) = Tr(Φw
z Σv) (21)

denoted as v1, which is the WS variance of the response variable explained by random slopes of WS components of
observation-level covariates, and

Var(zT
i vi) = Tr(Φb

zΣv) + 𝜇T
z Σv𝜇z. (22)

Here, Tr(Φb
zΣv) is denoted as v2, which corresponds to the BS variance of the response variable explained by random

slopes of BS components of observation-level covariates. Also, 𝜇T
z Σv𝜇z is denoted as m, which represents the BS variance

of the response variable explained by the random intercepts at the mean of BS components of all covariates for random
location effects. The derivations of Equation (21) and Equation (22) can be found in Rights and Sterba’s work.7

2.3 Defining R2 measures

We develop R2 measures for the total variance of the response variable, the level-specific variances of the response variable,
and the scale of the response variable.

Table 1 details R2 measures for the location part of the model described in Section 1.1, and Table 2 describes R2 mea-
sures for the location part of the model presented in Section 1.2. R2 measures for the scale model are illustrated in Table 3.
The superscripts in parentheses denote the source(s) of variation. Also, the subscripts represent the denominators of the
R2 measures, meaning which part of the variance of the response variable that one is trying to explain. Namely, sub-
script t indicates total variance of the response variable and is calculated as f1 + f2 + v + e for MELS models with random
intercepts (with covariate-influenced variance), and f1 + f2 + v1 + v2 +m + e for MELS models with random slopes of
observation-level covariates. Subscript w and subscript b represent WS variance of the response variable and BS vari-
ance of the response variable, respectively. For the model described in Section 1.1, the model-implied WS variance of the
response variable is f1 + e, and the model-implied BS variance of the response variable is f2 + v. For the Section 1.2 model,
the WS variance of the response variable equals f1 + v1 + e while the BS variance of the response variable is calculated
as f2 + v2 +m. Lastly, the subscript s represents variance of the observation-level residuals, which is denoted as e in both
specifications of MELS models.

The R2s defined can measure the variance of the response variable explained by single sources of variation. Namely,
R2(f1)

t , R2(f2)
t , R2(v1)

t ,R2(v2)
t ,R2(m)

t , R2(f1)
w , R2(f2)

b , R2(v1)
b , R2(v2)

b , and R2(m)
b in Table 1, R2(f1)

t , R2(f2)
t , R2(v1)

t , R2(v2)
t , R2(m)

t , R2(f1)
w , R2(v1)

w ,
R2(f2)

b , R2(v2)
b , and R2(m)

b in Table 2, as well as R2(e1)
s , R2(e2)

s , and R2(d)
s in Table 3 are single-source R2 measures. We also

define R2s that measure joint effects of multiple parts of the models. Specifically, f = f1 + f2 represents the variance of the
response variable explained by fixed location effects of both subject-level covariates and observation-level covariates, v in
Table 1 represents the variance of the response variable explained by the random intercepts, and v = v1 + v2 in Table 2
represents the variance of the response variable explained by the random slopes of both the WS components and BS
components of observation-level covariates.

Since the proportion of the total variance of the response variable that is BS can be of interest to researchers applying
MELS models, we add R2(f2v)

t in Table 1 and R2(f2v2m)
t in Table 2. These two R2s measure the proportion of total variance of

the response variable explained by BS location effects.

2.4 Implementation in R

The commented code for an R function named R2MELS and descriptions of its arguments are provided in the Sup-
porting Information. The function is developed based on Rights and Sterba’s r2MLMlong function.7 Users input their
parameter estimates of a MELS model, and the function will output two tables of variance partitioning results (one for
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T A B L E 1 Definitions and interpretations of R2 measures for the location part of an MELS model with random intercepts with
covariate-influenced variance

Definition Coefficientsa Covariatesa Interpretation

R2 Measures for total variance of the response variable

R2(f1)
t = f1

f1 + f2 + v + e
𝛽 (xij − xi) Proportion of total variance of the response variable explained

by fixed location effects of WS components of
observation-level covariates

R2(f2)
t = f2

f1 + f2 + v + e
𝛽 xi Proportion of total variance of the response variable explained

by fixed location effects of subject-level covariates and BS
components of observation-level covariates

R2(f)
t = f1 + f2

f1 + f2 + v + e
𝛽 (xij − xi), xi Proportion of total variance of the response variable explained

by fixed location effects

R2(v1)
t =

v1
v1+v2

(v−m)

f1 + f2 + v + e
𝛼 (uij − ūi) Proportion of total variance of the response variable explained

by fixed effects of WS components of observation-level
covariates on the variance of the random intercepts

R2(v2)
t =

v2
v1+v2

(v−m)

f1 + f2 + v + e
𝛼 ūi Proportion of total variance of the response variable explained

by fixed effects of subject-level covariates and BS
components of observation-level covariates on the variance
of the random intercepts

R2(m)
t = m

f1 + f2 + v + e
𝛼0, 𝛼 ūi Proportion of total variance of the response variable explained

by random intercepts at the mean of all covariates
influencing the variance of the random intercepts

R2(v)
t = v

f1 + f2 + v + e
𝛼0, 𝛼 (uij − ūi), ūi Proportion of total variance of the response variable explained

by random location effects

R2(fv)
t = f1 + f2 + v

f1 + f2 + v + e
𝛽, 𝛼0, 𝛼 (xij − xi), xi, (uij − ūi), ūi Proportion of total variance of the response variable explained

by both fixed location effects and random location effects

R2(f2v)
t = f2 + v

f1 + f2 + v + e
𝛽, 𝛼0, 𝛼 xi, (uij − ūi), ūi Proportion of total variance of the response variable explained

by BS location effects

R2 Measures for BS variance of the response variable

R2(f2)
b = f2

f2 + v
𝛽 xi Proportion of BS variance of the response variable explained by

fixed location effects of subject-level covariates and BS
components of observation-level covariates

R2(v1)
b =

v1
v1 + v2

(v−m)

f2 + v
𝛼 (uij − ūi) Proportion of BS variance of the response variable explained by

fixed effects of WS components of observation-level
covariates on the variance of the random intercepts

R2(v2)
b =

v2
v1 + v2

(v−m)

f2 + v
𝛼 ūi Proportion of BS variance of the response variable explained by

fixed effects of subject-level covariates and BS components of
observation-level covariates on the variance of the random
intercepts

R2(m)
b = m

f2 + v
𝛼0, 𝛼 ūi Proportion of BS variance of the response variable explained by

random intercepts at the mean of all covariates influencing
the variance of the random intercepts

R2(v)
b = v

f2 + v
𝛼0, 𝛼 (uij − ūi), ūi Proportion of BS variance of the response variable explained by

random location effects

R2 Measures for WS variance of the response variable

R2(f1)
w = f1

f1 + e
𝛽 (xij − xi) Proportion of WS variance of the response variable explained

by fixed location effects of WS components of
observation-level covariates

aThe coefficients and covariates refer to elements of the model needed to calculate the source of variation in the specific R2 measure, that is, what is
labeled in the parenthesized superscript.



4474 ZHANG and HEDEKER

T A B L E 2 Definitions and interpretations of R2 measures for the location part of an MELS model with random slopes of
observation-level covariates

Definition Coefficientsa Covariatesa Interpretation

R2 Measures for total variance of the response variable

R2(f1)
t = f1

f1 + f2 + v1 + v2 + m + e
𝛽 (xij − xi) Proportion of total variance of the response variable explained

by fixed location effects of WS components of
observation-level covariates

R2(f2)
t = f2

f1 + f2 + v1 + v2 + m + e
𝛽 xi Proportion of total variance of the response variable explained

by fixed location effects of subject-level covariates and BS
components of observation-level covariates

R2(f)
t = f1 + f2

f1 + f2 + v1 + v2 + m + e
𝛽 (xij − xi), xi Proportion of total variance of the response variable explained

by fixed location effects

R2(v1)
t = v1

f1 + f2 + v1 + v2 + m + e
vi (zij − zi) Proportion of total variance of the response variable explained

by random slopes of WS components of observation-level
covariates

R2(v2)
t = v2

f1 + f2 + v1 + v2 + m + e
vi zi Proportion of total variance of the response variable explained

by random slopes of BS components of observation-level
covariates

R2(m)
t = m

f1 + f2 + v1 + v2 + m + e
vi zi Proportion of total variance of the response variable explained

by random intercepts at the mean of BS components of all
covariates for random location effects

R2(vm)
t = v1 + v2 + m

f1 + f2 + v1 + v2 + m + e
vi (zij − zi), zi Proportion of total variance of the response variable explained

by random location effects

R2(fvm)
t = f1 + f2 + v1 + v2 + m

f1 + f2 + v1 + v2 + m + e
𝛽, vi (xij − xi), xi, (zij − zi), zi Proportion of total variance of the response variable explained

by both fixed location effects and random location effects

R2(f2v2m)
t = f2 + v2 + m

f1 + f2 + v1 + v2 + m + e
𝛽, vi xi, zi Proportion of total variance of the response variable explained

by BS location effects

R2 Measures for BS variance of the response variable

R2(f2)
b = f2

f2 + v2 + m
𝛽 xi Proportion of BS variance of the response variable explained by

fixed location effects of subject-level covariates and BS
components of observation-level covariates

R2(v2)
b = v2

f2 + v2 + m
vi zi Proportion of BS variance of the response variable explained by

random slopes of BS components of observation-level
covariates

R2(m)
b = m

f2 + v2 + m
vi zi Proportion of BS variance of the response variable explained by

random intercepts at the mean of BS components of all
covariates for random location effects

R2(v2m)
b = v2 + m

f2 + v2 + m
vi zi Proportion of BS variance of the response variable explained by

random location effects

R2 Measures for WS variance of the response variable

R2(f1)
w = f1

f1 + v1 + e
𝛽 (xij − xi) Proportion of WS variance of the response variable explained

by fixed location effects of WS components of
observation-level covariates

R2(v1)
w = v1

f1 + v1 + e
vi (zij − zi) Proportion of WS variance of the response variable explained

by random slopes of WS components of observation-level
covariates

R2(f1v1)
w = f1 + v1

f1 + v1 + e
𝛽, vi (xij − xi), (zij − zi) Proportion of WS variance of the response variable explained

by both fixed location effects and random slopes of WS
components of observation-level covariates

aThe coefficients and covariates refer to elements of the model needed to calculate the source of variation in the specific R2 measure, that is, what is labeled in
the parenthesized superscript.
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T A B L E 3 Definitions and interpretations of R2 measures for the scale part of an MELS model

Definition Coeficientsa Covariatesa Interpretation

R2(e1)
s =

e1
e1 + e2 + d

(e−e0)

e
𝜏 (wij − wi) Proportion of variance of observation-level residuals explained by WS

components of observation-level covariates

R2(e2)
s =

e2
e1 + e2 + d

(e−e0)

e
𝜏 wi Proportion of variance of observation-level residuals explained by

subject-level covariates and BS components of observation-level
covariates

R2(e1e2)
s =

e1 + e2
e1 + e2 + d

(e−e0)

e
𝜏 (wij − wi),wi Proportion of variance of observation-level residuals explained by

covariates

R2(d)
s =

d
e1 + e2 + d

(e−e0)

e
𝜎
𝜔

N/A Proportion of variance of observation-level residuals explained by
random scale effects

aThe coefficients and covariates refer to elements of the model needed to calculate the source of variation in the specific R2 measure, that is, what is
labeled in the parenthesized superscript.

T A B L E 4 Generating parameters and mean parameter estimates from 500 simulations

Parameter True value Simulated values mean (SD)

𝛽0 1 1.000(0.069)

𝛽1 −0.5 −0.497(0.020)

𝛽2 2 1.999(0.024)

𝛽3 1 1.000(0.013)

𝛽4 −2 −2.000(0.007)

𝛽5 3 3.000(0.010)

𝛼0 0.1 0.098(0.103)

𝛼1 0.4 0.401(0.012)

𝜏0 0.2 0.199(0.061)

𝜏1 0.3 0.300(0.013)

𝜏2 −0.1 −0.101(0.013)

𝜏3 0.5 0.502(0.018)

𝜎

2
𝜔

0.7 0.697(0.076)

𝜌v𝜔 0.1 0.106 (0.075)

the location part of the model, and the other for the scale part of the model), two tables of R2 values (one for the loca-
tion part of the model, and the other for the scale part of the model) as well as a stacked bar plot of the single-source
R2 values.

3 SIMULATION STUDY

To assess the validity of the proposed method, we conducted a small simulation study. Specifically, we fitted MELS models
to 500 simulated datasets (200 subjects in each sample, 50 observations of each subject). For each simulated dataset, we

allowed for two subject-level covariates,
(

x1i
x2i

)

∼
((

0
0

)

,

(
2 0.5

0.5 1.5

))

, and three observation-level covariates that

vary purely within-subjects,

(x3ij
x4ij
x5ij

)

∼

((0
0
0

)

,

( 2 0.3 0.75
0.3 1.5 0.2

0.75 0.2 1

))

.
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T A B L E 5 Theoretical values of R2 measures and average simulated values from 500 simulations

R2 Measure Theoretical value Simulated values mean (SD)

R2 Measures for total variance of the response variable

R2(f1)
t = f1

f1 + f2 + v + e
0.661 0.663(0.015)

R2(f2)
t = f2

f1 + f2 + v + e
0.203 0.201(0.017)

R2(f)
t = f1 + f2

f1 + f2 + v + e
0.864 0.864(0.008)

R2(v1)
t = v-m

f1 + f2 + v + e
0.007 0.007(0.001)

R2(m)
t = m

f1 + f2 + v + e
0.041 0.041(0.004)

R2(v)
t = v

f1 + f2 + v + e
0.048 0.048(0.005)

R2(fv)
t = f1 + f2 + v

f1 + f2 + v + e
0.912 0.912(0.006)

R2(f2v)
t = f2 + v

f1 + f2 + v + e
0.251 0.249(0.017)

R2 Measures for BS variance of the response variable

R2(f2)
b = f2

f2 + v
0.809 0.806(0.023)

R2(v1)
b = v−m

f2 + v
0.028 0.029(0.004)

R2(m)
b = m

f2 + v
0.163 0.165(0.020)

R2(v)
b = v

f2 + v
0.191 0.194(0.023)

R2 Measures for WS variance of the response variable

R2(f1)
b = f1

f1 + e
0.883 0.883(0.008)

R2 Measures for scale of the response variable

R2(e1)
s =

e1
e1+d

(e−e0)

e
0.231 0.232(0.009)

R2(d)
s =

d
e1+d

(e−e0)

e
0.256 0.254(0.024)

The location model was specified as follows:

yij = 𝛽0 + 𝛽1x1i + 𝛽2x2i + 𝛽3x3ij + 𝛽4x4ij + 𝛽5x5ij + 𝜎vi𝜃1i + 𝜖ij. (23)

For the variance of the random intercept vi,

𝜎

2
vi
= exp(𝛼0 + 𝛼x3ij). (24)

For the variance of the observation-level residuals,

𝜎

2
𝜖ij
= exp(𝜏0 + 𝜏1x3ij + 𝜏2x4ij + 𝜏3x5ij + 𝜎𝜔𝜃2i), (25)

and
(
𝜃1i

𝜃2i

)

∼

((
0
0

)

,

(
1 𝜌v𝜔

𝜌v𝜔 1

))

. (26)

The generating parameters and average estimates from SAS PROC NLMIXED are summarized in Table 4, and the
corresponding theoretical values of R2 measures and average simulated values can be found in Table 5. As can be seen, all
parameter estimates were well recovered, and all average simulated R2 values resemble their corresponding theoretical
values. Namely, all differences between the average simulated values and their corresponding theoretical values are lower
than 0.004.
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T A B L E 6 Parameter estimates of the MELS model on health behaviors data

Parameter Estimate SE T-value P-value

𝛽0 5.855 0.109 53.631 < 0.001

𝛽NA −0.644 0.016 −39.900 < 0.001

𝛽Day_c −0.077 0.015 −5.247 < 0.001

𝛼0 −0.376 0.176 −2.144 0.036

𝛼Day_c 0.139 0.031 4.531 < 0.001

𝜏0 −0.603 0.093 −6.509 < 0.001

𝜏Day_c 0.073 0.025 2.888 0.005

𝜎
𝜔

0.735 0.070 10.451 < 0.001

𝜌v𝜔 −0.500 0.100 −5.009 < 0.001

4 EXAMPLES

4.1 Example 1: Health behaviors data

Flueckiger et al10 collected intensive longitudinal data on 72 first-year psychology students from the University of Basel
regarding their sleep quality, physical activity, positive and negative affect, learning goal achievement, and examina-
tion grades. We fit a MELS model on these data to examine how negative affect (NA) of the students and survey day
influenced their mean positive affect (PA), how survey day influenced the BS variance of PA, as well as how survey day
influenced the WS variance of PA. PA and NA were measured on 7-point Likert scales in which 1 means “not at all” and 7
means “extremely”. We used a grand-mean-centered and scaled version of survey day (Day_c), for which 1 unit indicates
1 week.

The location model is as follows:

PAij = 𝛽0 + 𝛽NANAij + 𝛽Day_cDay_cij + 𝜎vi𝜃1i + 𝜖ij. (27)

The variance of the random subject intercepts and the variance of the observation-level residuals are modeled as

𝜎

2
vi
= exp(𝛼0 + 𝛼Day_cDay_cij) (28)

and

𝜎

2
𝜖ij
= exp(𝜏0 + 𝜏Day_cDay_cij + 𝜎𝜔𝜃2i), (29)

respectively. The random effects 𝜃1i and 𝜃2i follow the same bivariate normal distribution as specified in Equation (6). The
parameter estimates from SAS PROC NLMIXED are included in Table 6, and a visualization of the proposed R2 measures
for this example is shown in Figure 1.

The first three bars on the left of Figure 1 correspond to the total variance, the BS variance, and the WS vari-
ance of PA, respectively. Within the bars, the red blocks represent proportion of the variance of PA explained by
fixed location effects of WS components of observation-level covariates, (NAij −NAi) and (Day_cij − Day_ci), while the
orange blocks can be interpreted as the proportion of the variance of PA, that is, the variance of observation-level
residuals. Blue blocks correspond to the BS variance of PA. Specifically, the darkest blue blocks indicate the propor-
tion of the variance of PA explained by the effect of (Day_cij − Day_ci) on the variance of the random intercepts,
and the lightest blue represents the variance of the random intercepts at the means of both the BS component and
the WS component of Day_c. The mid-blue blocks show the proportion of the variance of PA explained by the fixed
location effects of the BS components of NA and Day_c. Grey blocks, which represent the proportion of Var(PA)
explained by the variance of random intercepts explained by Day_ci, are too small and thus almost invisible in
the plot.
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e: observation−level residuals (WS)

f1: fixed location effects (WS)

v1: random intercepts by WS covariates (BS)

v2: random intercepts by BS covariates (BS)

m: random intercepts at mean (BS)

f2: fixed location effects (BS)

scale

source

e0: unexplained

e1: fixed slopes of WS covariates

e2: fixed slopes of BS covariates

d: random scale effects

F I G U R E 1 Variance partitioning for Example 1: application to health behaviors data

We can see that most (53.5%) of the variance of PA is within-subject, as represented by the red and orange
blocks in the first column of Figure 1. For the WS variance of PA specifically, 42.3% is attributed to the fixed loca-
tion effects of the WS components of NA and Day_c, which is visualized by the red block in the third column of
Figure 1. In terms of the BS variance of PA, the random subject intercepts at the mean of both the BS component
and the WS component of Day_c, which explain 63.1% of the BS variance of PA as indicated by the light blue portion
of the middle column of Figure 1, are of particular importance. The R2 measures for the scale model are summa-
rized in the rightmost bar of Figure 1. As shown by the proportion of the bottom dark olive green block in this
bar, 23.6% of the scale of PA is explained by random scale effects. Less than 0.5% of the scale of PA is explained
by covariates, which is made clear by the almost negligible proportion of the two green blocks in the middle of
this bar.
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4.2 Example 2: Depression study data

While the example in Section 4.1 presents a random intercepts model, in which its variance is modeled in terms of covari-
ates, here we examine the application of our proposed R2 framework to a MELS model with random slopes, as described
in Section 1.2. The data are from Reisby et al’s study11 on the clinical responses of 66 depressed inpatients treated with
anti-depressant medication. Here, we are interested in how patients’ Hamilton depression score (HamD) changed fol-
lowing their weeks in the study (week). Additionally, endog is a subject-level dummy code that is coded as 1 if the patient
had endogenous depression. The location model with response variable HamD and predictor week, controlled for endog,
is specified as follows:

HamDij = 𝛽0 + v0i + (𝛽week + vweek,i)weekij + 𝛽endogendogi + 𝜖ij

= 𝛽0 + 𝜎v0𝜃0i + (𝛽week + 𝜎vweek𝜃1i)weekij + 𝛽endogendogi + 𝜖ij, (30)

where 𝜎v0𝜃0i is the individual deviation from the average intercept 𝛽0, and 𝜎vweek𝜃1i is the individual deviation from the
average weekly change 𝛽week.

The variance of the observation-level residuals is assumed to change along weeks and across subjects as well.

𝜎

2
𝜖ij
= exp(𝜏0 + 𝜏weekweekij + 𝜎𝜔𝜃𝜔i). (31)

The distribution of the standardized random effects is given by:

⎛
⎜
⎜
⎜
⎝

𝜃0i

𝜃1i

𝜃
𝜔i

⎞
⎟
⎟
⎟
⎠

∼
⎛
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎝

0
0
0

⎞
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎝

1 𝜌v0ivweek,i 𝜌v0i𝜔i

𝜌v0ivweek,i 1 𝜌vweek,i𝜔i

𝜌v0i𝜔i 𝜌vweek,i𝜔i 1

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

, (32)

where 𝜌v0ivweek,i is the correlation between the random intercepts and the random slopes. Likewise, 𝜌v0i𝜔i and 𝜌vweek,i𝜔i are
the correlations between the random intercepts and the random scale effects, and between the random slopes and the
random scale effects, respectively.

Table 7 lists the parameter estimates for this model, and Figure 2 is the visualization of the proposed R2 measures for
this example. The meaning of each bar in Figure 2 can be interpreted as in Section 4.1, but for the variance of HamD instead
of PA. The red blocks now represent the proportion of the variance of HamD explained by fixed location effects of the WS
component of week. The orange blocks can be interpreted as the proportion of the variance of HamD that corresponds to
observation-level residuals, and the mid-blue blocks indicate the proportion of the variance of HamD explained by fixed
location effects of endog and the BS component of week. The newly added brown blocks correspond to the proportion of

T A B L E 7 Parameter estimates of the MELS model on depression study data

Parameter Estimate SE T-value P-value

𝛽0 22.657 0.702 32.27 < 0.001

𝛽week −2.357 0.201 −11.74 < 0.001

𝛽endog 1.533 0.924 1.66 0.102

𝜏0 2.062 0.212 9.72 < 0.001

𝜏week 0.100 0.067 1.51 0.137

𝜎
𝜔

0.538 0.116 4.65 < 0.001

𝜎v0
3.154 0.481 6.56 < 0.001

𝜎vweek
1.379 0.174 7.92 < 0.001

𝜌v0ivweek,i
−0.207 0.180 −1.15 0.255

𝜌v0i𝜔
0.464 0.235 1.98 0.053

𝜌vweek,i𝜔
−0.485 0.213 −2.28 0.026
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F I G U R E 2 Variance partitioning for Example 2: application to depression study data

the variance of HamD explained by random slopes of WS components of week, and the dark blue blocks represent the
proportion of the variance of HamD explained by random slopes of BS components of week. The light blue blocks still
indicate the proportion of the variance of the response variable captured by the random intercepts but at the mean of
weeki.

As represented by the total proportion of the blue blocks in the first column of Figure 2, 35.8% of the variance of HamD
is between-subjects. While random slopes of BS components of week explain very little BS variance of HamD, as weeki
varies very little across subjects, the relative size of the light blue block in the second bar of Figure 2 shows that random
subject intercepts at the mean of weeki explain 94.3% of BS variance of HamD. Fixed location effects of the WS component
of week explain the most (47.5%, the relative space of the red block in the third bar of Figure 2) WS variance of HamD
while another 16.3% is attributed to random slopes of the WS component of week as indicated by the brown block in that
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bar. 13.4% of the scale of HamD is explained by random scale effects while another 1.3% is explained by WS variation in
Week. Less than 0.03% of the scale of HamD is explained by the BS component of Week.

5 DISCUSSION

Our work extends Rights and Sterba’s framework of defining R2 measures for multilevel models6,7 to MELS models pro-
posed by Hedeker et al2 and Nordgren et al.8 The extended R2 framework accommodates two special features of MELS
modeling: (1) observation-level residual heteroskedasticity at different covariate values and across subjects; (2) inclusion
of random location effects through either heteroskedastic random subject intercepts depending on covariates, or random
subject intercepts and random subject slopes of observation-level covariates. We believe that this standardized effect size
framework can facilitate the interpretation of MELS models and encourage wider use of this type of model.

In this article, our defined R2 measures assume a two-level MELS model. Future work can extend these measures
to three-level models, as developed by Lin et al12 in which WS variation of the response variable is further divided into
WS variation between waves and WS variation within waves. Also, the proposed R2 measures can be expanded to other
kinds of outcomes, for example, count outcomes and ordinal outcomes. An application of a MELS model for ordinal
data was discussed by Hedeker et al.13 Furthermore, future research might take into consideration the autocorrelation of
observation-level residuals. A recent development by Nestler14 extends the MELS models to include AR(1) autocorrelation
influenced by subject-level covariates and a random subject effect for the autocorrelation.

Currently, our framework focuses on point estimates of R2 measures. While reporting the point estimates is con-
ventional for R2 measures, researchers interested in coverage and confidence intervals of these measures can apply
bootstrapping methods to calculate these quantities. There is no existing literature on bootstrapping in MELS models to
our knowledge, but researchers can refer to Goldstein’s discussion on bootstrapping in multilevel models.15

Lastly, this work focuses on defining R2’s for a single model, and comparisons of R2’s between different models are
beyond the scope of this study. Researchers can refer to Rights and Sterba’s recommendations on the use of R2 differences
in multilevel model comparisons for interpretation of differences between R2 measures.16
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APPENDIX A. DERIVATIONS FOR VARIANCE OF RANDOM INTERCEPTS AND VARIANCE
OF OBSERVATION-LEVEL RESIDUALS IN MELS MODELS WITH RANDOM INTERCEPTS
WITH COVARIATE-INFLUENCED VARIANCE

By the law of total variance,

Var(vi) = E[Var(vi|uij)] + Var[E(vi|uij)]
= E[Var(vi|uij)] + 0
= E[Var(vi|uij)]. (A1)

Since

Var(vi|uij) = exp(𝛼0 + uT
ij𝛼)

= exp
(
𝛼0 + ūT

i 𝛼 + (uij − ūi)T𝛼
)
, (A2)

and ūT
i follows a (𝜇u,Φb

u) distribution while (uij − ūi) follows a (0,Φw
u ) distribution, Var(vi|uij) follows a log-normal

distribution whose natural logarithm follows a normal distribution with mean 𝜇v and variance 𝜎2
v .

𝜇v = 𝛼0 + 𝜇T
u𝛼, (A3)

𝜎

2
v = 𝛼TΦb

u𝛼 + 𝛼TΦw
u𝛼

= 𝛼T(Φb
u + Φw

u )𝛼. (A4)
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Therefore, by the expectation formula for log-normal variables,

E[Var(vi|uij)] = exp
(

𝜇v +
𝜎

2
v

2

)

= exp
(

𝛼0 + 𝜇T
u𝛼 +

𝛼

T(Φb
u + Φw

u )𝛼
2

)

, (A5)

that is,

Var(vi) = exp
(

𝛼0 + 𝜇T
u𝛼 +

𝛼

T(Φb
u + Φw

u )𝛼
2

)

. (A6)

Similarly, by the law of total variance,

Var(𝜖ij) = E[Var(𝜖ij|wij)] + Var[E(𝜖ij|wij)]
= E[Var(𝜖ij|wij)] + 0
= E[Var(𝜖ij|wij)]. (A7)

And,

Var(𝜖ij|wij) = exp
(

𝜏0 + wT
ij𝜏 + 𝜔i

)

= exp
(

𝜏0 + wT
i 𝜏 + (wij − wi)T𝜏 + 𝜔i

)

, (A8)

where wi ∼ (𝜇w,Φb
x), and (wij − wi) ∼ (0,Φw

x ). Hence, Var(𝜖ij|wij) is a log-normally distributed variable whose natural
logarithm is normally distributed with mean

𝜇
𝜖
= 𝜏0 + 𝜇T

w𝜏, (A9)

and variance

𝜎

2
𝜖
= 𝜏TΦb

w𝜏 + 𝜏TΦw
w𝜏 + 𝜎2

𝜔

= 𝜏T(Φb
w + Φw

w)𝜏 + 𝜎2
𝜔
. (A10)

E[Var(𝜖ij|wij)] = exp
(

𝜏0 + 𝜇T
w𝜏 +

𝜏

T(Φb
w + Φw

w)𝜏 + 𝜎2
𝜔

2

)

. (A11)

Therefore,

Var(𝜖ij) = exp
(

𝜏0 + 𝜇T
w𝜏 +

𝜏

T(Φb
w + Φw

w)𝜏 + 𝜎2
𝜔

2

)

. (A12)
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