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SUMMARY

In high-dimensional data settings, additional information on the features is often available. Examples
of such external information in omics research are: (i) p-values from a previous study and (ii) omics
annotation. The inclusion of this information in the analysis may enhance classification performance and
feature selection but is not straightforward. We propose a group-regularized (logistic) elastic net regression
method, where each penalty parameter corresponds to a group of features based on the external information.
The method, termed gren, makes use of the Bayesian formulation of logistic elastic net regression to
estimate both the model and penalty parameters in an approximate empirical–variational Bayes framework.
Simulations and applications to three cancer genomics studies and one Alzheimer metabolomics study
show that, if the partitioning of the features is informative, classification performance, and feature selection
are indeed enhanced.
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1. INTRODUCTION

In cancer genomics studies one is often faced with relatively small sample sizes as compared to the number
of features. Data pooling may alleviate the curse of dimensionality, but does not apply to research settings
with a unique setup, and cannot integrate other sources of information. However, external information on
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the features (e.g. genes) is often ubiquitously available in the public domain. We aim to use this information
to improve sparse prediction. The information may come in as feature groups: e.g. the chromosome on
which a gene is located (24 groups), relation to a CpG island for methylation probes (around 6 groups), or
membership of a known gene signature (2 groups). Alternatively, it may be continuous, such as p-values
from an external study. We introduce a method that allows to systematically use multiple sources of such
external information to improve high-dimensional prediction.

Our methodology is motivated by four recent, small n clinical omics studies, discussed in detail in
Section 5. The studies concern treatment response prediction for colorectal cancer patients based on
sequenced microRNAs (n = 88); lymph node metastasis prediction for oral cancer, using RNAseq data
(n=133); cervical cancer diagnostics based on microRNAs (n=56); and Alzheimer diagnosis based on
metabolomics (n = 87). Several sources of information on the features were used including external
p-values, correlation with DNA markers, the conservation status of microRNAs, and node degree in an
estimated molecular network.

As basic prediction model, we use the (logistic) elastic net regression (Zou and Hastie, 2005), which
combines the desirable properties of its special cases ridge (Hoerl and Kennard, 1970) and lasso regression
(Tibshirani, 1996): de-correlation and feature selection. It has been demonstrated that the prediction
accuracy of penalized regression can improve by the inclusion of prior knowledge on the variables.
Available methods, however, either handle one source of external information only (Lee and others, 2017;
Tai and Pan, 2007), or do not aim for sparsity (van de Wiel and others, 2016).

Like others, we assume the external information to be available as feature groups; for continuous
information like p-values, we propose a simple, data-based discretization (see Section 3). At first sight,
such a priori grouping of the features suggests the group lasso (Meier and others, 2008) or one of its
extensions such as the group smoothly clipped absolute deviations (grSCAD) and the group minimax
concave penalty (grMCP) (Huang and others, 2012). These methods penalize and select features at the
group level. This comes with two limitations: the group lasso (i) selects entire groups instead of single
features and (ii) does not penalize adaptively: all groups are penalized equally. Extensions such as the
sparse group lasso (SGL) (Simon and others, 2013) partly deal with (i), but do not address (ii). Our way to
deal with (ii) is through differential penalization. That is, each group of features receives its own penalty
parameter: the group-regularized elastic net (gren). An apparent issue with differential penalization is the
estimation of the penalty parameters. Naive estimation may be done by cross-validation (CV). However,
CV requires re-estimation of the model over a grid, which grows exponentially with the number of
penalty parameters. Consequently, it quickly becomes computationally infeasible. We therefore propose
an efficient alternative: empirical–variational Bayes (VB) estimation of the penalty parameters, which
corresponds to hyperparameter estimation in the Bayesian prior framework. Because of the ubiquity of
binary outcome data in clinical omics research, we focus on the logistic elastic net.

Recently, Zhang and others (2019) introduced a method similar to ours as it also applies VB for feature
selection in logistic regression. An advantage of our method, however, is the adaptive inclusion of external
information on the features to aid in prediction and feature selection, as Zhang and others (2019) do not
estimate feature- or group-specific penalty weights. Bayesian versions of support vector machines have
been used in classification problems as well (Chakraborty and Guo, 2011), but these methods also lack
adaptive inclusion of external information on the features. In line with the above, our proposed method
is (i) data-driven: the hyperparameters are estimated from the data, (ii) adaptive: prior information is
automatically weighted with respect to its informativeness, (iii) fast compared to full Bayesian analysis
or CV, and (iv) easy to use: only the data and grouping of the features are required as input.

The article is structured as follows. We introduce the model in Section 2. In Section 3, we shortly
discuss possible sources of co-data. In Section 4, we derive a VB approximation to the model introduced
in Section 2 and use this novel approximation in the empirical Bayes (EB) estimation of multiple, group-
specific penalty parameters. In Section 5, we compare the method in a simulation study, demonstrate the
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benefit of the approach for two data sets, and summarize results for two additional data sets. We conclude
with a discussion of some of the benefits and drawbacks of the proposed gren.

2. MODEL

The outcome variables are assumed to be binary or sums of mi disjoint binary Bernoulli trials (yi =∑mi
l=1 kl , kl ∈ {0, 1} for i = 1, . . . , n).The binomial logistic model relates the responses to the p-dimensional

covariate vectors xi = [
xi1 · · · xip

]T
through yi ∼ B

(
mi, expit(xT

i β)
)
, where B(m, υ) is the binomial

distribution with the number of trials m and probability υ, and expit
(
xT

i β
) = exp(xT

i β)/[1 + exp(xT
i β)].

Throughout the rest of the article, we assume that the model matrix X = [
x1 · · · xn

]T
is standardized

such that 1
n

∑n
i=1 xij = 0 and 1

n

∑n
i=1 x2

ij = 1 for j = 1, . . . , p.
Assume we have a partitioning of the features in G groups, such that each feature belongs to one group.

Let G(g) be the feature index set of group g for g = 1, . . . , G and let λ′
g ∈ R>0 denote a group-specific

penalty weight. In a generalized elastic net regression, the penalized likelihood is maximized to yield
parameter estimates:

β̂ := argmax
β

log L(y;β)− λ1

2

G∑
g=1

√
λ′

g

∑
j∈G(g)

|βj| − λ2

2

G∑
g=1

λ′
g

∑
j∈G(g)

β2
j , (2.1)

where L(y;β) denotes the likelihood function of the observed data y = [
y1 · · · yn

]T
, and λ1, λ2 ∈ R>0

are the “global” penalty parameters. From (2.1), we see that the λ′
g’s may be interpreted as penalty

multipliers. Note that the regular elastic net is recovered by setting ∀g : λ′
g = 1.

Throughout the following, we assume that the geometric mean of the multipliers, weighted by their
respective group sizes, is one, such that the average shrinkage of the model parameters is determined by
λ1 and λ2. That is, we calibrate the λ′

g such that
∏G

g=1(λ
′
g)

|G(g)| = 1, with |G(g)| the number of features
in group g. The multipliers appear in square root form in the L1-norm term to ensure that penalization
on the parameter level scales with the norm. The L1-norm sets some of the estimates exactly to zero,
thus automatically selecting features. The L2-norm ensures collinearity is well-handled. Addition of the
penalty terms also prevents quasi-complete separation in logistic regression, a common phenomenon in
small n studies.

The maximizer of the penalized likelihood in the elastic net, corresponds to the posterior mode of a
Bayesian elastic model (Zou and Hastie, 2005). Li and Lin (2010) show that the elastic net prior (see
Section 2 of the supplementary material available at Biostatistics online for details) may be written as a
computationally more convenient scale mixture of normals, with mixing parameter τ = [

τ1 · · · τp

]T
.

Using this result, we write the generalized elastic net model in its Bayesian form:

y|β ∼
n∏

i=1

B
(
mi, expit(xT

i β)
)
, (2.2a)

β|τ ∼
G∏

g=1

∏
j∈G(g)

N
(

0,
1

λ′
gλ2

τj − 1

τj

)
, (2.2b)

τ ∼
p∏

j=1

T G
(

1

2
,

8λ2

λ2
1

, (1, ∞)

)
. (2.2c)
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Here, T G (k , θ , (xl , xu)) denotes the truncated gamma distribution with shape k , scale θ , and domain
(xl , xu). In this Bayesian formulation, the penalty parameters λ = [

λ1 λ2 λ′
1 · · · λ′

G

]T
play the role

of the hyperparameters in a Bayesian hierarchical model.

3. EXTERNAL INFORMATION SOURCES

We describe possible sources of external information in omics studies that may provide the feature groups
G(g). Firstly, there are biologically motivated partitioning of features that are easily retrieved from online
repositories. These are already discretized and may be included in the analysis as-is. Examples are:
(i) pathway memberships of genes, (ii) classes of metabolites (see Section 12 of the supplementary
material available at Biostatistics online), and (iii) conservation status of microRNAs (see Section 13 of
the supplementary material available at Biostatistics online). A second type of external information comes
in the form of continuous data. Examples are: (iv) p-values or false discovery rates (FDRs) from a different,
related study (see Section 5.2), and (v) quality scores of the features (see Section 12 of the supplementary
material available at Biostatistics online), and (vii) the node degrees of a network estimated on the feature
data (see Section 12 of the supplementary material available at Biostatistics online).

gren requires discretized external information, so in the case of continuous external data, some form
of discretization is required. In some cases, discretization comes naturally. For example, with external
data type (iv) one might consider the “standard” cutoffs 0.05, 0.01, and 0.001. If the choice of cutoffs is
not straightforward, we propose a data-driven heuristic, which renders a relatively finer discretization grid
for data-dense than for data-sparse domains. Then, adaptation to external information is more pronounced
in high-density areas. We propose to fit a piecewise linear spline to the empirical cumulative distribution
function of the external data and automatically select knot locations as cutoffs (Spiriti and others, 2013).
They also provide a data-driven method to choose the number of knots, for a given maximum number of
knots. The maximum number of knots should be chosen such that each group contains enough features
for stable estimation of the penalty weights. As a rule of thumb, we advise at least 20 features per group.

In many practical settings, the external information will be incomplete. We suggest to use a separate
group of features with missing external information. We prefer this solution to setting the penalty multi-
pliers for this group to one, because the absence of external information might be informative from the
perspective of prediction.

4. ESTIMATION

4.1. Empirical Bayes

If the penalty parameters are known, estimation of the elastic net model parameters is feasible with small
adjustments of the available algorithms (Friedman and others, 2010; Zou and Hastie, 2005). Determining
these penalty parameters, however, is not straightforward.

In the frequentist elastic net without group-wise penalization, two main strategies are used: (i) estimate
both λ1 and λ2 by CV over a two-dimensional grid of values (Waldron and others, 2011) or (ii) re-
parametrize the problem in terms of penalty parameters α = λ1

2λ2+λ1
and λ = 2λ2 + λ1, fix the proportion

of L1-norm penalty α and cross-validate the global penalty parameter λ (Friedman and others, 2010).
In the generalized elastic net setting, strategies (i) and (ii) imply 2 + G and 1 + G penalty parameters,
respectively. K-fold CV over D values then results in K ·D2+G and K ·D1+G models to estimate. Typically,
K is set to 5, 10, or to the number of samples n, while D is in the order of 100, so that even for small G,
the number of models to estimate is very large.

In the Bayesian framework, estimation of penalty parameters may be avoided by the addition of a hyper-
prior to the model hierarchy. The hyperprior takes the uncertainty in the penalty parameters into account
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by integrating over them. This approach introduces two issues. Firstly, the choice of hyperprior is not
straightforward. Many authors suggest a hyperprior from the gamma family of distributions (Alhamzawi
and Ali, 2018; Kyung and others, 2010), but the precise parametrization of this gamma prior is not so
obvious. Secondly, the correspondence between the Bayesian and frequentist elastic net is lost. This corre-
spondence may be exploited through the automatic feature selection property of the frequentist elastic net.
Endowing the penalty parameters with a hyperprior obstructs their point estimation and, consequently,
impedes automatic feature selection. Therefore, to circumvent the problem of hyperprior choice and allow
for feature selection by the frequentist elastic net, we propose to estimate the penalty parameters by EB.

The most formal form of EB is maximization of the marginal likelihood with respect to the hyperpa-
rameters. The resulting hyperparameter estimates are then plugged into the prior. The marginal likelihood
is often introduced as a measure of model evidence given the observed data and is computed by integrating
the product of likelihood and prior with respect to the model parameters. In the case of the elastic net
introduced in (2.2) EB comes down to finding:

λ̂ := argmax
λ

pλ(y) = argmax
λ

∫
β

∫
τ

L(y;β)πλ(β|τ )πλ(τ ) dβdτ . (4.3)

The integrals in (4.3) are intractable in the case of the elastic net. In the omics setting, the integrals are
also high dimensional, in which case numerical and Monte Carlo approximation methods become tedious
and computationally expensive. Moreover, Laplace approximation is known to suffer from low accuracy
in many high-dimensional settings (Shun and McCullagh, 1995). In Casella (2001), an EM algorithm is
described that estimates the hyperparameters. This EM algorithm iteratively maximizes the expected joint
log likelihood, such that the sequence:

λ(k+1) = argmax
λ

Eβ,τ |y
[
log [L(y;β)πλ(β|τ )πλ(τ )] |λ(k)] (4.4)

converges to a local maximum of the marginal likelihood. The difficulty herein is in the calculation of
the expected joint log likelihood. Casella (2001) suggests to approximate the expectation by its Monte
Carlo expectation. Although elegant and simple, this method requires a converged MCMC sample from
the posterior for every iteration: a computationally intensive procedure. Roy and Chakraborty (2017)
introduce generalized importance sampling for the Bayesian elastic net, such that we just need a limited,
pre-specified number of MCMC chains. However, this still requires several converged chains so is not
feasible in many high-dimensional omics settings. We propose to tackle this problem by approximating
the expectation in (4.4) using VB.

4.2. Variational Bayes

VB is a widely used method to approximate Bayesian posteriors. It has successfully been applied in a wide
range of applications, including genetic association studies (Carbonetto and Stephens, 2012) and gene
network reconstruction (Leday and others, 2017). In VB, the posterior is approximated by a tractable form
and estimated by optimizing a lower bound on the marginal likelihood of this model (see Section 3 of the
supplementary material available at Biostatistics online for the lower bound of the proposed model). For
an extensive introduction and concise review, see Beal (2003) and Blei and others (2017).

To simplify the computations of our VB approximation, we follow Polson and others (2013) and
introduce latent variables ωi, for i = 1, . . . , n. Conditional on β, the ωi are independent of yi and Pólya-
Gamma distributed (see Section 4 of the supplementary material available at Biostatistics online for more
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details). We augment Model (2.2) with:

ω|β ∼
n∏

i=1

PG
(
mi, |xT

i β|). (4.5)

Our VB approximation to the posterior distribution of (2.2) and (4.5) factorizes over blocks of parameters.
We choose the blocks such that:

p(ω,β, τ |y) ≈ Q(ω,β, τ ) = qω(ω)qβ(β)qτ (τ ). (4.6)

Writing θ = [
θ 1 θ 2 θ 3

] = [
ω β τ

]
, calculus of variations renders the optimal distributions

q∗
θ j
(θ j) ∝ exp{Eθ\θ j [log p(θ |y)]}, where optimality is achieved in terms of the Kullback–Leibler diver-

gence of the posterior to the approximate distribution (Beal, 2003). The approximation in (4.6) renders
both the posterior parameter calculations and the expected joint log likelihood in (4.4) tractable.

After a change of variables ψj = τj − 1, we find the optimal distributions as:

q∗
β(β) ∼ N (μ,�), q∗

ω(ω) ∼
n∏

i=1

PG(mi, ci), and q∗
ψ(ψ) ∼

p∏
j=1

GIG
(

1

2
,
λ2

1

4λ2
,χj

)
, (4.7)

where GIG(·) denotes the generalized inverse Gaussian distribution (See Section 5 of the supplementary
material available at Biostatistics online for the derivations). The so-called variational parameters in (4.7)
contain cyclic dependencies, so we update them by (13) in Section 6 of the supplementary material
available at Biostatistics online until convergence. Naive calculation of the variational parameters is
computationally expensive. In Section 7 of the supplementary material available at Biostatistics online,
we show that informed calculation results in a significant reduction of computational complexity.

4.3. Empirical-variational Bayes

VB was shown to underestimate the posterior variance of the parameters, both numerically and theo-
retically, in several settings (Rue and others, 2009; Wang and Titterington, 2005). This coincides with
our experience that the global penalty parameters λ1 and λ2 tend to be overestimated, because they are
inversely related to the posterior variances of the βj. To prevent overestimation we use the parametrization
of Friedman and others (2010) as discussed in Section 4.1: we fix α and estimate λ by CV of the regular
elastic net model, such that the overall penalization is determined by CV of only λ. By combining CV
of the global penalty parameter λ with EB estimation of the penalty multipliers λ′ = [

λ′
1 · · · λ′

G

]T
,

the estimation is robust to underestimation of the VB posterior variances. For α, Hastie and Qian (2016)
recommend to either fix it a priori, or compare results for several choices of α. We use the latter.

To estimate the penalty multipliers, the intractable posterior expectation in (4.4) is approximated using
the VB posterior:

EQ

[
log Lλ′(y,ω,β, τ )|λ′(k)] = 1

2

G∑
g=1

|G(g)| log(λ′
g)− (1 − α)λ

4

G∑
g=1

λ′
gd(k)g + C, (4.8)

where C is constant in λ′ (see Section 6 of the supplementary material available at Biostatistics online
for the full derivation and the d(k)g terms). An estimate of the new penalty multipliers is now given by
(14) in Section 6 of the supplementary material available at Biostatistics online. Although the solution to
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(14) in the Supplementary material available at Biostatistics online is not available in closed form, this
convex problem is easily solved by a numerical optimization routine. The full estimation procedure is
summarized in Algorithm 1.

Algorithm 1 Group-regularized empirical Bayes elastic net
Require: X, y, G,α, ε1, ε2

Ensure: λ,λ′,�,μ
Estimate λ by CV of the regular elastic net model
while | λ′(k+1)−λ′(k)

λ′(k) | > ε1 do

while max
i

|�
(k+1)
ii −�(k)ii

�
(k)
ii

| > ε2 or max
i

|μ
(k+1)
i −μ(k)i

μ
(k)
i

| > ε2 do

Update �, μ, ci for i = 1, . . . , n and χj for j = 1, . . . , p using (13) in the Supplementary
material available at Biostatistics online

end while
Update λ′ by (14) in the Supplementary material available at Biostatistics online

end while

4.4. Feature selection

Feature selection is often desirable in high-dimensional prediction problems. For example, biomarker
selection may lead to a large reduction in costs by supporting targeted assays. Bayesian feature selection
is often done by inspection of posterior credible intervals. However, the Bayesian lasso’s (a special case of
the elastic net) credible intervals are known to suffer from low frequentist coverage (Castillo and others,
2015). We therefore propose to select features in the frequentist paradigm.

Frequentist feature selection is trivial after estimation of the penalty multipliers. We therefore simply
plug the estimated penalty parameters into some frequentist elastic net algorithm that allows for differential
penalization. In our package gren, we involve the R-package glmnet (Friedman and others, 2010),
which automatically selects features. Furthermore, to select a specific number of features, we simply
adjust the global λ to render the desired number.

5. SIMULATIONS AND APPLICATIONS

5.1. Simulations

We conducted a simulation study in which we compared gren to the regular elastic net and ridge models,
GRridge (van de Wiel and others, 2016), composite mimimax concave penalty (cMCP) (Breheny and
Huang, 2009), and the group exponential lasso (gel) (Breheny, 2015). GRridge is similar to gren in
the sense that it estimates group-specific penalty multipliers. The two main differences with gren are (i)
the absence of an L1-norm penalty and (ii) the estimation procedure. The other methods are extensions of
the group lasso and not adaptive on the group level. However, in contrast to the original group lasso, they
select single features, instead of complete groups.

We simulated data according to five different scenarios: (i) differential signal between the groups and
uniformly distributed model parameters; (ii) a large number of small groups of features; (iii) no differential
signal between the groups, but strong correlations within groups of features; (iv) differential signal between
the groups and heavy-tailed distributed model parameters; and (v) a very sparse setting with no signal in
some of the groups.
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In all scenarios, the yi are sampled from the logistic model introduced in Section 2, where the xT
i are

multivariate Gaussian and β is scenario dependent. Area under the receiver operator curve (AUC) and
Brier skill score, averaged over 100 repeats, were used to evaluate performance for models trained on
n = 100 samples and p ≈ 1000 features. Full descriptions of the scenarios and corresponding results are
given in Section 15 of the supplementary material available at Biostatistics online. Here, we summarize
the results.

In terms of Brier skill score, the ridge methods generally outperform the elastic net methods, which
in turn outperform the group lasso methods. In Scenario (i), gren and GRridge outperform the other
methods in terms of AUC. In scenario (ii), the AUC follows our expectation: gren, and to a lesser extent
GRridge underperform due to overfitting. The regular elastic net outperforms the group lasso methods.
In Scenario (iii), gren and to a lesser extent the regular elastic net suffer from the high correlations.
The regular elastic net outperforms gren, which is an indication that high correlations impair penalty
parameter estimation. Scenario (iv) follows the expected pattern, with GRridge and gren outperforming
their respective non-group-regularized counterparts, as well as the SGL extensions. In Scenario (v), gren
outperforms all other methods, which is an indication that gren is able to pick up the sparse differential
signal.

In addition to simulations from the correct model, i.e., model (2.2), we simulated from an incorrect
model to investigate the performance of gren under model misspecification. We investigated both link
misspecification and non-linear feature effects misspecification. The details of the simulations and detailed
results are given in Section 15.7 of the supplementary material available at Biostatistics online. In all
investigated Scenarios gren outperformed the regular elastic net in terms of predictive performance; an
indication that gren is relatively robust to model misspecification.

5.2. Application to microRNAs in colorectal cancer

We investigated the performance of gren on data from a microRNA sequencing study (Neerincx and
others, 2018). The aim of the study was to predict treatment response in 88 colorectal cancer patients,
coded as either non-progressive/remission (70 patients) or progressive (18 patients). After pre-processing
and normalization, 2114 microRNAs remained. Four unpenalized clinical covariates were included in the
analysis: prior use of adjuvant therapy (binary), type of systemic treatment regimen (ternary), age, and
primary tumor differentiation (binary).

In a preliminary experiment on different subjects, the microRNA expression levels of primary and
metastatic colorectal tumor tissues were compared to their normal tissue counterparts (Neerincx and others,
2015). The two resulting FDRs were combined through the harmonic mean (Wilson, 2019) and discretized
using the method described in Section 3. This yielded four groups of features: (i) FDR ≤ 0.0001, (ii)
0.0001 < FDR ≤ 0.0186, (iii) 0.0186 < FDR, and (iv) missing FDR. We expect that incorporation of
this partitioning enhances therapy response classification, because tumor-specific microRNAs are likely
to be more relevant than non-specific ones.

We compared the performance of gren to ridge, GRridge, random forest (Breiman, 2001), elastic
net, SGL by Simon and others (2013), cMCP, and gel. Of the latter three methods, we only present
the best performing one, cMCP, here. The results for SGL and gel are presented in Section 11 of the
supplementary material available at Biostatistics online. For the methods with a tuning parameter α, we
show the best performing α here and refer the reader to Section 11 of the supplementary material available
at Biostatistics online for the remaining α’s.

To estimate performance, we split the data into 61 training and 27 test samples, stratified by treatment
response. We estimated the models on the training data and calculated AUC on the test data. We present
AUC for a range of model sizes, together with the estimated penalty multipliers for gren and GRridge
in Figure 1. Brier skill scores are presented in Section 11 of the supplementary material available at
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Fig. 1. Estimated (a) penalty multipliers and (b) AUC in the colorectal cancer example.

Biostatistics online. In addition, we investigated the sensitivity of the multiplier estimation in Section 11
of the supplementary material available at Biostatistics online.

The estimated penalty multipliers are according to expectation: the small FDR group receives the
lowest penalty, followed by the medium and large FDR groups. The missing FDR group receives the
strongest penalty, thereby confirming that absence of information is informative itself. We observe that
gren outperforms the other methods for smaller models. Selection of larger models is impaired by the
large α, a property inherent to L1-norm penalization. With a smaller α larger models are possible (see
Section 11 of the supplementary material available at Biostatistics online). The performance of cMCP is
somewhat unstable. This unstable estimation is an issue in all investigated group lasso extensions. Overall,
the inclusion of the extra information on the features benefits predictive performance: both GRridge
and gren outperform their respective non-group-regularized versions, albeit only slightly for GRridge.
The random forest performs worse here.

5.3. Application to RNAseq in oral cancer

The aim of this second study is to predict lymph node metastasis in oral cancer patients using sequenced
RNAs from TCGA (The Cancer Genome Atlas Network, 2015). The features are 3096 transformed and
normalized TCGA RNASeqv2 gene expression values for 133 HPV-negative oral tumors. Of the corre-
sponding patients, 76 suffered from lymph node metastasis, while 57 did not. For a thorough introduction
of these data, see te Beest and others (2017).

We considered two sources of external feature information: (i) the cis-correlations between the
RNASeqv2 data and TCGA DNA copy numbers on the same patients, quantified by Kendall’s τ and
binned into five groups using the rule from Section 3. In addition, we used (ii) p-values from an
independent microarray data set described in Mes and others (2017), again binned into five groups.
We expect features with a large positive Kendall’s τ to be more important in metastasis prediction
(Masayesva and others, 2004). Likewise, we expect features with low external p-values to be more
important.

We compared gren to the same methods as in Section 5.2. However, since the feature information
consists of two partitions with overlapping groups, we used extensions of cMCP and gel that allow for
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Fig. 2. Estimated (a) penalty multipliers for the cis-correlations and (b) external p-values, and (c) estimated AUC in
the oral cancer example.

overlapping groups (Zeng and Breheny, 2016). In SGL, we cross-tabulated the two partitions to create
one grouping of the features. We estimated AUC on another independent validation set of 97 patients
(Mes and others, 2017), containing microarray features, normalized to account for a scale difference with
the RNAseq data. We present estimated AUC on this validation set for GRridge, ridge, random forest,
gren, elastic net, and the best performing group lasso extension, cMCP, together with the estimated
penalty multipliers in Figure 2. For the methods with an α parameter, we pick the best performing one.
Results for SGL, gel, other values of α, and the Brier skill scores are presented in Section 12 of the
supplementary material available at Biostatistics online.

The estimated penalty multipliers follow the expected pattern: larger cis-correlations receive smaller
penalties and smaller p-values are penalized less. The AUC of gren is slightly better than the other
methods for a range of model sizes. In this example, ridge, GRridge, and random forest perform almost
identical, while gren outperforms the regular elastic net.
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5.4. Additional applications

Two additional applications are presented in Sections 13 and 14 of the supplementary material available
at Biostatistics online. The first one is concerned with diagnosis of Alzheimer’s from 230 metabolites’
expression levels in 174 subjects. We included several sources of extra information on the metabolites.
In this example, gren performs worse than the group lasso methods for larger models. This is due to
the smaller number of features to learn the penalty parameters from. Additionally, many metabolites are
strongly negatively correlated, which further impairs penalty parameter estimation.

In the second application, the aim is to diagnose 56 women with cervical lesions using 2576 sequenced
microRNAs.We include a grouping of the features to enhance predictive performance and feature selection.
In this example, gren outperforms the regular elastic net with respect to predictive performance for a
range of model sizes. Random forest is competitive to gren, but requires all features.

6. DISCUSSION

In a taxonomy of Bayesian methods, gren may be considered a local shrinkage model, as opposed to the
global–local shrinkage priors that Polson and Scott (2012) discuss. They characterize certain desirable
properties of these global–local shrinkage priors in high dimensions, which, for example, the horseshoe
possesses (Carvalho and others, 2010). In our case, global shrinkage would imply adding another hyper-
prior for the global λ1 and λ2 (or α and λ) hyperparameters. We argue however, that if the groups are
informative, the EB estimation of the (semi-) global shrinkage parameters λ′

g may be more beneficial than
full Bayes shrinkage of the global penalty parameters, because the latter does not use any known structure
to model variability in the hyperparameters. Nonetheless, an interesting direction of future research is the
extension of the group-regularized elastic net to a group-regularized horseshoe model, since the horseshoe
has been shown to handle sparsity well and render better coverage of credibility intervals than lasso-type
priors (van der Pas and others, 2014).

Although our method is essentially a reweighted elastic net and can be considered weakly adaptive, it
is different from the adaptive lasso (Huang and others, 2008; Zou, 2006) and adaptive elastic net (Zou and
Zhang, 2009) because it adapts to external information rather than to the primary data. It also differs in the
scale of adaptation: in the adaptive lasso and elastic net the adaptive weights are feature specific, while in
our case they are estimated on the group level, rendering the adaptation more robust. Both the simulations
and the applications illustrate that adaptation to external data may be beneficial for prediction and feature
selection for a range of marker types (RNAseqs, microRNAs, and metabolites) due to the “borrowing
of information” effect: estimates of feature effects that behave similarly are shrunken similarly, yielding
overall, better predictions.

As touched upon in Section 1, an obvious comparison is to the group lasso (Meier and others, 2008) and
its extensions. Although the group lasso is similar in the sense that it shrinks on the group level, it is built
upon an entirely different philosophy: its intended application is to small interpretable groups of features,
like, for example, gene pathways. Another difference between gren and the group lasso is the form of
the penalty: gren estimates one parameter per group. Once these are estimated gren fits a reweighted
elastic net. The group lasso uses one overall penalty parameter; it is thereby less flexible in differential
shrinkage of the parameters. Our simulations and data applications show that gren is competitive and
often superior to (extensions of) the group lasso.

A recent development is to group samples rather than features (Dondelinger and Mukherjee, 2018)
to allow different levels of sparsity across sample groups. This approach does not incorporate feature
information, and uses CV to estimate the penalty parameters. An interesting future line of research would
be to combine this approach with gren.
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A common criticism of the lasso (and elastic net) is its instability of feature selection: different data
instances lead to different sets of selected features. To investigate the stability of selection on the data from
Section 5.2 we created bootstrap samples from the original data and calculated the sizes of the selected
feature set intersections. Compared to the regular elastic net, the inclusion of extra information increases
the selection stability (see Section 11 of the supplementary material available at Biostatistics online).
In addition, we investigated penalty multiplier estimation on 100 random partitionings of the features
(Section 11 of the supplementary material available at Biostatistics online). We found that the estimated
penalty parameters tend to cluster around one, as desired with random groups.

A possible weak point of the proposed method is the double EM loop, which may end up in a local
optimum, depending on the starting values of the algorithm. Reasonable starting values, e.g. obtained by
applying GRridge, could alleviate this issue. By default however, gren simply starts from the elastic
net, i.e., penalty multipliers equal to one, and then adapts these. In the applications, we investigated the
occurrence of multiple optima, but never encountered them. This does not guarantee that local optima do
not occur, but it provides some evidence that local optima are not ubiquitous.

Proper uncertainty quantification in the elastic net is an open problem. If uncertainty quantification
is required, Gibbs samples from the posterior (with the estimated hyperparameters) could be drawn.
However, we do not recommend Bayesian uncertainty quantification for the Bayesian elastic net due to
bad frequentist properties of lasso-like posteriors (Castillo and others, 2015) in sparse (omics) settings.
Hence, selected features should be interpreted with caution but are nonetheless deemed useful in prediction.

An EM algorithm runs the danger of excessive computation time. In our implementation, we have
reduced computational time considerably by some computational shortcuts (see Section 7 of the sup-
plementary material available at Biostatistics online) and implementing some parts in C++. To assess
computation times we compared gren other methods introduced in Sections 5.1– 5.3 on a Macbook Pro
2016 running ×86.64, darwin15.6.0 and present the results in Section 8 of the supplementary material
available at Biostatistics online. In general, we found that gren is similar in times as GRridge, faster
than SGL, and slower than cMCP, and gel.

SOFTWARE

A (stable) R package is available from https://CRAN.R-project.org/package=gren.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.

REPRODUCIBLE RESEARCH

All results and documents may be recreated from https://github.com/magnusmunch/gren.
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