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Introduction
Hepatocellular carcinoma (HCC) is the most fre-
quent primary liver cancer, with liver cirrhosis 
being the major risk factor. Despite significant 
progress in the medical treatment of chronic viral 
hepatitis B and C, which are the leading causes of 
cirrhosis development along with alcohol, its epi-
demic significance is further increasing. Currently, 
HCC is the fifth most common cancer and the 
third most common reason for malignancy-
related death in the world.1,2 In the United States, 
HCC is among the most rapidly increasing causes 
of cancer-associated mortality and its disease bur-
den is expected to grow in the upcoming years. In 
particular, metabolic liver disorders, such as dia-
betes mellitus, obesity, and nonalcoholic fatty 
liver disease, are predicted to be the major sources 
of increasing HCC incidence.3,4

Well-established diagnostic algorithms, such as 
the European Association for the Study of the 
Liver (EASL) and the American Association for 
the Study of the Liver Diseases (AASLD) crite-
ria have been developed, based on contrast 
enhanced computed tomography (CT)/mag-
netic resonance tomography (MRI) tumor size 
assessment with or without additional tumor 
biopsy.5,6 As demonstrated in the Barcelona 
Clinic Liver Cancer (BCLC) treatment algo-
rithm, there is a wide spectrum of well-devel-
oped surgical, locally ablative, and systemic 
therapy options. Depending on tumor size crite-
ria, liver function, and general physical status, 
therapy options range from curative approaches 
such as liver resection (LR), liver transplantation 
(LT), or radiofrequency ablation (RFA)/percu-
taneous ethanol injection (PEI), to noncurative 
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locoregional tumor therapies (LRTTs), such as 
transarterial chemoembolization (TACE) or 
radioembolization (TARE), and systemic treat-
ment by sorafenib.7 Owing to the complex inter-
actions between oncology and liver function, 
each HCC case has to be discussed extensively 
in a multidisciplinary hepatobiliary board. Very 
often, a multimodal treatment approach imple-
menting nonsurgical and surgical interventions 
is thereby indicated.8 Aggressive anticancer con-
cepts may, however, not only impact the onco-
logical course of disease, but also result in severe 
complications with significant consequences for 
quality of life and overall prognosis. Therefore, 
the suggested oncological benefit has to be bal-
anced against treatment-related morbidity and 
mortality, particularly in the context of aggres-
sive surgical approaches.9 To further refine 
treatment allocation, more insight into biologi-
cal tumor behavior affecting the long-term 
course of disease far beyond the initial post-
treatment period seems to be mandatory. 
Whereas marked intrahepatic tumor load, tumor 
infiltration into large portal veins and extrahe-
patic tumor spread clearly reflect aggressive 
tumor attitude, assessment of HCC biology may 
be challenging in earlier tumor stages.

In recent years, poor differentiation and micro-
vascular invasion (MVI) have been clearly identi-
fied as significant predictors of tumor invasiveness 
and poor outcome in liver cancer.10–12 In particu-
lar, in a difficult decision-making process between 
just about acceptable aggressive multimodal (sur-
gical) treatment and noncurative palliative 
approaches, tumor biopsy may be inappropriate 
owing to tumor heterogeneity, risk of tumor cell 
seeding, and biopsy-related complications such as 
bleeding and infection.13,14 18F-fludeoxyglucose 
(18F-FDG) positron emission tomography (PET) 
emerged as a highly effective nuclear imaging tool 
for diagnostic setup, treatment allocation, and 
assessment of post-interventional tumor response 
in medical and surgical oncology.15–17 Initially, 
18F-FDG PET did not play a clinical role in the 
evaluation of patients with suspected liver cancer. 
However, in recent years, an increasing body of 
clinical evidence has been presented that 18F-
FDG PET may be very valuable for describing 
biological tumor behavior and the outcome of 
HCC patients.

This review summarizes current available data on 
the prognostic significance of 18F-FDG PET in 

curative and noncurative approaches for HCC, 
with a specific focus on implications for therapeu-
tic recommendations.

Molecular basis of 18F-FDG PET: 
implications for diagnosis, staging, tumor 
biology, and treatment allocation
Highly simplified, 18F-FDG PET makes use of 
the specific cancer characteristic of enhanced glu-
cose metabolism. Comparable to glucose, FDG is 
incorporated into malignant cells by glucose 
transporter 1 (GLUT1) activity. Subsequent 
intracellular accumulation of the tracer is related 
to phosphorylation via hexokinase (HK) rendering 
18F-FDG to 18F-FDG-phosphate. In contrast, 
FDG concentration in the cells may be decreased 
by the gluconeogenesis enzyme glucose-6-phos-
phatase (G6Pase).18,19 Differences in metabolic 
uptake patterns between varying cancer entities 
are related to heterogeneity of enzyme activities. 
For example, colorectal liver cancer metastases 
exhibit overexpression of GLUT1 and HK and 
underexpression of G6Pase when compared with 
HCC. Thus, intracellular FDG accumulation is 
higher and the cancer detection rate by FDG 
PET imaging is better in metastatic liver tumors 
than in primary hepatoma.20,21 In addition, the 
diagnostic accuracy of 18F-FDG PET in HCC is 
also hampered by enzyme expression variations 
between different gradings. The FDG uptake in 
low-grade tumors is rather comparable with that 
of the surrounding nontumorous liver tissue, 
which makes them frequently invisible to 18F-
FDG PET scanning. In contrast, enzymatic 
activities in moderately/poorly differentiated 
HCC lead to an increased standardized uptake 
value (SUV) in comparison with uninvolved liver 
regions, therefore allowing tumor detection. 
Overall, sensitivity of 18F-FDG PET for appro-
priate HCC diagnosis was reported to be only 
about 50% or even lower, which is inappropriate 
compared with nearly 90% provided by modern 
diagnostic devices including ultrasound imaging, 
multidetector CT, and contrast-enhanced 
MRI.22–25 Thus, 18F-FDG PET is currently not a 
recommended standard imaging modality for the 
diagnosis of HCC.26

However, FDG uptake characteristics may be 
used for the assessment of biological tumor aggres-
siveness in HCC patients. As far back as in 2001, 
Shiomi et al. demonstrated that both tumor-vol-
ume doubling time and survival correlated 
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significantly with SUV ratio between tumor and 
nontumor regions.27 Molecular studies have 
shown that increased FDG accumulation is asso-
ciated with overexpression of genes promoting 
tumor angioinvasiveness.22,28–30 In a series of 63 
HCC patients that underwent LR, Kitamura et al. 
demonstrated that enhanced 18F-FDG uptake 
indicated higher tumor proliferation as expressed 
by Ki-67 index.31 Recently, Lee et al. found that 
enhanced SUV ratio correlated with increased 
expression of epithelial–mesenchymal transition 
markers, which are suggested to play an important 
role in metastatic tumor progression.32

Owing to its role as a surrogate marker for tumor 
aggressiveness, adding 18F-FDG PET to the 
standardized diagnostic algorithm was suggested 
to modulate final tumor staging, which may 
finally change treatment recommendation.33,34 A 
Japanese trial demonstrated therapy alterations in 
25% of 64 HCC patients following 18F-FDG 
PET scanning. For example, 41 patients had ini-
tially been declared appropriate for curative LR 
or LT, whereas only 28 of them (68%) remained 
suitable for surgical treatment following FDG 
PET imaging.34

In particular, information on possible extrahe-
patic tumor spread is important in treatment 
specification, because this excludes patients from 
radical surgical approaches. Although data is still 
limited, there is increasing clinical evidence that 
18F-FDG PET provides advantages in the detec-
tion of lung metastases (>1 cm in diameter) and 
bone metastases compared with conventional 
imaging techniques, whereas diagnostic value for 
assessing lymph node metastases remains con-
flicting (Table 1).35–40

18F-FDG PET in the curative surgical 
treatment of HCC

The role of 18F-FDG PET for improving surgical 
strategy in LR for HCC
Hepatectomy is the treatment of choice in com-
pensated liver cirrhosis without portal hyperten-
sion. However, there are several critical issues 
that have to be considered in individual decision 
making. In particular, the extent of LR has to be 
carefully scheduled based on accurate evaluation 
of patients’ general performance, liver size, func-
tional liver capacity, and tumor load.41,42 Although 
data is still inconclusive, anatomic LR using 

wide resection margins seems to offer oncological 
benefit in comparison with limited atypical 
LR.43,44 In contrast, extended hepatectomy in cir-
rhotics may be associated with severe postopera-
tive complications, such as septic problems, 
small-for-size syndrome, or even liver failure. In 
addition, there may be a substantial risk of post-
LR HCC reappearance, either as local tumor 
relapse triggered by vascular invasion, or as de 
novo tumor appearance in the underlying cir-
rhotic liver.41,42,45,46

For an accurate assessment of the patients’ indi-
vidual risk/benefit ratio in the context of extended 
LR for HCC, reliable data on prognostically rel-
evant tumor biology features is essential.

Although being hampered by their retrospective 
character and the use of different SUV cutoff val-
ues, a large number of studies were in the past 
able to demonstrate that 18F-FDG PET is a valu-
able imaging device for evaluating the oncological 
risk following hepatectomy (Table 2). Enhanced 
FDG uptake on PET was shown to indicate the 
presence of unfavorable histopathologic features, 
such as poor differentiation and MVI, and to pre-
dict poor overall survival (OS) and recurrence-
free survival (RFS).47–59

As demonstrated recently by Yoh et al., the prog-
nostic power may be further improved by com-
bining metabolic tumor aggressiveness with 
parameters of functional liver capacity.59 In a ret-
rospective analysis including 207 HCC patients, 
Yoh et al. have identified SUV ratio (HR = 1.743; 
95% CI 1.114–2.648; p = 0.016) and albumin–
bilirubin grade (HR = 1.966; 95% CI 1.349–
2.884; p < 0.001), which is a novel parameter of 
functional hepatic reserve, as the only significant 
and independent prognostic factors of OS follow-
ing LR.59 The introduced novel hybrid variable 
demonstrated more predictive significance than 
other established staging systems, such as the 
BCLC system, the Cancer of the Liver Italian 
Program score and the Japan Integrated Staging 
score.59

In addition, data from several investigations 
implicated that 18F-FDG PET may not only be 
useful in outcome prediction, but also for modu-
lating the individual surgical strategy.

One study suggested that FDG uptake measure-
ment is able to identify patients who benefit from 

https://journals.sagepub.com/home/tag


Therapeutic Advances in Gastroenterology 12

4	 journals.sagepub.com/home/tag

hepatectomy when being implemented in a neo-
adjuvant setting prior to rescue LT (salvage LT 
concept).50 In a series of 63 consecutive HCC 
patients, Kitamura et  al. demonstrated that pre-
LR SUV ratio was not only an independent prog-
nostic factor of early HCC recurrence, but proved 
to be the only independent predictor of HCC 
recurrence pattern. It was significantly lower in 
patients without tumor relapse (1.3 ± 0.5) or with 
HCC recurrence meeting the Milan criteria (MC; 
1.9 ± 1.6), still qualifying for salvage LT, 

compared with nontransplantable advanced HCC 
relapses (2.9 ± 2.6; p < 0.05) beyond MC.50

Data from two other studies indicated that LR 
margin should be more extended in PET-positive 
patients for achieving oncological benefit.52,57

Ochi et  al. identified SUVmax as the only inde-
pendent predictive factor of microsatellite distance 
>1 cm from primary tumor lesion (HR = 1.60; 
95% CI 1.23–2.26; p = 0.002) assessed on 

Table 1.  Diagnostic value of 18F-FDG PET in detecting extrahepatic HCC metastases.

Study n 18F-FDG PET for extrahepatic tumor spread detection

Sugiyama 
et al.35

19 83% detection rate for EHM >1 cm and 13% for ⩽1 cm. No false-positive 
lesions on FDG PET.

Nagaoka 
et al.36

21 (HCC + 
HCC/CC)

Detection rates of EHM

PET/CT 98.2%

PET 89.6%

CT 91.2%

Bone scintigraphy 68.7%

Yoon 
et al.38

87 Detection of EHM

  Sensitivity Specificity Accuracy

Lung MTS 100% 84% 86.2%

LN MTS 100% 86.7% 88.5%

Bone MTS 100% 100% 100%

Kawaoka 
et al.39

34 Detection of EHM

  Sensitivity Specificity  

Lung MTS 59.2% 92.6%  

LN MTS 66.7% 91.7%  

Bone MTS 83.3% 86.1%  

Lee -.40 138 Detection of EHM

  Sensitivity Specificity Accuracy

Lung MTS 60.9% 99.1% 92.6%

LN MTS 90.9% 96.5% 95.6%

Bone MTS 100% 100% 100%

CC, cholangiocarcinoma; CT, computed tomography; EHM, extrahepatic metastasis; 18F-FDG, 18F-fludeoxyglucose; HCC, 
hepatocellular carcinoma; MTS, metastasis; LN, lymph node; PET, positron emission tomography.
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histopathologic specimen, which is a well-known 
promoter of HCC recurrence.52

Another retrospective trial by Park et al. assessed 
PET+ status as a significant and independent 
prognostic factor for RFS (HR = 2.8; 95% CI 
1.273–6.158; p = 0.01), along with presence of 
satellite nodules, MVI, and multicentric tumor 
occurrence. They found improved OS (p < 0.001) 
and trend to better RFS (p = 0.188) following 
>1 cm compared with <1 cm surgical resection 
margin in PET-positive but not in PET-negative 
patients.58

18F-FDG PET to expand HCC selection criteria in 
liver transplant patients
The introduction of the MC in 1996 (one tumor 
nodule up to 5 cm; or 3 HCC nodules, each not 
exceeding 3 cm in diameter; no macrovascular 
tumor invasion) for a rigid patients’ selection 
contributed significantly in establishing LT as 
standard treatment in early stage HCC and 
decompensated liver cirrhosis. From now on, 
post-transplant 5-year RFS and OS rates above 
70% have been reported. Consequently, the 
MC were implemented for model for end-stage 
liver disease (MELD)-based prioritization in 
various large public allocation systems, such as 
the United Network of Organ Sharing and 
Eurotransplant.60,61

However, it has been clearly demonstrated in 
recent years that strict adherence to the MC 
does not completely prevent post-LT HCC 
recurrence.62 Apart from that, many advanced 
HCC patients beyond the MC are, thereby, 
excluded from potentially curative LT. Therefore, 
several more liberal macromorphologic selection 
criteria sets have been proposed, such as the 
University of California San Francisco score 
(UCSF; one single lesion ⩽ 6.5 cm; or 2–3 lesions 
⩽4.5 cm each; total tumor diameter ⩽ 8 cm) or 
the Up to Seven (UTS; sum of size and number 
of lesions not exceeding 7) criteria.

In recent years, it became evident that biologi-
cal tumor behavior rather than tumor size crite-
ria determines post-LT outcome.63,64 To 
improve patient selection on a tumor biology 
basis, reliable pretransplant available surrogate 
marker of HCC aggressiveness have to be 
implemented.65–67

In fact, a large number of retrospective studies 
have in the last decade identified 18F-FDG PET 
as a powerful predictor of poor OS and RFS in 
the LT setting.68–85

Notably, FDG PET was able to discriminate the 
oncological risk in both MC In and MC Out 
tumors (Table 3). Overall, PET-positivity has 
been proven to identify a small subset of within 
MC patients that are on a very high oncological 
risk (HCC recurrence rates between 46% and 
67%), which may be inacceptable in view of 
global donor organ shortage. In contrast, LT pro-
vided oncological cure in patients with PET-
negative MC In tumors, as recurrence rates were 
about 0% in this specific subset of liver recipients 
(Table 3).68,69–72,75,76

Equally important, FDG PET was shown to 
select advanced HCC patients that may benefit 
from LT although exceeding standard selection 
criteria. No significant outcome differences could 
be found between PET-negative MC Out patients 
and patients with MC In tumors (Table 3). 
Therefore, 18F-FDG PET has been proposed as 
useful noninvasive metabolic imaging for safely 
expanding the selection criteria beyond the MC 
burden limits.68–72,76,81–86

The extraordinary prognostic impact of 18F-FDG 
PET in the LT setting seems to be triggered by its 
capability to correlate with MVI, which in turn is 
one of the most important predictors of HCC 
recurrence (Table 4).57,68–69,72,74,76,78,81

Our transplant group identified PET-positive sta-
tus as the only independent pre-LT available pre-
dictor of MVI on explant pathology (HR = 13.4; 
95% CI 0.003–0.126; p = 0.001) in a study of 42 
LT patients (Figure 1A and B).69

Results of a recently demonstrated multicenter 
retrospective cohort study including 158 HCC 
patients confirmed the paramount role of 18F-
FDG PET in this context. The authors reported 
that SUV ratio (HR = 2.43; 95% CI 1.01–5.84; 
p = 0.047) was able to independently predict 
MVI on histopathologic specimen following LR 
or LT with the highest AUC.57

Consequently, several expanded HCC transplant 
selection criteria implementing 18F- FDG PET have 
been proposed in recent years (Table 5).76,80–82,84,86
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Table 3.  The prognostic value of 18F-FDG PET in HCC liver transplant patients according to Milan criteria.

Study n FDG uptake 
cutoff

Tumor-specific outcome stratified on FDG PET and MC

Yang 
et al.68

38 PET– versus 
PET+

HCC recurrence PET–/PET+
MC In (n = 26) 0%/66.7%
MC Out (n = 12) 60%/57%

Kornberg 
et al.69

42 PET– versus 
PET+

HCC recurrence PET–/PET + p value
MC In (n = 20) 0%/33.3% 0.004
MC Out (n = 22) 11.1%/53.8% 0.004
PET– MC Out patients had a 3-year RFS (80%) that was 
comparable with MC In patients (94%; p = 0.6) and significantly 
better than in PET+ MC Out patients (29%; p < 0.001).

Lee et al.71 59 SUV ratio 
<1.15 versus 
⩾1.15

HCC recurrence Ratio <1.5/Ratio ⩾1.5 p value
MC In (n = 42) 0%/9% ----------
MC Out (n = 17) 60%/67% ----------

Kornberg 
et al.72

91 PET– versus 
PET+

HCC recurrence PET–/PET + p value
MC In (n = 57) 0%/46.7% 0.004
5-year RFS was comparable between MC In patients (86.2%) and 
PET– MC Out patients (81%), but significantly worse in FDG-avid 
MC Out patients (21%; p = 0.002).

Detry 
et al.75

27 SUV ratio 
<1.15 versus 
⩾1.15

RFS was 0% in PET+ MC Out patients. There was no significant 
difference in RFS between MC In and PET– MC Out patients  
(p = 0.782).

Lee et al.76 280 PET– versus 
PET+

5-year RFS PET– /PET+ p value
MC In (n = 133) 92.3%/76.3% 0.031
MC Out (n = 147) 73.3%/37.5% <0.001

18F-FDG, 18F-fludeoxyglucose; HCC, hepatocellular carcinoma; MC, Milan criteria; OS, overall survival; PET, positron 
emission tomography; SUV, standard uptake value.

Table 4.  Predictive value of 18F-FDG PET as a surrogate for the presence of MVI.

Study N PET–/PET+
(n)

Correlation with MVI
Sensitivity/specificity/PPV/NPV/
accuracy

Yang et al.68 38 25/13 77.8%/79.3%/53.8%/92%/78.9%

Kornberg et al.69 42 26/16 82.3%/92%/87.5%/88.5%/88.1%

Kornberg et al.72 91 56/35 81.1%/90.7%/85.7%/87.5%/86.8%

Lee et al.74 191 136/55 45.4%/83.9%/66%/69.1%/67.5%

Lee et al.76 280 190/90 51.9%/79.9%/61.1%/73.2%/69.3%

Hsu et al.81 147 117/30 30.3%/85.7%/56.7%/66.7%/64.6%

Hyun et al.57 158 (LR + LT) – 85.5%/54.9%/63.7%/80.4%

18F-FDG, 18F-fludeoxyglucose; LT, liver transplantation; MVI, microvascular invasion; NPV, negative predictive value; PET, 
positron emission tomography; LR, liver resection; PPV, positive predictive value.
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In a large retrospective analysis including 280 
patients following living donor liver transplanta-
tion (LDLT), Lee et  al. have identified PET-
positive status, total tumor size (TTS) >10 cm, 
and MVI as significant and independent predic-
tors of poor RFS in beyond MC tumors. There 
was no significant difference in OS and RFS 
between MC In patients and PET-negative MC 
Out patients with TTS <10 cm.76 The newly 
defined so-called National Cancer Center Korea 
(NCCK) criteria (MC In or PET-negative MC 
Out with TTS <10 cm) were shown to increase 
the number of appropriate liver recipients without 
affecting tumor-specific outcome (RFS at 5-years 
post-LT: NCCK 80%; MC In 82%). The accu-
racy of pre-LT tumor staging for predicting 
explant pathology was 95% in NCCK-based, but 
only 78.9% in MC-based patient selection.82

Hsu et al. suggested expansion of selection crite-
ria based on UCSF and 18F-FDG PET.81 In a 
series of 147 patients following LDLT, they 
reported on significantly better 5-year RFS rates 
in low-risk (UCSF In + FDG-negative) and 
intermediate risk (UCSF Out + FDG-negative or 
SUV ratio <2) patients compared with a high-
risk (SUV ratio ⩾2) group (p < 0.001). However, 
a very low number of high-risk patients (n = 7) 
limited clinical significance of the data.81

Our transplant group recently demonstrated in a 
retrospective study of 116 patients that combin-
ing radiographic UTS criteria with FDG PET 
safely expands the HCC selection criteria. 

Five-year RFS rates did not differ between MC In 
(86.2%), UTS In (81%), and PET-negative 
beyond UTS patients (87.1%), respectively.85

Other study groups favored the implementation 
of both FDG PET and AFP to realize a tumor 
biology-based selection approach.83,86

One of them even proposed expansion of criteria 
without any tumor size limitation.86 In a retro-
spective study including 123 LDLT patients by 
Hong et al., only PET-positivity (HR = 9.766; 
95% CI 3.557–26.861; p < 0.001) and serum 
AFP level ⩾200 ng/ml (HR = 6.243; 95% CI 
2.643–14.707; p < 0.001) were identified as 
independent prognostic factors. Combining 
them for indicating high-risk oncological status 
had a HR of 29.069 (95% CI 8.797–96.053; 
p < 0.001), whereas it was only 1.351 (95% CI 
0.500–3.652; p = 0.553) for MC Out 
constellation.86

Compared with a strict MC-based organ alloca-
tion, the application of these expanded selection 
criteria resulted finally in an increase of transplant 
eligibility between 16.5% and 51.5%, without 
increasing the oncological risk for the patients 
(Table 5).

18F-FDG PET in locally advanced HCC
Patients with intermediate-to-advanced-stage 
HCC (BCLC stage B or C) are mostly ineligible 
for curative surgical resection owing to enhanced 

Figure 1.  18F-FDG PET (A) and 18F-FDG PET/CT (B) of two different LT patients with PET-positive HCC. Both of 
them revealed MVI on explant histopathology and were suffering from early post-LT HCC recurrence.
18F-FDG, 18F-fludeoxyglucose; LT, liver transplantation; MVI, microvascular invasion; HCC, hepatocellular carcinoma; PET, 
positron emission tomography.
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Table 5.  Proposals for expanded LT selection criteria implementing 18F-FDG PET.

Study n Risk 
stratification 
according FDG 
uptake

Tumor-specific outcome Proposal of 
expanded 
selection criteria 
implementing 
18F-FDG PET

Increase of 
transplant 
eligibility 
by novel 
criteria

Lee et al.76 280 PET– versus 
PET+

PET+ status (HR = 3.803; p < 0.00), TTS  
(HR = 3.334; p = 0.001) and MVI (HR = 2.917; 
p= 0.025) were identified as significant and 
independent prognostic factors for RFS in MC 
Out patients.

MC In
+
FDG-nonavid MC 
Out <10 cm in TTS

37.4%

Lee et al.81 280 PET– versus 
PET +

5-year OS (83.6%/85.2%) and RFS (80.7%/84%) 
were significantly higher (p < 0.001; p < 0.001) 
meeting NCCK than exceeding NCCK. Pre-LT 
NCCK demonstrated higher AUC in predicting 
5-year RFS (0.802) than MC (0.799) and UCSF 
criteria (0.802).

MC In
+
FDG-nonavid MC 
Out <10 cm in TTS
(NCCK)

24.2%

Hsu 
et al.80

147 PET– (TNR <2) 
versus
PET + (TNR 
⩾2)

5-year RFS was 85.5% in a low (FDG– UCSF 
In; n = 77), 83.9% in an intermediate (FDG– 
beyond UCSF or SUV ratio <2; n = 61) and 
29.6% in a high-risk subgroup (TNR ⩾2, n = 9) 
(low versus intermediate: p = 0.142; high versus 
low: p < 0.001; high versus intermediate: p < 
0.001).

PET– UCSF In
or
PET– UCSF Out
or
PET+ (TNR <2)

36.5%

Hong 
et al.86

123 PET– versus 
PET+

Only PET-positivity (HR = 9.766; 95% CI 
3.557–26.861; p < 0.001) and serum AFP level 
⩾200 ng/ml (HR = 6.234; 95% CI 2.643–14.707; 
p < 0.001) were identified as independent 
prognostic factors of HCC recurrence. Five-
year RFS rates were 93.6% in the low (AFP 
<200 ng/ml + PET–; n = 75), 77.7% in the 
intermediate (AFP ⩾200 ng/ml + PET– or AFP 
<200 ng/ml + PET+; n = 36), but only 8.3% in 
the high-risk group (AFP ⩾200 ng/ml + PET+; 
n = 12; p < 0.001).

PET– + AFP 
<200 ng/ml
or
PET– + AFP ⩾ 
200 ng/ml
or
PET+ + AFP 
>200 ng/ml

 

Takada 
et al.82

182 PET– versus 
PET+

MC Out status (p < 0.001), AFP ⩾115 ng/ml 
(p = 0.008) and PET-positivity (p = 0.029) were 
identified as pre-LT available independent 
predictors of HCC recurrence. HCC recurrence 
rate was not different between MC In (6%) and 
PET– MC Out patients with AFP <115 ng/ml 
(19%; p = 0.176).

MC In
or
FDG-nonavid 
MC Out + AFP 
<115 ng/ml

16.5%

Kornberg 
et al.84

116 PET– versus 
PET +

PET + status was identified as significant and 
independent predictor of HCC recurrence in 
UTS In (HR = 24.59; 95% CI 5.01–124.226; p 
< 0.001) and UTS Out patients (HR = 19.25; 
95% CI 2.961–125.161; p = 0.007). There was no 
significant difference in 5-year RFS between 
UTS In (81%) and PET– UTS Out patients 
(87.1%).

UTS In
or
FDG-nonavid UTS 
Out

51.5%

18F-FDG, 18F-fludeoxyglucose; AFP, alpha fetoprotein; AUC, area under the curve; CI, confidence interval; HCC, hepatocellular carcinoma; HR, 
hazard ratio; MC, Milan criteria; NCCK, National Cancer Center Korea; OS, overall survival; PET, positron emission tomography; RFS, recurrence-
free survival; SUV, standard uptake value; TNR, tumor to non-tumor standardized uptake value ratio; TTS, total tumor size; UCSF, University of 
California San Francisco; UTS, Up-to-Seven.
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tumor load, progressive liver dysfunction, tumor 
infiltration into major portal veins, or extrahe-
patic tumor manifestation. Depending on the 
individual tumor constellation and remaining 
liver function, these patients may, however, ben-
efit from LRTT or systemic chemotherapy.7,8 
Overall, data on the prognostic and therapeutic 
value of 18F-FDG PET in this specific subset of 
patients is still rather limited. However, there are 
some interesting studies indicating that FDG 
uptake pattern not only correlates with OS and 
progression-free survival (PFS), but may also 
impact individual decision making on most 
effective treatment in noncurative approaches 
(Table 6).87–94

It has been suggested that systemic rather than 
LRTT should be applied in high SUV patients.88–94

For example, Kim et al. found significantly higher 
rates of early (within 6 months) extrahepatic 
metastases in SUVmax > versus ⩽6.1 (58.1% ver-
sus 26.8%; p < 0.001) in a series of 107 advanced 
HCC patients treated with concurrent chemora-
diotherapy (CCRT) followed by repetitive hepatic 
arterial infusional chemotherapy.88

Another retrospective multicenter study includ-
ing 214 advanced tumor patients by Lee et  al. 
reported that in a high SUV ratio (>2) subset, 
CCRT resulted in significantly better PFS (p = 
0.018) and OS (p = 0.009) than LRTT by TACE, 
even when being adjusted for tumor size and 
number. In contrast, there was no significant dif-
ference in outcome between the treatment modal-
ities in SUV ⩽2.90

Based on results of a recent retrospective study 
including 228 locally advanced HCC patients, 
Rhee et  al. proposed a double biomarker risk 
stratification by using SUVmax (> versus ⩽4.825) 
and serum AFP level (> versus ⩽550 ng/ml).94 
Both PFS (p < 0.001) and OS (p < 0.001) were 
significantly longer in low-risk patients (SUVmax 
⩽4.825 + AFP ⩽550 ng/ml), compared with an 
intermediate-risk group (SUVmax >4.825 or 
AFP >550 ng/ml) and with a high-risk subset 
(SUVmax >4.825 + AFP >550 ng/ml), respec-
tively. Rates of local disease control (p < 0.001) 
and conversion to surgery (p = 0.002) were low-
est, and frequency for extrahepatic failure highest 
(p = 0.006) in the high-risk subset. The authors 
finally concluded that high-risk patients accord-
ing to SUVmax and AFP level (SUVmax >4.825 

+ AFP >550 ng/ml) should receive systemic 
rather than locoregional therapy. In contrast, 
low-risk patients were more likely to suffer from 
intrahepatic ‘in-field’ failure, which supported a 
more aggressive local treatment in this specific 
subpopulation.94

18F-FDG PET for metabolic assessment of 
tumor viability following LRTT
LRTT by using intraarterial or percutaneous 
techniques are nowadays an integrative part of a 
differentiated multimodal treatment approach in 
HCC.7,8 They may be indicated for a life-pro-
longing palliative intention or in a neoadjuvant 
fashion for achieving tumor downstaging prior to 
definite surgical treatment via LR or LT.95 
Appropriate assessment of tumor response fol-
lowing LRTT is essential for individual decision 
making on need for additional treatment sessions 
or change of therapeutic strategy. Using contrast-
enhanced CT or MRI, the modified Response 
Evaluation criteria in Solid Tumors (mRECIST) 
and the EASL criteria are currently the standard 
for differentiating residual viable tumor tissue 
from post-interventional tumor necrosis. 
However, post-LRTT CT/MRI imaging may be 
misleading and, in addition, biological tumor fea-
tures are not implemented in the current evalua-
tion of treatment success.96

Therefore, the applicability of 18F-FDG PET for 
metabolic assessment of post-interventional 
response has increasingly been investigated in 
recent years (Table 7).97–104

In several curative intent studies, post-LRTT 
enhanced FDG uptake on PET prior to LR or LT 
was shown to correlate with tumor viability on 
postoperative histopathologic assessment.97–101 In 
comparison with contrast-enhanced CT, high 
diagnostic sensitivity and moderate specificity of 
18F-FDG PET/CT have been demonstrated.98,101

In a study of 27 patients with intermediate stage 
HCC receiving noncurative intent TACE, Ma 
et  al. demonstrated the superiority of tumor 
viability assessment by FDG PET over 
mRECIST criteria.103 The authors identified 
ΔSUVmax ratio% to provide the highest discrim-
inative prognostic power. Responders to TACE 
(ΔSUVmax ratio% <0.1) had a significantly 
better OS than nonresponders (SUVmax ratio% 
⩾0.1; p = 0.025).103
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In addition, it has been suggested that 18F-FDG 
PET may be a valuable diagnostic approach in 
unexplained post-interventional increase of AFP 
level where contrast-enhanced CT remained 
inconspicuous.105–107

In a study of 100 LT candidates receiving neoad-
juvant TACE, Refaat et  al. have recently 
reported on distinctively higher sensitivity (92.8% 
versus 74.7%), specificity (94.1% versus 70.6%), 
and accuracy (93% versus 74%) of FDG PET/
CT compared with contrast-enhanced CT for 

detecting post-interventional HCC recurrence.107 
SUVmax ratio >1.21 was identified as the best 
threshold (AUC = 0.935; 95% CI 0.868–0.975; 
p < 0.0001) for indicating intrahepatic or extra-
hepatic tumor manifestation.107

Conclusion
18F-FDG PET is currently not a generally recom-
mended imaging modality for improving diagnos-
tic accuracy in HCC patients. However, as shown 
in this review, it provides very interesting data on 

Table 6.  Prognostic value of pre-treatment 18F-FDG PET in locally advanced HCC.

Study n Applied therapy Prognostic value of pre-treatment 18F-FDG PET

Lee 
et al.87

29 Sorafenib SUVmax was a significant and independent prognostic factor for 
OS (HR = 1.22; 95% CI 1.04-1.22; p = 0.02) and PFS (HR = 1.16; 
95% CI 1.02–1.06; p = 0.03).

Kim 
et al.88

107 CCRT + repetitive 
hepatic arterial 
infusional 
chemotherapy

SUVmax <6.1 indicated better disease control (86.8% versus 
68.5%; p = 0.023), longer PFS (8.4 versus 5.2 months; p = 0.003) 
and longer OS (17.9 versus 11.3 months; p = 0.013). SUVmax ⩾6.1 
correlated with early risk of extrahepatic metastases (58.1% 
versus 26.8%; p < 0.001).

Song 
et al.89

58 TACE SUV ratio <1.7 was an independent predictor of objective 
response to TACE (OR = 2.829; 95% CI 1.312–6.009; p = 0.008). 
Time to tumor progression was significantly delayed (p = 0.011) 
and OS was significantly longer (p = 0.033) in the low versus high 
SUV ratio subset.

Simoneau 
et al.90

63 Surgical resection 
(n = 10)
Locoregional 
therapy (n = 59)

Median survival was 29 months in PET-negative and 12 months in 
PET-positive patients (p = 0.0241). Only SUV ⩾4 was identified as 
a significant and independent predictor of poor survival 
 (p = 0.049).

Kim 
et al.91

77 TACE SUV ratio was identified as a significant and independent 
prognostic variable of OS (HR = 1.96; 95% CI 1.210–3.156;  
p = 0.006) and tumor progression (HR = 2.05; 95% CI 1.264–
3.308; p = 0.004).

Lee 
et al.92

214 CCRT (n = 61)
TACE (n = 153)

SUV ratio >2 was identified as an independent predictor of PFS 
(HR = 1.55; 96% CI 1.12–2.15; p = 0.009) and OS (HR = 1.97; 95% 
CI 1.43–2.72; p < 0.001).

Na et al.93 291 Local treatment  
(n = 232)
Systemic treatment 
(n = 59)

SUV ratio ⩾3 was identified as significant and independent 
predictor of poor OS in patients with intrahepatic (HR = 1.89; 
95% CI 1.30–2.73; p = 0.001) and extrahepatic (HR = 1.69; 95% CI 
1.13–2.51; p = 0.01) tumor disease.

Rhee 
et al.94

228 CCRT (n = 138)
TACE + RT/CCRT (n 
= 90)

SUVmax >4.825 was identified as a significant and independent 
predictor of PFS (HR = 1.826, 95% CI 1.261–2.643; p = 0.001) and 
OS (HR = 1.74; 95% CI 1.210–2.522, p = 0.003).

18F-FDG, 18F-fludeoxyglucose; AFP, alpha fetoprotein; CI, confidence interval; HCC, hepatocellular carcinoma; HR, hazard ratio; CCRT, concurrent 
chemoradiotherapy; RT, radiotherapy; TACE, transarterial chemoembolization; PFS, progression-free survival; OS, overall survival; PET, positron 
emission tomography; SUV, standard uptake value; SUVmax, maximum standard uptake value.
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Table 7.  The value of 18F FDG PET for evaluation of metabolic tumor response following LRTT.

Study n Treatment 
concept

Prognostic value of post- interventional 18F- FDG PET

Torizuka 
et al.97

30 Neoadjuvant 
TAI/TAE prior LR

Post-interventional tumor necrosis rate was 90–100% in SUV 
ratio <0.6 and <75% in SUV ratio >0.6.

Kim 
et al.98

93 Neoadjuvant 
TACE prior LR 
or LT

Early (< 3 months) post-LRTT viability assessment

  PET/CT contrastCT

Sensitivity 100% 94%

Specificity 63% 100%

PPV 84% 100%

NPV 100% 89%

Accuracy 88% 96%

Kim 
et al.101

31 Non-curative 
LRTT
TACE (n = 26); 
RFA (n = 2);  
PEI (n = 3)

Early (< 1 month) post-LRTT viability assessment

  PET/CT

Sensitivity 87.5%

Specificity 71.4%

PPV 77.8%

NPV 83.3%

Accuracy 80%

Ma 
et al.103

27 Noncurative
TACE

Post-TACE tumor response (SUVmax ratio% <0.1) was identified 
as independent and significant predictor of OS  
(HR = 4.051; 95% CI 1.207–13.600; p = 0.024).

Song 
et al.104

73 Noncurative
TACE

SUV ratio ⩾1.65 correlated significantly with grade of lipiodol 
deposition (p = 0.0387). OS was significantly better in the high 
compared with the low SUV ratio subset (p = 0.024).

18F-FDG, 18F-fludeoxyglucose; CI, confidence interval; HCC, hepatocellular carcinoma; LR, liver resection; LRTT, 
locoregional tumor therapy; LT, liver transplantation; MC, Milan criteria; NPV, negative predictive value; OS, overall 
survival; PEI, percutaneous ethanol injection; PET, positron emission tomography; PPV, positive predictive value; 
RFA, radiofrequency ablation; ROC, receiver operating characteristic; SUV, standard uptake value; TACE, transarterial 
chemoembolization; TAE, transcatheter arterial embolization; TAI, transcatheter arterial infusion.

biological tumor viability and cancer-specific 
prognosis that may be valuable in different prog-
nostic and therapeutic aspects of curative and 
noncurative treatment approaches. In particular, 
in the context of aggressive surgery either by 
extended hepatectomy or by LT beyond current 
standard criteria, data on metabolic tumor aggres-
siveness preoperatively delivered by 18F-FDG 
PET/CT may be useful for a differentiated 
indication and therapeutic strategy. Thereby, a 
refined benefit/risk assessment for the patient 

may be achieved. However, also in the nonsurgi-
cal setting, patients seem to benefit from pre- and 
post-treatment metabolic tumor evaluation on 
FDG PET by an individually tailored multimo-
dality approach. To more precisely define the 
strategic role of 18F-FDG PET in early and 
advanced HCC stages, prospective multicenter 
studies including a larger number of patients 
and implementing a standardized FDG PET 
setting would be desirable. Current available tri-
als on this topic are mainly hampered by their 
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predominantly retrospective character, great vari-
abilities regarding tumor stage and underlying 
liver function, and by use of different FDG uptake 
measurements and SUV cutoff values. 
Nonetheless, as shown in our review, there seems 
to be enough clinical evidence that 18F-FDG PET 
may be used as a reliable pre- and post-treatment 
available surrogate marker of biological tumor 
invasiveness and outcome in HCC patients.
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