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Abstract

Identifying gene�environment (G�E) interactions, especially when rare variants are included in genome-wide association studies, is a ma-
jor challenge in statistical genetics. However, the detection of G�E interactions is very important for understanding the etiology of complex
diseases. Although currently some statistical methods have been developed to detect the interactions between genes and environment,
the detection of the interactions for the case of rare variants is still limited. Therefore, it is particularly important to develop a new method
to detect the interactions between genes and environment for rare variants. In this study, we extend an existing method of adaptive combi-
nation of P-values (ADA) and design a novel strategy (called iSADA) for testing the effects of G�E interactions for rare variants. We propose
a new two-stage test to detect the interactions between genes and environment in a certain region of a chromosome or even for the whole
genome. First, the score statistic is used to test the associations between trait value and the interaction terms of genes and environment
and obtain the original P-values. Then, based on the idea of the ADA method, we further construct a full test statistic via the P-values of the
preliminary tests in the first stage, so that we can comprehensively test the interactions between genes and environment in the considered
genome region. Simulation studies are conducted to compare our proposed method with other existing methods. The results show that
the iSADA has higher power than other methods in each case. A GAW17 data set is also applied to illustrate the applicability of the new
method.
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Introduction
Due to the availability of genetic variants, genome-wide associa-

tion studies (GWAS) have successfully detected a large number of

common variants associated with many human traits and dis-

eases (Visscher et al. 2012; Welter et al. 2014). However, common

variants can only explain a small proportion of disease heritabil-

ity (Maher 2008; McCarthy et al. 2008; Bansal et al. 2010) and addi-

tional disease heritability can be explained by rare variants

(Pritchard 2001; Pritchard and Cox 2002; Manolio et al. 2009). In

recent years, many statistical methods have been developed for

rare-variant association testing, for example, the cohort allelic

sums test (Morgenthaler and Thilly 2007) which belongs to bur-

den tests. When all rare variants in a given region are causal ones

and impact on the trait in the same direction, the burden tests

are more powerful (Bansal et al. 2010). The C-alpha method

(Neale et al. 2011) and the sequence kernel association test

(SKAT) (Wu et al. 2011) belong to nonburden tests. These two

methods are robust to the different directions of variants effects.

Unfortunately, however, when the given region includes neutral

variants, both the burden tests and the nonburden tests may suf-

fer from loss of power. To deal with this problem, Sha et al. (2012)

proposed a novel test for detecting the collective effect of an opti-
mally weighted combination of variants (TOW). Lin et al. (2014)
proposed an association test by adaptive combination of P-val-
ues, called “ADA.” Based on the ADA method, for different types
of traits and variants, some extended methods have been pro-
posed (Zhou and Wang 2015; Wang et al. 2018).

In biology and genetics, many complex phenotypes/diseases
are usually affected by both genetic factors and environmental
factors, for example, the ADH7 variants and alcohol consumption
in upper aerodigestive cancers (Hashibe et al. 2008), or the
GRIN2A variants and coffee consumption in Parkinson’s disease
(Hamza et al. 2011). Therefore, the main effects of genes and the
interaction effects of G�E are major and necessary parts in statis-
tical modeling when performing association studies. To date, in-
creasing attention has been paid to detecting the interactions
between genes and genes, and the interactions between genes
and the environment aiming at common and rare variants. Jiao
et al. (2013) proposed a two-stage method “SBERIA” for case-
control studies, which can be applied to cases of common var-
iants and rare variants. Wang et al. (2017) considered a set-based
mixed effect model for gene-environment interactions based on
the method of Jiao et al. (2013), and the authors discussed the
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construction of score statistic for the terms associated with fixed
and random effects of G�E to avoid direct parameter estimation
in the MixGE model. Lin et al. (2013) proposed a gene-
environment interaction association test (GESAT), which allowed
easy adjustment of covariates, but was less powerful when na-
ively applied to case of rare variants. To test rare variants by en-
vironment interactions, Lin et al. (2016) developed the interaction
sequence kernel association test (iSKAT) to assess the effects of
rare variants by environment interactions. Because the weight of
iSKAT is specially selected in the simulation process, when the
weight of the interaction term between gene and environment is
too small, the power of this method will decrease. Based on the
method TOW (Sha et al. 2012), Zhao et al. (2020) presented a novel
method of test the interactions between genes and environment.
However, when the weights of the interaction terms between
genes and environment are in the same direction, this method
also has the limitation of power loss.

In this study, we extend the ADA method of adaptive combina-
tion of P-values (Lin et al. 2014) and design a novel strategy
(iSADA) to test the effects of G�E interactions for case of rare vari-
ant association studies. A new two-stage test is proposed to detect
the interactions between genes and environment in a certain re-
gion of a chromosome or even for the whole genome. We first ap-
ply the score statistic to test the associations between trait value
and the interaction terms of genes and environment and obtain
the original P-values. Then, based on the idea of the ADA method,
we further construct a full test statistic via the P-values of the
preliminary test in the first step, so that we can comprehensively
test the interactions between genes and environment in the tar-
get genome region. Simulation studies are conducted to compare
our proposed method with other existing methods. The results
show that the iSADA method has higher power than other meth-
ods in each case. Finally, we used the GAW17 data set to evaluate
the performance of the method that we proposed in this study.

Materials and methods
Consider n unrelated individuals sequenced in a testing region
with M rare variants. We are interested in testing the interaction
effects between causal rare variants and a certain environment
variable on a trait. The relationship between quantitative trait
value yi and genotype vector Gi ¼ ðGi1;Gi2; . . . ;GiMÞT, environmen-
tal variable Ei and the G�E interaction terms Sikði ¼ 1; 2; . . . ;MÞ
can be constructed by the following full statistical model:

yi ¼
XM

k¼1

bG
k Gik þ bEEi þ

XM

k¼1

bGE
k Sik þ e0i; i ¼ 1; 2; . . . ; n; (1)

where subscript i refers to the ith individual and k refers
to the kth variant of the genetic set. bG

k denotes the kth genotype
main effect, bE denotes environment effect, bGE

k denotes the
kth G�E interaction effect, Gik 2 f0; 1; 2g denotes the genotype
score (number of minor alleles) at the kth variant, Sik ¼ EiGik

denotes the interaction term between the kth variant and
the environment for individual i, and e0i � Nð0;r2

0Þ, where
i ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ;M. We next present a two-stage testing
strategy to identify interaction effects of G�E on the quantitative
trait.

Remark: The true generation mechanism of any trait value is

unknown, so it is difficult to seek an optimal statistical model for

describing the relationship between a considered trait and the

genotypes, as well as environmental variables. We first assume

that model (1) holds in our method, in fact the true statistical

model between the trait values yi and genotypes Gik, environmen-

tal variable Ei, and G�E interactions Sik can be a more general

model. Without loss of generality, the generalized linear model

(GLM)

gðliÞ ¼
XM

k¼1

bG
k Gik þ bEEi þ

XM

k¼1

bGE
k Sik (2)

can be considered, where li ¼ EðyijGik; Ei; SikÞ is the conditional

expectation of phenotype yi given Gik, Ei, and Sik; and gð�Þ is a ca-

nonical link function. Through our extensive investigation, we

validate that our new testing strategy can maintain higher power

relative to other methods in the case of model misspecification,

although it will decrease some power in a certain degree, which

guarantees the robustness of the new method.
We next present a two-stage testing strategy on the basis of

linear model (1) to identify interaction effects of G�E on the

quantitative trait. GLM (2) will be used to verify the robustness of

the proposed method in the part of Simulation studies.

Stage one: Obtain preliminary test P-value for
single site
In the first stage, we test associations between the trait value

and each interaction term in the given genome region. To sim-

plify the test problem, we consider the following local statistical

model:

yi ¼ bG
1 Gi1 þ � � � þ bG

MGiM þ bEEi þ bGE
k Sik þ ei; (3)

where i ¼ 1; 2; � � �; n, the explanations of variables Gik, Ei, Sik, and

parameters bG
k , bE, bGE

k are the same with those given below model

(1); e1; e2; . . . ; en are independent and identically distributed, and

ei � Nð0;r2Þ.
Let Y ¼ ðy1; y2; . . . ; ynÞT; Xi ¼ ðGi1;Gi2; . . . ;GiM; EiÞT, where i ¼

1; 2; . . . ; n; X ¼ ðX1;X2; . . . ;XnÞT, and e ¼ ðe1; e2; . . . ; enÞT.
For the kth rare variant, we consider the test problem

H0 : bGE
k ¼ 0ðk ¼ 1; 2; . . . ;MÞ. The score statistic is used to test the

multiple hypothesis, and the basic form of the score test is given

by the following theorem.

Theorem. The score statistic to test the null hypothesis H0 : bGE
k ¼

0 under model (3) is given by

Qk ¼
1

r̂2

W2

U
;

where r̂2 ¼ 1
n YTðIn � VÞY; W ¼ ST

k ðIn � VÞY; U ¼ ST
k ðIn � VÞSk;

V ¼ XðXTXÞ�1XT; Sk ¼ ðS1k; S2k; . . . ; SnkÞT, and In is an n�n identify

matrix.
Proof Under model (3), Y ¼ Xbþ Skb

GE
k þ e, and

Y � NðXbþ Skb
GE
k ; Inr2Þ, where bT¼ððbGÞT ; bEÞ ¼ ðbG

1 ; � � �; bG
M; b

EÞ.
The log-likelihood is given by
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lnLðhÞ ¼ � n
2

lnð2pr2Þ � 1
2r2 ðY � Xb� Skb

GE
k Þ

TðY � Xb� Skb
GE
k Þ;

where h ¼ ðbT; bGE
k ;r2ÞT. Then

olnLðhÞ
ob

¼ 1
r2 XT Y � Xb� Skb

GE
k

� �
;

olnLðhÞ
obGE

k

¼ 1
r2 Sk

T Y � Xb� Skb
GE
k

� �
;

olnLðhÞ
or2 ¼ � n

2r2 þ
1

2r4 ðY � Xb� Skb
GE
k Þ

TðY � Xb� Skb
GE
k Þ;

o2lnLðhÞ
obobT ¼ �

1
r2 XTX;

o2lnLðhÞ
obobGE

k

¼ � 1
r2 XTSk;

o2lnLðhÞ
obor2 ¼ �

1
r4 XTðY � Xb� Skb

GE
k Þ;

o2lnLðhÞ
oðbGE

k Þ
2 ¼ �

1
r2 Sk

TSk;
o2lnLðhÞ
obGE

k obT ¼ �
1
r2 Sk

TX;

o2lnLðhÞ
obGE

k or2
¼ � 1

r4 Sk
T Y � Xb� Skb

GE
k

� �
;

o2lnLðhÞ
oðr2Þ2

¼ n
2r4 �

1
r6 ðY � Xb� Skb

GE
k Þ

TðY � Xb� Skb
GE
k Þ;

o2lnLðhÞ
or2obT ¼ �

1
r4 XT Y � Xb� Skb

GE
k

� �
;

o2lnLðhÞ
or2obGE

k

¼ � 1
r4 Sk

T Y � Xb� Skb
GE
k

� �
:

Let b̂ and r̂2 denote the maximum likelihood estimates (MLEs) of
b and r2 under null hypothesis H0 : bGE

k ¼ 0. The log-likelihood
under H0 is given by

lnLðh0Þ ¼ �
n
2

lnð2pr2Þ � 1
2r2 ðY � XbÞTðY � XbÞ;

where h0 ¼ ðb;r2ÞT. Let

olnLðh0Þ
ob

¼ 1
r2 XTðY � XbÞ ¼ 0;

olnLðh0Þ
or2 ¼ � n

2r2 þ
1

2r4 ðY � XbÞTðY � XbÞ ¼ 0;

then we can obtain

b̂¼ ðXTXÞ�1XTY; r̂2 ¼ 1
n

YT In � Vð ÞY;

where V ¼ XðXTXÞ�1XT, and In is an n�n identify matrix. Based on
the above computation, then the score matrix and information
matrix can be obtained as follows,

H ¼ olnLðhÞ
oh

jb¼b̂;bGE
k ¼0;r2¼r̂2 ¼ 1

r̂2 ð0
T;W; 0ÞT;

and

I ¼ �E
o2lnðhÞ
ohohT jb¼b̂;bGE

k ¼0;r2¼r̂2 ¼ 1

r̂2

XTX XTSk 0

Sk
TX Sk

TSk
W

r̂2

0T W

r̂2

n

2r̂2

2
66664

3
77775
;

respectively. Therefore, the score test statistic is given by

Qk ¼ HTI�1H ¼ 1

r̂2

W2

U
;

where W ¼ Sk
TðIn � VÞY, and U ¼ Sk

TðIn � VÞSk.
After performing the above score test for each interaction effect

bGE
k ðk ¼ 1; 2; . . . ;MÞ, we can obtain the corresponding P-value

of each test. Let P1; P2; . . . ; PM respectively represent the P-values
of testing for the associations of G�E interaction terms with the
trait value. Next, we give stage two of the proposed strategy, so that
the G�E interactions in the given region can be tested comprehen-
sively.

Stage two: Integrate the P-values of each site and
construct a test statistic for a certain region
In the second stage, based on the ADA method, we give the statis-
tic of the combination of P-values to test the G�E interactions of a
certain region. In detail, we first assign an attribute to each variant
site. For each site, we calculate the sample covariance of the geno-
types and the trait values of all subjects. If the covariance is greater
than 0, we name the site as “deleterious-inclined variant site.” To
more effectively guard against the noise caused by neutral variants
(Zaykin et al. 2002; Yang and Chen 2011), following the idea in Lin
et al. (2014), we then consider J candidate truncation thresholds
q1; q2; . . . ; qJ. For the jth candidate truncation threshold, the signifi-
cance score of the deleterious-inclined sites is calculated by

Sþj ¼ �
XM

k¼1

nk � Ifpk <qjg � xk � logpk; j ¼ 1; . . . ; J; (4)

where nk is an indicator variable coded as 1 if the kth site is
deleterious-inclined and 0 otherwise, Ifpk < qjg is an indicator vari-
able coded as 1 if pk < qj and 0 otherwise, and xk is a weight
given to the kth site. In this study, we use the weight xk ¼
BetaðMAFk; 1; 25Þ that proposed by Ionita-Laza et al. (2013).
Similarly, when the sample covariance between the genotypes of
a variant site and the trait values of all individuals is less than 0,
we name the site as “protective-inclined variant site.” For the jth
candidate truncation threshold, the significance score of the
protective-inclined sites is calculated by

S�j ¼ �
XM

k¼1

uk � Ifpk <qjg � xk � logpk; j ¼ 1; 2; . . . ; J; (5)

where uk is an indicator variable coded as 1 if the kth site is
protective-inclined and 0 otherwise, Ifpk < qjg is an indicator vari-
able coded as 1 if pk < qj and 0 otherwise. By Equations (4) and
(5), we obtain the significance score of deleterious-inclined

J. Zhou et al. | 3



variants Sþj and protective-inclined variants S�j , respectively, for

each candidate truncation threshold. Following the ADA method

(Lin et al. 2014), we specify J¼ 11 equally spaced candidate trunca-

tion thresholds, that is, ðq1; . . . ; qJÞ ¼ ð0:10; 0:11; . . . ; 0:20Þ. Then

the test statistic regardless of the effect directions (deleterious or

protective) is Sj ¼maxðSþj ; S�j Þ; j ¼ 1; 2; . . . ; J.
In order to obtain the P-value of the observed statistic Sj ¼

maxðSþj ; S
�
j Þ for each j ðj ¼ 1; . . . ; JÞ, following the method in Lin et al.

(2014), we first conduct B permutations since the distribution of the

statistic Sj is cannot be obtained directly. For the rth permutation

ð1 � r � BÞ, we randomly shuffle the trait values without changing

the genotypes of each individual. In this way, we can get a new set of

permutation samples, and then we can obtain the value of the per-

muted statistic SðrÞj ¼maxðSþj ðrÞ; S
�
j ðrÞÞ; r ¼ 1; 2; . . . ;B.

By comparing each SðrÞj ðr ¼ 1; 2; . . . ;BÞ with Sj among

the B permutations, we can further estimate the P-value p�j
of Sj ðj ¼ 1; 2; . . . ; JÞ with the corresponding frequency. The

final statistic is the minimum P-value among p�j across the J

candidate truncation thresholds for the observed samples,

i.e.,T ¼minfp�1; p�2; . . . ; p�J g. Second, in a similarly way of permuta-

tion by comparing TðrÞ ðr ¼ 1; . . . ;BÞ with T, we can obtain the

“adjusted P-value” pT ¼

PB
r¼1

IðTðrÞ �TÞþ1

Bþ1 for statistic T (Lin et al. 2014;

Wang et al. 2018).
The proposed strategy in this study is referred to as “iSADA,”

since we first use the score statistic to test the associations be-

tween trait value and the interaction terms of genes and environ-

ment and obtain the original P-values, and then, based on the

idea of the ADA method, we further construct a comprehensive

test statistic via the P-values of the preliminary test in the first

stage. By the newly proposed strategy, we can effectively exclude

the impact of neutral variants in a given genome region and com-

prehensively test the interactions between genes (or variants)

and environment in the given region.

Simulation studies using linear model
In this section, we conduct numerical studies to evaluate the per-

formance of the proposed iSADA for detecting G�E interactions

of rare variants. The R code for implementing our method and

the user’s manual of it can be found in Supplementary materials.

In our simulation design, we simulate M ¼ ð20; 100Þ rare variants

of 500 subjects and generate quantitative trait values. The minor

allele frequency (MAF) of the kth rare variant site is randomly

generated by MAFk � Uð0:005; 0:05Þ; k ¼ 1; 2; . . . ;M, and then the

genotype can be generated under the assumption of Hardy-

Weinberg equilibrium (HWE). The environmental factor is

assigned to be binary variable that take values �1 and 1 with

probability 0.3 and 0.7, respectively. The quantitative trait value

Y is generated by the full model (1), with a residual variable of

standard normal distribution. We compared the performance of

our proposed method with five other methods: iSKAT (Lin et al.

2016), iSKAT0 (bGE
k s are assumed to be independent in the SKAT

method with q¼ 0), iSKAT1 (bGE
k s are perfectly correlated in the

SKAT method with q¼ 1), MixGE-f and MixGE-t (Wang et al. 2017).
In our simulation, the P-value of the iSADA is obtained with

300 permutations, and the type I error rates and powers are eval-

uated by 1000 replications at the nominal significance level a of

0.01 and 0.05, respectively.
For M¼ 20 loci, for parameters bE and bG we give three settings

when calculating the estimated type I error rates or powers.

Simulation settings for the case of 20 loci
Setting I: bE ¼ 0; bG ¼ 0;
Setting II: bE ¼ 0; bG ¼ 0:03� ð1; 1; 1; 0;�1; 1; 0; 1; 0;�1; 0; 1; 1; 0;

�1; 1; 1; 1; 1; 1ÞT;
Setting III: bE ¼ 0:01; bG ¼ 0:01� ð1; 1; 1; 0;�1; 1; 0; 1; 0;�1; 0; 1; 1;

0;�1; 1; 1; 1; 1; 1ÞT.
For M¼ 100 loci, for parameters bE and bG we also give three

settings when calculating the estimated type I error rates or powers.

Simulation settings for the case of 100 loci
Setting I: bE ¼ 0; bG ¼ 0;
Setting II: bE ¼ 0; bG ¼ 0:03� bG

0 ;
Setting III: bE ¼ 0:01; bG ¼ 0:01� bG

0 ;

where elements of bG
0 include 25 zeros, 60 ones, and 15 (-one)s.

The true value of parameter vector bGE ¼ ðbGE
1 ; bGE

2 ; . . . ; bGE
M Þ

T is zero

vector under H0. Under H1, we design different cases of G�E interac-

tions and the values of bGE can be found below Tables 1–4, where

the proportions of negative, neutral and positive interactions are 10,

55, and 35% in Tables 1 and 3; and the proportions of neutral and

positive interactions are 55, and 45% in Tables 2 and 4.

Simulation studies using generalized linear model
In this section, in order to further evaluate the performance ro-

bustness of the proposed method, we conduct simulation studies

under situation of model misspecification. The quantitative trait

value Y is randomly generated by the following GLM model

Table 1 Simulation results of powers for quantitative trait with
G�E effects of opposite directions (20 loci)

Sig. level Methoda Setting I Setting II Setting III

0.01 iSKAT 0.007 0.007 0.007
iSKAT0 0.008 0.008 0.008
iSKAT1 0.006 0.006 0.006
MixGE-f 0.171 0.251 0.177
MixGE-t 0.141 0.197 0.129
iSADA 0.238 0.305 0.291

0.05 iSKAT 0.046 0.047 0.047
iSKAT0 0.049 0.049 0.048
iSKAT1 0.056 0.057 0.055
MixGE-f 0.379 0.508 0.393
MixGE-t 0.330 0.442 0.321
iSADA 0.449 0.513 0.508

aNote: bGE¼0.2�(1, 0, 1, 0, �1, 1, 0, 1, 0, �1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0)T.

Table 2 Simulation results of powers for quantitative trait with
G�E effects of same directions (20 loci)

Sig. level Methoda Setting I Setting II Setting III

0.01 iSKAT 0.009 0.010 0.009
iSKAT0 0.007 0.007 0.007
iSKAT1 0.004 0.005 0.006
MixGE-f 0.322 0.237 0.248
MixGE-t 0.246 0.188 0.189
iSADA 0.485 0.571 0.552

0.05 iSKAT 0.048 0.047 0.051
iSKAT0 0.052 0.053 0.053
iSKAT1 0.051 0.005 0.051
MixGE-f 0.551 0.455 0.503
MixGE-t 0.495 0.387 0.429
iSADA 0.709 0.764 0.762

aNote: bGE¼0.2�(1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0)T.
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gðliÞ ¼ exp�fG
T
i bGþEib

EþST
i bGEg;

where the settings of parameters bG; bE, and bGE are same as the
previous simulation; The environmental factor is still the binary
variable and the residual variable follows a standard normal dis-
tribution.

We still use the six methods iSADA, iSKAT, iSKAT0, iSKAT1,
MixGE-f, and MixGE-t to analyze the simulation data, and the
whole process is replicated for 1000 times to estimate type I error
rates and powers. The part of simulation results were summa-
rized in Supplementary Tables S1–S6 of the Supplementary
Tables of this study, because of the contextual restriction.

Statistical analysis of GAW17 data set
In this section, we apply the proposed iSADA method to analyze
the data set of 697 independent subjects of the Genetic Analysis
Workshop 17 (GAW17), which was in fact obtained from the se-
quence alignment files supplied by the 1000 Genomes Project

(http://www.1000genomes.org). The GAW17 data set includes
genotypes of 24,487 autosomal markers (SNPs) assigned to 3205
genes, simulated affection status, quantitative traits or risk fac-
tors (Q1, Q2, and Q4), age, sex, and smoking status. The GAW17
has reported that trait Q1 was influenced by 9 genes and there
exist 1 G�E (smoking) interaction effect on trait Q1, where the
KDR gene on chromosome 4 has a significant interaction with
smoking (Almasy et al. 2011).

Here, we validated the feasibility of using the proposed iSADA
method to detect the gene�smoking interaction effect on Q1. We
selected the genetic data of chromosome 4 of 697 unrelated indi-
viduals in the GAW17 data, and mainly studied the 839 rare SNP
variants given in the data set, the MAFs of which are � 0.05.
Figure 1 shows the allele frequency distribution of the 839 rare
variant sites (see Figure 1). Figure 1A presents the scatter plot of
the allele frequencies in site order, and Figure 1B shows the histo-
gram of all these allele frequencies. For the 839 rare variant sites,
we chose every continuous 20 rare SNP sites to compose a testing
region and there are a total of 42 such regions (i.e., regions 1–20,
21–40,� � �, and 821–839). All sites of the reported KDR gene are
contained within the assigned regions of 161–180 and 181–200 in
this study (see Table 5 for the corresponding relationship be-
tween the original SNP codes with the new ones in this
analysis)(Almasy et al. 2011). Then the iSADA method, as well as
the other five methods (iSKAT, iSKAT0, iSKAT1, MixGE-f, and
MixGE-t) was used to detect the interaction effects between each
region of rare variants and smoking status on Q1. We listed all
significant interaction regions that were detected by the above
methods and the corresponding P-values in Table 6.

Results
Simulated data result for case of linear model
a. Evaluating type I error rates:

The results for the type I error rates are shown in Tables 7 and
8. For 1000 replicated samples, the confidence interval (CI) of

Table 4 Simulation results of powers for quantitative trait with
G�E effects of same directions (100 loci)

Sig. level Methoda Setting I Setting II Setting III

0.01 iSKAT 0.014 0.011 0.014
iSKAT0 0.015 0.010 0.015
iSKAT1 0.013 0.014 0.012
MixGE-f 0.954 0.940 0.939
MixGE-t 0.914 0.876 0.869
iSADA 1.000 1.000 1.000

0.05 iSKAT 0.071 0.067 0.071
iSKAT0 0.075 0.074 0.075
iSKAT1 0.049 0.056 0.048
MixGE-f 0.990 0.983 0.980
MixGE-t 0.981 0.967 0.967
iSADA 1.000 1.000 1.000

aNote: bGE¼0.2� bGE
0 , and bGE

0 includes 55 zeros and 45 ones.
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Figure 1 The MAFs of 839 rare SNP variants on chromosome 4. (A)
presents individual site’s MAF and (B) shows the histogram of all these
variants.

Table 5 The corresponding relationship between the original
SNP codes with the new ones in GAW17 data set analysis

Region SNPa

161–165 C4S1818 C4S1824 C4S183 C4S1830 C4S1831
166–170 C4S1834 C4S1837 C4S1838 C4S1839 C4S1842
171–175 C4S1843 C4S1847 C4S1859 C4S1861 C4S1868
176–180 C4S1872 C4S1873 C4S1874 C4S1877 C4S1879
181–185 C4S1881 C4S1884 C4S1887 C4S1889 C4S1890
186–190 C4S1892 C4S1893 C4S19 C4S1916 C4S1917
191–195 C4S1927 C4S1928 C4S1929 C4S193 C4S1936
196–200 C4S1938 C4S194 C4S197 C4S1996 C4S1997

aNote: SNPs in bold type are contained in the KDR gene.

Table 6 Summary results of the detected genome regions via 6
methods based on the GAW17 data set

P-valuea

iSKAT iSKAT0 iSKAT1 MixGE-f MixGE-t iSADA Region

0.042 0.360 0.025 0.018 0.037 0.006�� 121–140
1.000 0.816 1.000 0.367 0.545 0.029� 161–180
0.323 0.772 0.200 0.204 0.192 0.009�� 181–200
0.076 0.039 1.000 0.015 0.011 0.016� 221–240
0.044 0.109 0.027 0.306 0.407 0.405 421–440
0.097 0.054 0.196 0.010 0.011 0.395 541–560
0.064 0.035 0.182 0.045 0.034 0.312 581–600
0.044 0.290 0.027 0.388 0.545 0.049� 821–839

aNote: **: P-value <0.01; *: P-value <0.05.

Table 3 Simulation results of powers for quantitative trait with
G�E effects of opposite directions (100 loci)

Sig. level Methoda Setting I Setting II Setting III

0.01 iSKAT 0.011 0.011 0.011
iSKAT0 0.007 0.008 0.008
iSKAT1 0.010 0.011 0.010
MixGE-f 0.839 0.850 0.805
MixGE-t 0.685 0.754 0.638
iSADA 1.000 1.000 1.000

0.05 iSKAT 0.056 0.054 0.054
iSKAT0 0.055 0.052 0.055
iSKAT1 0.051 0.052 0.050
MixGE-f 0.943 0.948 0.929
MixGE-t 0.900 0.917 0.863
iSADA 1.000 1.000 1.000

aNote: bGE¼0.2� bGE
0 , and bGE

0 includes 55 zeros, 35 ones, and 10 (�1)s.
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type I error rate is ða� 2
ffiffiffiffiffiffiffiffiffiffiffi
að1�aÞ
1000

q
; aþ 2

ffiffiffiffiffiffiffiffiffiffiffi
að1�aÞ
1000

q
Þ, where a denotes

nominal significance level. So the CIs of type I error rates for sig-

nificance levels 0.01 and 0.05 are (0.0037, 0.0163) and (0.0363,

0.0637), respectively. When there are no main effects and envi-

ronmental effect (see Setting I of Tables 7 and 8), all methods can

control type I error rates well. We also evaluated the performance

of these G�E tests in the presence of genetic main effects. When

bG 6¼ 0 (see Setting II, Setting III of Tables 7 and 8), all the simula-

tion results of the estimated type I error rates are close to the

nominal significance levels. It can be found from the two tables

that all the estimated type I error rates are all located in their

own CIs. In addition, even if the number of variant sites increases

from 20 to 100, the type I error rates are also stable for all tests,

which shows that the type I error rates do not depend on the

number of variant sites. Therefore, these results indicate that all

the tests are valid ones when conducting test of G�E interac-

tions.
By comparing the type I error rates among Settings I–III, we

find for most of the methods that there is a small difference in

the estimated values, but the values in Setting II are a little bigger

than the corresponding ones in Settings I and III, which means

that the main effect of genes (rare variants) have a certain impact

on the G�E interaction testing.
b. Power comparison:
The simulated power results of testing G�E interactions are

shown in Tables 1–4. First, in each panel of all the tables, it can

be clearly found that methods MixGE-f, MixGE-t, and iSADA are

more powerful than methods iSKAT, iSKAT0, and iSKAT1, since
the power values of the former are greater than those of the lat-
ter. The powers of the iSKAT and its related methods may further
improve, when the true G�E interaction effects increase with the
fixed sample size, or increasing the sample size with the fixed
G�E interaction effects. As expected, all the powers increase as
the significance level varies from 0.01 to 0.05. Among all these
methods, the proposed iSADA method is the most powerful in
each scenario.

Different settings of bE and bG have certain impacts on the
G�E interaction test of the iSADA method. In Tables 1 and 2, the
test powers in Setting II (bE¼0 and jbG

k j¼0.03) are higher than the
corresponding ones in Setting I (bE¼0 and jbG

k j¼0) and Setting III
(bE¼0.01 and jbG

k j¼0.01), which further validates that the main
effects of genes (rare variants) have more positive impact than
the main effect of environment variable when performing the
G�E interaction test by the iSADA method. The powers of the
other methods are affected by more factors besides parameters
bE and bG, however, their pattern is not apparent.

In the simulation, different proportions of positive and nega-
tive G�E interaction effects were designed, and the proportion of
neural variants was set as 55% for all scenarios. When the num-
ber of variant loci is 20, by comparing the corresponding power
values of Table 1 (opposite directions of interactions) and Table 2
(same direction of interactions), we find that the iSKAT and its re-
lated methods are less impacted by the proportions of positive
and negative G�E interaction effects; The powers of methods
MixGE-f and the MixGE-t increase with the proportion of positive
G�E interaction effect increasing in Settings I and III, but it shows
opposite trend in Setting II; For the iSADA method, the powers in
Table 2 are higher than the corresponding ones in Table 1, that is
to say, the iSADA method performs better when the directions of
G�E interaction effects are same. When the number of variant
loci is 100, by comparing the power results in Tables 3 and 4, we
find that the iSKAT and its related methods are still less impacted
by the proportion of G�E interaction effects. But methods MixGE-
f and the MixGE-t perform better when the G�E interaction
effects have the same direction. For both cases, the powers of the
iSADA method reach the maximum 1.

In addition, the number of variant loci also affects the test
powers of each method. Under the condition of same proportion
55% of neural G�E interaction effects, through comparing the
powers in Table 1 with those in Table 3, it is not difficult to find
that the testing regions with more variants correspond to higher
test powers. The same results hold when comparing the powers
in Table 2 with those in Table 4.

Simulated data result for case of generalized
linear model
The results are shown in Supplementary Tables. From
Supplementary Tables S1 and S2, it is not difficult to find that all
methods can control type I error rates, even if we are choosing a
new model to generate simulation data, which means all meth-
ods are still credible. From Supplementary Tables S3 and S6, we
find that the power results of other methods are close to those
obtained under simulation situations of linear model, but the
results of the MixGE-f and MixGE-t drop too much. The powers of
the iSADA decrease a little and the powers of the iSKAT and re-
lated methods get somewhat increase. Among all the methods,
the proposed iSADA method still performs best. These results
sufficiently show that the new method is less impacted by model
misspecification, and it is a robust and powerful method for test-
ing the G�E interaction effects.

Table 7 Simulation results of Type I error rates for quantitative
trait with binary environment (20 loci)

Sig. level Methoda Setting I Setting II Setting III

0.01 iSKAT 0.006 0.007 0.006
iSKAT0 0.008 0.008 0.008
iSKAT1 0.005 0.005 0.005
MixGE-f 0.008 0.013 0.016
MixGE-t 0.008 0.016 0.008
iSADA 0.011 0.015 0.011

0.05 iSKAT 0.045 0.045 0.044
iSKAT0 0.049 0.049 0.049
iSKAT1 0.048 0.048 0.048
MixGE-f 0.044 0.059 0.056
MixGE-t 0.038 0.053 0.060
iSADA 0.047 0.050 0.049

aNote: bGE¼0.

Table 8 Simulation results of Type I error rates for quantitative
trait with binary environment (100 loci)

Sig. level Methoda Setting I Setting II Setting III

0.01 iSKAT 0.006 0.006 0.007
iSKAT0 0.004 0.004 0.004
iSKAT1 0.009 0.009 0.010
MixGE-f 0.008 0.013 0.016
MixGE-t 0.009 0.009 0.008
iSADA 0.006 0.010 0.008

0.05 iSKAT 0.044 0.045 0.043
iSKAT0 0.032 0.034 0.031
iSKAT1 0.049 0.049 0.050
MixGE-f 0.036 0.038 0.043
MixGE-t 0.046 0.037 0.037
iSADA 0.052 0.061 0.053

aNote: bGE¼0.
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GAW17 data result
It can be found from the testing results in Table 6 that 8 significant
interaction regions are detected by these methods. The “*” behind
P-value means that the corresponding region was detected signifi-
cantly at nominal level 0.05, and the “**” means more significantly
at nominal level 0.01. The proposed iSADA method found 5 signifi-
cant interaction regions, and the other method found less than
our method. The iSADA method successfully detected the target
interaction regions of 161–180 and 181–200 that contains rare var-
iants of the KDR gene (C4S1861, C4S1873, C4S1874, C4S1877,
C4S1879, C4S1884, C4S1887, C4S1889, and C4S1890); However, the
other methods did not give a significant result. From this view, it
shows that the iSADA method performs better than the other
methods when detecting G�E interaction on a quantitative trait in
a certain genome region.

Besides the above two regions, the iSADA method also found
G�E interactions in the regions of 121–140, 221–240 and 821–839.
In fact, all the other methods except the iSKAT0 also found G�E
interaction in this region of 121–140. Methods iSKAT0, MixGE-f,
and MixGE-t also detected G�E interaction region of 221-240. And
methods iSKAT, iSKAT1 found G�E interaction region of 821–839.
Unfortunately, the regions of 121–140, 221–240, and 821–839 are
false positive ones, i.e., there is no true sites with G�E interac-
tions in these regions (Almasy et al. 2011).

Discussion
Increasing evidence shows that G�E interactions of rare variants
may play an important role in explaining the etiology of complex
disease (Shields and Harris 2000; Ramos and Olden 2008; Aschard
et al. 2012). In this study, we extend an existing method of adap-
tive combination of P-values (Lin et al. 2014), and design a novel
strategy (iSADA) to test the G�E interaction effects for rare var-
iants. Simulation studies show that the newly proposed method
in this study is powerful and robust in each scenario, and the
results of GAW17 data set analysis validate the application of the
iSADA method.

In the simulation part, we employ a linear model to model the
relationship between the trait value and the G�E interactions as
well as the other two terms. Meanwhile, we also use the GLM to
model the relationship between the trait value and those variables
in order to evaluate the impact of model misspecification to the
proposed iSADA method, which further verifies that the proposed
method has good robustness under different models. Besides, G�G
interaction terms can also be considered in the statistical model,
which will not affect the simulation results. We also analyze the
data set of GAW17, compared with the other 5 methods, the
iSADA method effectively detected the interaction effects of rare
variants and smoking status on quantitative trait Q1, which shows
that the iSADA method has better detecting ability.

Some recent studies have shown that most complex disorders
are potentially caused by both rare and common variants (Walsh

and King 2007; Stratton and Rahman 2008). Although we mainly

focus on detecting of G�E interactions for rare variants in this

study, in fact, our proposed method can also be extended and ap-

plied to test G�E interactions for common variants. When simul-

taneously considering rare variants and common variants in the

proposed method, one can properly adjust the weights in the sta-

tistics Sþj and S�j , and we suggest that the weights of common

variants are set asxk ¼ BetaðMAFk; 0:5; 0:5Þ, which was proposed

by Ionita-Laza et al. (2013). For the trait type, although we focus

on continuous traits in this study, our method can also be applied

to other traits, where the GLM can be used to fit the relationship

between the trait and G�E interaction terms. Besides, for stage

one of our method, it is feasible to use the Levene test statistic to

test the equality of variances under different genotypes for each

variant site, which equivalently tests the G�E interaction for that

site. But it should be noted that different local statistical model

needs to be considered in the part of theoretical analysis.
The proposed method also has some limitations. For example,

the running time of the iSADA method is a little longer than that

of the other methods. The computation of one simulated data

containing 500 subjects (considering 100 rare variant sites) takes

about 30 seconds on average in the Windows System with Intel

Core i5-3470 3.20 GHz processor and 4 GB memory, since more

permutations are used in the iSADA method. The computing

times of the iSADA method are shown in Table 9. For the same

data the other methods only take no more than 10 seconds. In ad-

dition, using Levene test in stage one may suffer a similar com-

puting time problem. Therefore, in the future we will conduct

studies to improve the running speed of the iSADA method.

Data availability
The simulated data can be generated by the R code which are

provided in the Supplementary material (Name: R code for iSADA

and User’s manual.zip). GAW17 data can be found at http://www.

gaworkshop.org.
Supplementary material is available at G3 online.
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100 Type I error rate 8.366 8.368 8.372
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aNote: sample size: 500; replication: 1000 times; permutation: 300 times.
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