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Exchange factors are enzymes that catalyze the exchange of GTP for GDP on guanine nucleotide binding proteins.
Progress in understanding the molecular basis of action and the cellular functions of these enzymes has largely come
from structural determinations (e.g., crystal structures) and studying effects on cells when expression levels of the
exchange factors are perturbed or mutated exchange factors are expressed. Proportionally little effort has been
expended on studying the kinetics of exchange; however, reaction rates are central to understanding enzymes. Here, we
discuss the importance of kinetic analysis of exchange factors for guanine nucleotide binding proteins, with a focus on
ADP-ribosylation factor (Arf) and heterotrimeric G proteins, for providing unique insights into molecular mechanisms and
regulation as well as how kinetic analyses are used to complement other approaches.

Introduction

Guanine nucleotide binding proteins, such
as heterotrimeric G and Ras superfamily
proteins control cellular responses and
behaviors. In this reasoned debate, we
focus of ADP-ribosylation factor (Arf)
family guanine nucleotide proteins1-4 and
the heterotrimeric G proteins.5,6 Six mam-
malian genes encode Arfs. They are
divided into three classes based on primary
structure. They regulate membrane traffic
and actin cytoskeleton remodeling and
work in two capacities. One function is to
restrict the localization of vesicle coat
proteins that are considered the machinery
of membrane traffic. The second is to
activate enzymes in signaling pathways,
such as PIP kinase and phospholipase D.
Arf6 has been reported to be necessary for
the invasion of mammary carcinomas.7-9

The heterotrimeric G proteins are com-
prised of a, β and c subunits, each arising
from one of a multigene family. Humans
express 20 a subunits, 5 β subunits and
12 c subunits. It is currently not known

how many combinations of aβc form
in differentiated cells. These complexes
mediate signaling necessary for diverse
processes ranging from cognition to che-
motaxis. Aberrant G-protein signaling has
been implicated in diseases ranging from
psychiatric disorders to cancer, with spe-
cific mutations associated with malignan-
cies such as thyroid cancer and melanoma.

Common to guanine nucleotide bind-
ing proteins is that their function depends
on controlled binding and hydrolysis of
GTP, which converts the proteins between
two states: protein bound to GTP (abbre-
viated here as GNGTP) and protein bound
to GDP (GNGDP). GNGTP is often
referred to as the active form. It binds to
other proteins to affect their function or
cellular distribution, e.g., adenylate cyclase
is activated when GTP is bound to the
a subunit of the heterotrimeric G protein
Gs,5 and proteins necessary for membrane
traffic are recruited to membranes by the
GTP-bound Arfs.10 For the typical guanine
nucleotide binding protein, nucleotide affin-
ities are high and nucleotide dissociation

rates and, consequently, spontaneous
nucleotide exchange, are slow compared
with the biological processes being
controlled. Therefore, the functions of
guanine nucleotide binding proteins crit-
ically depend on additional proteins called
guanine nucleotide exchange factors (GEFs)
for Ras superfamily proteins and G-protein-
coupled receptors (GPCRs) for heterotri-
meric G proteins, which catalyze the
exchange of GTP for GDP to generate
GNGTP. We will focus our discussion on
GEFs that function with Arf guanine
nucleotide binding proteins (Arf GEFs)
and GPCRs.

Exchange factors are important to
human health and for understanding
human disease. The 15 human Arf GEFs
outnumber the Arfs that they regulate.11,12

The encoded proteins all contain a sec7
domain comprised of 10 a helices with a
prominent hydrophobic groove, but are
otherwise structurally diverse.12-18 Brag2 is
an Arf GEF that has been reported to drive
invasion of some human cancers.7

Mutations in the Arf GEF Big2 have been
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found to underlie an autosomal micro-
cephaly and periventricular heterotopia
found in two families.19 The GPCRs far
outnumber the G proteins that they
control. Humans have over 800 genes for
GPCRs. All GPCRs contain a canonical
transmembrane helix bundle formed by 7
a-helical segments that is necessary for G-
protein activation. The diverse GPCR
structures are variously classified into six
groups based upon the extracellular N-
terminal domains, sequence diversity in
the transmembrane helices and the intra-
cellular C-terminal domains. About 90%
of GPCR genes fall into a family that bears
the name of its prototypical GPCR
rhodopsin, and this thoroughly investi-
gated GPCR has provided much of the
structural and molecular insight into the
mechanism of G-protein signaling.
Underscoring the importance of these
proteins, they are the targets for some
50% of the currently used therapeutics
and are a major focus in the pharmaceut-
ical industry’s efforts to develop future
therapeutic agents. Mutations in GPCRs
are responsible for inherited diseases
including disorders of calcium homeostasis
associated with mutations of the calcium-
sensing receptor20 and diabetes insipidus
arising from mutation of the V1 vasopres-
sin receptor.21 Mutant GPCRs are also
identified as oncogenes and are also found
in transforming retroviruses.22,23

Our understanding of the exchange
factors has mostly derived from two
approaches. First, crystal structures have
been used to define the molecular basis of
catalysis and have also provided informa-
tion about regulation for GEFs.14,16

Second, the effects of perturbing expres-
sion levels of the GEFs and GPCRs or
expressing mutant GEFs or GCPRs in
cells on enzymatic activity and cellular
functions have been examined (e.g., see
refs. 7 and 24–29). Still, the GEFs and
GPCRs, other than several studied in
solution,30-35 are relatively poorly under-
stood in terms of the molecular bases
for substrate specificity and regulatory
mechanisms. Although some in vitro
biochemistry has been reported, kinetic
approaches have been more limited to
date. They have been used to complement
crystallography and the study of the
proteins in cells. Although often seen as

a means of confirming conclusions from
other approaches, examination of kinetics
provides insights that are not accessible
by other approaches.

Structure/Function Analysis

Determination of crystal structures is a
powerful approach to learn about molecu-
lar mechanisms of catalysis and has
provided researchers with considerable
details of the chemistry involved. Based
upon contacts between the enzyme and
the substrate, predictions can be made
about binding, catalytic and regulatory
interactions. However, crystal structures
are frozen. Even if a series of crystal
structures can be identified, these repres-
ent single states among a continuum of
structures from which mechanisms are not
determined, only inferred. In addition,
although estimates of the energetics of the
different states can be made, the prediction
of energetic barriers and, therefore, reac-
tion rates, is not reliable at this time.
Finally, the structures are determined from
proteins under extreme conditions and
usually with modified proteins that favor
crystallization. Consequently, the binding
interfaces observed may not represent the
physiologically relevant structures. For
these reasons, kinetics analyses are neces-
sary to test conclusions based on crystal-
lographic structures.

The literature contains numerous exam-
ples of testing inferences based on struc-
tural studies. Typically, recombinant
proteins in which residues involved in
protein-protein binding or catalysis are
either mutated or deleted. The effect of
these changes on reaction rates are then
determined. Work on the ARF GEF Grp1
is one example in which the kinetic
analysis confirmed conclusions based on
the crystal structure.36 From the crystal
structure of Grp1, a polybasic motif and
the linker between the catalytic sec7
domain and the PH domain were pre-
dicted to be autoinhibitory, blocking
access of switch 1 and switch 2 of Arf to
the sec7 domain. Determination of the
relative kcat/Km ratio for a number of
mutants provided a robust test of the
hypothesis, supporting the conclusion.36

In another example, based on a crystal
structure of Big2, the loop after helix J of

the sec7 domain was predicted to interact
with Arf and consequently to facilitate
activity. The prediction was tested and
confirmed by determining the effect of
mutations in the loop using an in vitro
assay to determine reaction rates.27

The importance of kinetic analysis is
emphasized by those instances in which
predictions based on a crystal structure
were not substantiated. The requirements
of crystallization often necessitate mutant
and/or truncated protein constructs which
may not reflect the regulated properties of
the wild-type gene product. As an
example, the mechanism for Gq activation
of phospholipase Cβ (PLCβ) was proposed
to be the recruitment of the enzyme to the
inner leaflet of the plasma membrane
based upon the structure determined for
a truncated PLCβ.37,38 However, the
kinetic analysis of Gq activation and the
intrinsic kinetic properties of the full-
length PLCβ compared with a truncated
construct used for crystallization revealed
that that an additional sequence element
not in the crystallized PLCβ acts as an
auto-inhibitory constraint and that Gq
binding of that sequence released PLCβ
from inhibition as the mechanism of
activation.39

In many cases kinetic analysis can pro-
vide more structure/function information
than available by structural approaches
alone. As described above, one shortcom-
ing of crystallography is the proteins are
often truncated and modified to enable
crystallization. NMR determination of
structure is currently limited to proteins
under 50 kDa. Kinetic analysis requires
only that proteins be soluble and stable,
but usually at much lower concentrations
than those required for crystallography or
NMR, and thus, can be valuable for
examining structures, e.g., outside of the
Sec7 domain of Brag2, that may contrib-
ute to catalysis but have not been
visualized either by crystallography or
NMR. Recent kinetic analysis of Brag2
identified the linker between neighboring
sec7 and PH domains as a positive
contributor to the exchange reaction40

The model that is being tested by kinetic
strategies is that the linker binds directly to
two motifs within Arf.

The use of kinetics to examine struc-
tural requirements for activity is not
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dependent on having a structure deter-
mined by X-ray crystallography or NMR.
Based on analysis of primary sequences of
a class of proteins, a structural feature may
be hypothesized as important. This can be
easily tested by mutagenesis and kinetic
analysis. Because of the myriad challenges
to their crystallization, only a limited
number of crystal structures for GPCRs
are currently solved, many of them
involving the replacement of native struc-
ture with foreign sequences to enhance
crystallization. However, numerous studies
employing site-directed mutagenesis have
identified common critical residues essen-
tial for G-protein activation.

The use of kinetics to examine the
contribution of protein motifs outside that
which can be visualized by crystallography
or NMR extends to the substrate Arf.
Most crystal structures have used a
truncated form of Arf, [D17]Arf1, lacking
the critical N-terminal extension, and,
consequently, much of the kinetics that
have been done have used [D17]Arf1 and
equivalent Arf5 and Arf6 recombinant
proteins as substrates. Important informa-
tion about catalytic mechanism and regu-
lation may be missed, however, by using
the truncated Arfs. The deleted motif can
be considered an additional switch motif
as its conformation and position change
dramatically on switching between GDP
and GTP bound forms of Arf.41-43 Any
mechanism of GDP to GTP switching
has to account for these changes in the
N-terminal motif. Direct comparison
with full length N-myristoylated Arf1
(myrArf1) revealed that truncated Arf is
two orders of magnitude less efficient a
substrate than is myrArf1 for Brag240 and
some early evidence supported the idea
that the N-terminus of Arf interacts with
the exchange factor ARNO.44 These
results motivated studies that revealed the
N-terminus of Arf may contact an extra
catalytic motif within Brag2.40 Thus,
understanding the complete catalytic
mechanism and regulation will be facili-
tated by using full length myristoylated
Arf1 in kinetic studies.

A similar situation applies to the
heterotrimeric G proteins. The N-termini
of Ga proteins are post-translationally
modified with two distinct lipids—myr-
istate as an amide-linkage to an N-terminal

glycine and/or palmitate thio-esterified to
cysteines near the N-terminus. In addition
the C-termini of Gc of the Gβc dimer are
modified with thio-ether linked isopre-
noids followed by cleavage of the termin-
ating three amino acids and methylation of
the resulting C-terminal, prenylated
cysteine. To obtain crystals, the N-ter-
minus of native Gat and C-terminus of
native Gc1 were proteolytically cleaved,45

or recombinant Gai1 and Gβ1c2 were
expressed without the lipid modifications46

so that the native structures of these
terminal sequences remain unknown in
relation to GPCR contact. To date, a
single crystal structure has resolved the
isoprenoid (farnesyl) modification in con-
tact the retinal Gβc effector phosducin.47

It remains undetermined if the isoprenoid
of Gβc adopts a similar contact with
GPCRs. Further, interaction of Gai family
proteins with Gβc48,49 and GPCRs50

(Gutierrez and Northup, unpublished)
and the Gβc interaction with GPCRs51

are critically dependent upon the lipid
modifications. Since bacteria do not carry
out these post-translational modifications
natively and the G proteins expressed
under high-level expression promoters in
mammalian cells may be incompletely or
incorrectly modified, in vitro kinetic
analysis using G proteins with confirmed,
homogeneous lipid modification may be
necessary to clearly determine molecular
mechanisms in G protein regulation.

Examination of Mechanism
with Kinetics

Even if several crystal structures presum-
ably defining states of a reaction path
can be determined, the energy barriers
and, therefore, the rate of reaction and
particular paths are not defined by the
structures. The kinetic scheme labeled
“Model 1” in Figure 1, which is generally
accepted, is an allosteric competitive
mechanism and has been tested for some
Ras superfamily members.31,32,52 Exchange
factor binds to GNGDP, reducing the
affinity of the guanine nucleotide binding
protein for GDP (or GTP as the case
might be) by accelerating dissociation. A
nucleotide free guanine nucleotide binding
proteinNexchange factor complex is formed
(ENG in the schematic). GTP binds to

the guanine nucleotide pocket of the
proteins in complex, forming ENGNGTP.
GTP binding has been reported to be
accelerated by the exchange factor.35 The
complex ENGNGTP dissociates to form free
E and GNGTP.

An alternative mechanism, the GTP/
GDP displacement model, was proposed
in which a quaternary intermediate is
required for exchange (see Model 2 in
Fig. 1). In this model, the guanine
nucleotide binding proteins with GDP
(GNGDP) binds to the exchange factor (E),

Figure 1. Schemes for three possible kinetic
mechanisms. E, GEF; G, empty guanine
nucleotide binding protein; GNGTP, guanine
nucleotide binding protein with bound GTP;
GNGDP, guanine nucleotide binding protein
with bound GDP. Model 1: competitive
displacement with dissociation dependent on
GTP binding. In this reaction scheme, GNGDP
binds to exchange factor, resulting in the
release of GDP. Empty G has a higher affinity
for the exchange factor than either GNGDP or
GNGTP, and remains associated until GTP
binds. GNGTP, with a lower affinity than G for
the exchange factor, dissociates. Model 2:
GTP/GDP displacement. In this scheme, GTP
binds to the ENGNGDP complex and subse-
quently displaces GDP. The ENGNGTP complex
then dissociates into free E and GNGTP. Model
3: competitive displacement with dissociation
of empty G. In this variation of reaction
scheme 1, empty G has a low affinity for the
exchange factor and can be considered a
product of the reaction. GTP binds to G while
free in solution to form GNGTP.
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forming the ternary complex of ENGNGDP.
GTP then binds forming the quaternary
complex GTPNENGNGDP. GTP then dis-
places GDP, with the latter leaving the
complex, to form ENGNGTP, which sub-
sequently dissociates into E and GNGTP. A
similar model has often implicitly been
implied for GPCR-Ga activation based
upon the enhancement observed upon
addition of GDP for GPCR-catalyzed
GTP binding to membrane fractions.
The GTP/GDP displacement mechanism
was conclusively excluded for the Ras
exchange factor Cdc25 by evaluating the
kinetics of GDP dissociation: the rate
constant for GDP release was found to be
insensitive to the concentration of GTP
under single turnover conditions.53

Although the competitive allosterism
mechanism as drawn for Model 1 is
generally accepted, this represents a subset
of an equilibrium system that includes free
empty guanine nucleotide binding protein
(G) (i.e., not in complex with the
exchange factor or nucleotide). Another
subset of equilibria within the competive
allosteric binding model could be consid-
ered a variation of the mechanism, which
is schematically represented in Model 3 of
Figure 1. In this variation, nucleotide free
guanine nucleotide binding proteins can
dissociate and bind to GTP, similar to the
mechanism for ATP exchange seen for
motor proteins.54 Thus, Models 1 and 3
represent two extreme cases of a single
equilibrium system, one in which the
affinity of empty G for E is much higher
than the affinity of GNGXP for E (Model
1) and the other in which the affinity of G
and GNGTP for E is similar. GPCRs
would be of particular interest to test since
nucleotide exchange on heterotrimeric G
proteins is linked to subunit dissociation,
which influences the equilibria and hence
kinetic mechanism. As far as we are aware,
tests to discriminate between the mechan-
isms for GPCRs have yet to be performed.

More Ras superfamily proteins should
also be tested, especially from the practical
consideration of experimental design.
Indeed, the mutation introduced in the
P-loop to make the presumed dominant
negative (T or S to N) is thought to work
by sequestration of Arf GEFs. This
dominant negative effect requires the
exchange factor function as described in

the scheme in Model 1, i.e., that the
affinity of G for E is much greater than the
affinity of GNGTP for E. Thus, G with the
P-loop mutation does not efficiently bind
nucleotide, and dissociates slowly from E,
preventing E to catalyze exchange for
endogenous G. If the difference between
the affinities is not great, the extreme case
being the exchange factor functioning by
the kinetic mechanism described in Model
3, this mutant guanine nucleotide binding
protein would not function as a dominant
negative. Other factors independent of the
kinetic mechanism are also important for
the function of the P-loop mutant as a
dominant negative, such as relative expres-
sion levels and the stability of the protein.
In the case of Rap1, the mutation did not
result in a dominant negative using C3G
as an exchange factor.55 Distinguishing
among the models requires the determina-
tion of the dependence of reaction rates on
protein and nucleotide concentrations,
thus the importance of kinetics for
understanding molecular mechanism of
exchange factors. The kinetic studies can
also help assess the value of a P-loop
mutant as a dominant negative.

Biological Function:
Relating Enzymatic Activity

to Biological Effects

Establishing kinetic constants is central to
understanding the biological function of
the GEFs. The structural determinations
for the molecular mechanisms involved in
the reaction and the energetics to under-
stand binding and chemical reactions are
important, but the biologically relevant
activity is the control of the rate of the
reaction. The Km should be reasonable
given the estimated concentrations of
proteins in the cell. Similarly, the rate of
reaction should be at least as fast as the
biological process putatively controlled by
the enzyme. Differences among hetero-
trimeric G proteins interactions with
GPCRs illustrate the significance of the
kinetics to biological processes. While the
heterotrimeric G-proteins share consid-
erable homology of both structure and
mechanism, their biological roles have
dictated the evolution of significant quant-
itative differences in the kinetics of their
activation/de-activation. The Gai1 and

Gat gene products, while both members
of the ai gene family, display about two
orders of magnitude difference in rates of
spontaneous GDP-dissociation (i.e., not
catalyzed by GPCR) with ai1 . . at,
while the GDP-dissociation rate from at
catalyzed by rhodopsin greatly exceeds that
measured for GPCR-ai1. In this case, the
visual response of a vertebrate rod cell
which can detect single photons under
conditions of full dark adaptation dictates
a near zero “basal” activity of the signaling
cascade in the absence of rhodopsin
activation and a robust exchange rate on
photon activation of rhodopsin.

If the kinetics of guanine nucleotide
exchange in vitro are slower than the rate of
the biological processes that they control
then several possibilities exist: (1) an
enzyme is inactive due to misfolding of
the recombinant protein, (2) conditions are
not optimal for activity, e.g., need for an
activator or (3) the GEF does not control
the process in question. Misfolding can be
excluded by comparing substrate saturation
kinetics to single turnover kinetics. If the
two types of experiments yield similar
parameter estimates, then the GEF is a
single active population and possibilities 2
and 3 should be considered. GEFs may be
activated either by a covalent modification
or by interaction with a protein or small
molecule. Possibilities 2 and 3 have
important ramifications for design of
experiments in cells, e.g., expression of the
GEF from a plasmid. If the activation is
through binding to a protein, it is plausible
that the activator will be titrated and most
of the GEF expressed will be relatively
inactive. Although some activity may be
observed, there are a number of artifacts
associated with partially inactive proteins;
one artifact is related to determining
substrate specificity.

Kinetic experiments are ideal for deter-
mining substrate specificity and, impor-
tantly, for determining if appropriate
experiments, given available reagents and
knowledge, can be designed to determine
substrate specificity in vitro and in vivo.
Assuming completely myristoylated Arf
proteins are available and the GEF is
active, the Arfs can be directly compared
with determination of kinetic parameters;
however, if the GEF has low activity, the
results should be interpreted cautiously.
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Work on GTPase-activating protein for
Arfs (ArfGAPs) illustrates the potential
pitfalls of interpreting the results of
experiments with enzymes of low activ-
ity.56,57 In the case of the ArfGAPs, ASAP1
and AGAP1, the full length proteins are
relatively inactive. An autoinhibitory motif
in ASAP1 has been identified. Neither
ASAP1 nor AGAP1, in their inactive
forms, distinguish between Arf1 and Arf6
as substrates. In contrast, in active form,
both GAPs use Arf1 30- to 200-fold more
efficiently than Arf6. Perhaps analogously,
examination of the exchange factor Brag2
revealed both smaller than expected cata-
lytic power and lack of Arf specificity.40

Without knowing the means to activate
the GEF, simply expressing the protein in
mammalian cells may not resolve the issue
of specificity. Brag2 overexpressed in HeLa
cells had the same lack of specificity (Jian
and Randazzo, unpublished), as was
observed with purified protein. Although
the promiscuity of Brag2 cannot be
excluded at this time, further work is
needed to assess substrate specificity.

Realizing the Power of Kinetic
Analysis: Clean Reagents,

Titrations and Time

The power of in vitro analysis is realized by
including (1) proper quantification and
validation of reagents, (2) titrations and
(3) time courses, which is difficult or
impossible to do with cell-based assays. Arf
concentrations can be determined by
titrating active sites. Comparisons of
substrate titrations and single turnover
results can provide an assessment of the
quality of the GEF. The rigor prevents

pursuit of artifacts in in vitro analysis and
can raise concerns about artifacts that may
be observed using cell-based assays. There
are several examples in the GPCR literat-
ure. One approach often utilized to
investigate GPCR-G-protein selectivity is
the co-transfection of GPCR and Ga
constructs designed to re-direct the signal-
ing to cellular calcium mobilization, which
can readily be detected by fluorescent dyes.
While this strategy has succeeded power-
fully in identifying activating ligands for
“orphan” GPCRs it has often misreported
the G-protein selectivity. Initial studies for
GPCRs linking to Gai signaling con-
cluded that the receptor-selective sequence
of a G-protein was limited to the
C-terminal four amino acid residues.58

However, studies with T2R bitter taste
receptors seem to identify a significantly
larger region of the carboxyl terminus of
Gustducin a involved in taste signaling.59

In vitro examination of this60 and a recent
crystal structure of the β2AR-Gs complex
identify a significantly greater surface of
interaction including contributions of
residues from the C-terminal 50 amino
acids and the N-terminal a helix of Gas61

(Gutierrez and Northup, unpublished).
Lack of quantification and/or character-

ization of reagents can provide misleading
results. For example, because of conveni-
ence, use of epitope tags and kits is
widespread. Unfortunately the tags often
affect the proteins to which they are fused.
Glutathione S-transferase (GST) has a large
effect on the ability of Arf to bind to GDP
and GTP and both GST and green
fluorescent protein have large effects on
interaction with the exchange factor
ARNO.62 Truncation of Arf also has a large

effect on interaction with ARNO and Brag2
as described above. These reagents would
not be appropriate for assessing Arf specifi-
city for the reasons described in the
discussion above about determining Arf
specificity with an inactive GEF. The
quality of the GEF is equally important.
We recognize that sometimes the use of
truncated or modified proteins is difficult to
avoid and, despite the shortcomings of these
reagents, often does provide valuable
insights into the function of the exchange
factors. The opportunity for insights is
maximized by carrying out substrate titra-
tions to determine Km and Vmax and, where
possible, single turnover studies to deter-
mine kcat. The effect of modifiers, compar-
ison to other exchange factors and
limitations of the experiments are most
robustly assessed by expressing activity as
the ratio of kcat/Km.

Conclusions

Many GPCRs and some ArfGEFs (e.g.,
Brag2) are GEFs that represent important
target for the pharmaceutical industry.
These proteins are enzymes and as
enzymes, their function is related to
controlling reaction rates. Consequently,
studies aimed at understanding of the
molecular basis of the activity and bio-
logical function must include kinetic
analyses.
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