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Abstract
Background: Optimization theory has been applied to complex biological systems to interrogate
network properties and develop and refine metabolic engineering strategies. For example, methods
are emerging to engineer cells to optimally produce byproducts of commercial value, such as
bioethanol, as well as molecular compounds for disease therapy. Flux balance analysis (FBA) is an
optimization framework that aids in this interrogation by generating predictions of optimal flux
distributions in cellular networks. Critical features of FBA are the definition of a biologically
relevant objective function (e.g., maximizing the rate of synthesis of biomass, a unit of measurement
of cellular growth) and the subsequent application of linear programming (LP) to identify fluxes
through a reaction network. Despite the success of FBA, a central remaining challenge is the
definition of a network objective with biological meaning.

Results: We present a novel method called Biological Objective Solution Search (BOSS)
for the inference of an objective function of a biological system from its underlying network
stoichiometry as well as experimentally-measured state variables. Specifically, BOSS identifies a
system objective by defining a putative stoichiometric "objective reaction," adding this reaction to
the existing set of stoichiometric constraints arising from known interactions within a network, and
maximizing the putative objective reaction via LP, all the while minimizing the difference between
the resultant in silico flux distribution and available experimental (e.g., isotopomer) flux data. This
new approach allows for discovery of objectives with previously unknown stoichiometry, thus
extending the biological relevance from earlier methods. We verify our approach on the well-
characterized central metabolic network of Saccharomyces cerevisiae.

Conclusion: We illustrate how BOSS offers insight into the functional organization of
biochemical networks, facilitating the interrogation of cellular design principles and development of
cellular engineering applications. Furthermore, we describe how growth is the best-fit objective
function for the yeast metabolic network given experimentally-measured fluxes.
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Background
Systems-based approaches coupled with experimental
data have facilitated greater understanding of large-scale
biological systems [1,2]. For example, optimization pro-
cedures have recently been used to characterize systemic
properties in biology, including phenotypic properties
like growth rates and effects of gene knockouts [3-7]. One
quantitative measure of a biological phenotype is the set
of fluxes through all reactions within a biochemical net-
work [8]. Specifically, flux balance analysis (FBA) is a con-
straints-based approach that calculates steady-state flux
distributions [9-11].

FBA has traditionally been based on the premise that
prokaryotes such as Escherichia coli have maximized their
growth performance as a response to selective pressure
[12]. Consequently, a common objective function in FBA
of metabolic networks is the maximization of the rate of
synthesis of biomass, a unit of measurement of cellular
growth. However, as other types of networks and higher-
order systems are interrogated, other objectives may be
more accurate in predicting phenotypes. For example,
other objective functions that have been previously con-
sidered in FBA include optimization of energy production
or consumption [13] and byproduct synthesis [14]. By
inferring objective functions of biological systems, cellu-
lar design principles may be studied and systems may be
exploited for engineering of metabolic byproducts of
commercial or medical value [15-20].

In silico frameworks for determining a most-likely objec-
tive function have previously been proposed. One such
tool, named ObjFind, attempts to identify weightings,
termed coefficients of importance (CoIs), on reaction
fluxes within a network while minimizing the difference
between the resultant flux distribution and known exper-
imental fluxes [3]. In the ObjFind framework, a high CoI
indicates a reaction that is more likely a component of the
cellular objective function, given available experimental
fluxes. However, ObjFind is unable to a priori define
objectives, since in FBA the objective function is defined
as a single reaction within the system (and represented
within the stoichiometric matrix) and not a weighting on
multiple reactions (i.e., a set of CoIs). For example, if the
true objective reaction has not been experimentally char-
acterized and is not included within the network recon-
struction, ObjFind is unable to assign the highest CoI to
it and instead chooses an alternate (and consequently
suboptimal) reaction or set of reactions as constituting the
objective function. Two recent efforts have further
attempted to identify the most probable objective of a
metabolic system from a set of possible objectives, in one
case via a Bayesian-based probability ranking [21] and in
the other case using an Euclidean metric [20]. However,
like ObjFind, each of these methods requires that the sto-

ichiometric network reconstruction include the true
objective function as an existing reaction in order to yield
meaningful predictions.

We present a novel framework, Biological Objective
Solution Search (BOSS), for identifying objective func-
tions of biological systems based on the stoichiometry of
the underlying biochemical network(s) and known exper-
imental flux data. In this framework, the biological objec-
tive function is a de novo reaction (column) that is added
to the matrix S representing the stoichiometry of the
underlying system. Subsequently, the flux through this
particular objective reaction is optimized (maximized) as
the objective function using the standard FBA approach.
Notably, the objective reaction is not confined to be one
of a subset of existing reactions, but rather is allowed to
take on any form (e.g., an existing reaction, a combination
of existing reactions, or a previously uncharacterized reac-
tion) as specified by an optimization procedure. It is,
however, confined to be one linear stoichiometric reaction
whose coefficients are determined by the framework.

To illustrate this novelty of BOSS over existing methods
(including the three described above), consider the simple
system drawn in Figure 1(a). This system is comprised of
three components and five reactions. The objective reac-
tion is denoted as robj. Assume that a network reconstruc-
tion based on available literature includes all three
components and four of the five reactions but excludes
the actual system objective, robj, governing the resultant
flux distribution. As shown in Figure 1(b), analyzing the
network with an approach like ObjFind generates a rank-
ordered list of the reactions that best describe the objec-
tive function. However, since robj is unknown, the calcu-
lated objective will be some combination of weightings
on r1 through r4, and the approach will fundamentally fail
to capture the actual objective of the system robj. However,
as shown in Figure 1(c), by generating a de novo stoichio-
metric reaction as its objective function, BOSS would in
theory be able to recapitulate the actual system objective.

We applied BOSS to the previously reconstructed S. cere-
visiae central metabolic network [22,23] (see Additional
file 1 for details of the network) to evaluate which objec-
tive reaction it infers for that system given a set of iso-
topomer flux data [23,24]. We compared the BOSS-
derived objective reaction to the hypothesized system
objective of precursor biomass synthesis. We considered
two cases, one in which the hypothesized objective reac-
tion (i.e., precursor biomass synthesis) was excluded from
the system and another in which it was included within
the set of known stoichiometric reactions. We further
assessed how BOSS handles noise in experimental flux
distributions. Finally, we compared our results to a nega-
tive control in which flux distributions comprised of ran-
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domly generated values were inputted into BOSS.
Ultimately, we illustrate how BOSS extends existing
objective function identification tools by inferring the
objective reaction of a biochemical network de novo from
internal state measurements, and how this tool therefore
facilitates future study of cellular design principles and
cellular engineering approaches.

Methods
The framework that we present for identifying a putative
objective function for a given biological system consti-
tutes a single-level optimization problem. Specifically,
BOSS integrates network stoichiometry, physico-chemi-
cal constraints such as reaction bounds, and experimental
flux data to generate a novel stoichiometric reaction corre-
sponding to the most likely objective function of the sys-
tem. The framework and implementation strategies are
described here.

Flux Balance Analysis (FBA)
A key feature in the application of FBA is the optimization
of an objective function subject to fundamental con-
straints on cellular function [9,11,25]. FBA requires a sto-
ichiometric network reconstruction, usually represented
as a stoichiometric matrix, S, in which components are
delineated as rows, component interactions as columns,
and stoichiometric relationships as coefficients (see Fig-
ure 1 for examples of biochemical networks and the cor-
responding S matrices). This reconstruction, coupled with
reaction fluxes, comprises the principal constraint in FBA,
i.e., at steady-state, for each component, the sum of the
stoichiometric coefficients multiplied by the correspond-
ing reaction fluxes must equal zero to ensure that mass is
balanced within the system.

Commonly used objective functions (i.e., stoichiometric
objectives or "objective reactions") in FBA of metabolic
networks include biomass production [26,27], energy
production or consumption [13], and byproduct produc-
tion [14]. The objective function used in FBA is assumed
to be linear by a first-order approximation, since this form
simplifies computation and reduces the number of
parameters to be defined in the objective experimentally.
Changes in a linear objective under varying growth condi-
tions have been observed [12].

FBA-predicted flux distributions have displayed agree-
ment with experimentally-measured flux data in some
cases [12]. Furthermore, FBA has yielded insights into
optimal targets for metabolic engineering [15] and adap-
tive evolution of E. coli strains [28], among other applica-
tions [29]. Additionally, FBA has successfully predicted
metabolic phenotypes of cellular systems by hypothesiz-
ing biomass production as the objective function
[7,9,10,12,19,27,30-36]. However, other objectives may
be equally successful at predicting phenotypes for particu-
lar conditions [20]. Furthermore, a metabolic objective
may change at different stages of an organism's life cycle
[37]. Some studies suggest a greater role for environmen-
tal factors in determining cellular objectives than is
assumed when FBA is employed with a biomass produc-
tion objective [38]. Ultimately, as additional network
reconstructions are completed and experimental flux data
are obtained, there is increasing interest in determining
realistic objective functions to explain systemic behavior
[18-20,39].

Formulation of the Objective Function-Finding Algorithm 
BOSS
The BOSS framework initially takes the form of a bi-level
optimization problem that minimizes the sum-squared
error between experimentally-measured (in vivo) fluxes
and framework-computed (in silico) fluxes ("outer prob-
lem") (see Figure 2(a), line 1), subject to the condition

The novelty of the BOSS optimization frameworkFigure 1
The novelty of the BOSS optimization framework. 
Panel (a) depicts a simple system comprised of three compo-
nents and five reactions, including an objective reaction robj 
denoted in red. Assuming a stoichiometric network recon-
struction of this system (i.e., based on available literature) 
includes all three components and four of five reactions, 
excluding the objective reaction, panels (b) and (c) illustrate 
the objective functions that may be inferred by ObjFind and 
BOSS, respectively. Specifically, panel (b) shows how Obj-
Find generates a set of weightings, termed coefficients of 
importance (CoIs), on the reactions within the network. In 
this case, with the actual objective not in the stoichiometric 
reconstruction, ObjFind fails to assign a CoI to robj. By con-
trast, panel (c) shows how BOSS generates a de novo stoi-
chiometric reaction and recapitulates the actual system 
objective regardless of whether the actual objective is 
included as part of the stoichiometric reconstruction.
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The novel optimization framework implemented by BOSSFigure 2
The novel optimization framework implemented by BOSS. Panel (a) illustrates the bi-level optimization problem that 
forms the basis for BOSS. This problem involves minimizing the sum-squared error between experimentally-measured (in 
vivo) and framework-computed (in silico) fluxes (line 1) subject to the fundamental flux balance analysis (FBA) problem (lines 
2–5), i.e., the putative objective reaction is maximized (line 2) subject to physico-chemical (line 3) and other constraints (lines 
4 and 5). In this framework: (1) N corresponds to the set of metabolites; (2) M to the set of reactions; (3) P to the set of puta-
tive objective reactions, usually a new column inserted into the stoichiometric matrix S, Si, j, with flux vj where j ∈ P; (4) vframe-

work to the set of framework-computed fluxes; and (5) vexperimental to the set of experimentally-measured fluxes. Additionally, to 

normalize the flux data, the "input flux" corresponding to the uptake of the carbon source (e.g., glucose)  is set to a 

predetermined value called "uptake." Panel (b) illustrates the optimization problem in panel (a) reformulated as a single-level 
optimization problem via the duality theorem of linear programming (LP) [3, 40]. This novel framework for predicting objec-
tives of biological systems is comprised of an objective that aims to minimize the sum-squared error between experimentally-
measured and framework-computed fluxes (line 1) subject to a set of primal (lines 3 through 5) and dual constraints (lines 7 
through 9), as well as two new constraints, one that sets the value of the primal and dual problems equivalent to one another 
(line 2) and another that normalizes the flux distribution by setting the flux corresponding to the new objective reaction to a 
specific value (line 6). The notations in panel (a) apply here as well. The decision variables in this optimization are: (1) the stoi-
chiometric coefficients of the objective reaction, Si, j where i ∈ N and j ∈ P; (2) the framework-computed fluxes vexperimental; (3) 
the dual variable g associated with the uptake constraint; and (4) the dual variables u indicating shadow prices on the mass bal-
ance constraints for each metabolite in the system.
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that a cellular objective is simultaneously maximized
("inner problem") (lines 2–5). The inner problem takes
the canonical form of a FBA problem, wherein an objec-
tive reaction introduced to the network is maximized (line
2) subject to thermodynamic (line 3), mass balance (line
4), and uptake (line 5) constraints. The coefficients of the
objective reaction are unknown and part of the solution
space.

In order to make this bi-level optimization problem com-
putationally tractable, we reformulated it as a single-level
optimization problem via the duality theorem of LP, as
previously described [3,40] (see Figure 2(b)). Specifically,
the revised form is comprised of an objective that aims to
minimize the sum-squared error between experimentally-
measured and framework-computed fluxes (line 1) sub-
ject to a set of primal (lines 3 through 5) and dual con-
straints (lines 7 through 9). The objective in line 1 is
equivalent to the outer objective of the bi-level optimiza-
tion problem (see Figure 2(a), line 1), and the primal con-
straints in lines 3 through 5 are equivalent to the
constraints in the original bi-level optimization problem
(see Figure 2(a), lines 3 through 5). Two additional con-
straints are included in the single-level optimization
framework. Specifically, the value of the primal and dual
problems are set equivalent to one another (line 2), and
the flux distribution corresponding to the new objective
reaction is normalized to a specific value (line 6). As
described in the caption for Figure 2, the decision varia-
bles in this optimization are: (1) the stoichiometric coef-
ficients of the objective reaction, Si, objective where i ∈ N, or
the set of metabolites, and "objective" denotes the new
objective reaction; (2) the framework-computed fluxes
vexperimental; (3) the dual variable g associated with the
uptake constraint; and (4) the dual variables u indicating
shadow prices on the mass balance constraints for each
metabolite in the system.

Due to the large number of decision variables, large solu-
tion space, existence of multiple local optima, and inher-
ent non-convexity of the problem, we instituted a
multiple restart approach, wherein the optimization is
run multiple times, each time with different randomly-
selected starting values for the decision variables (within
a specified range) (see Figure 3(b), item 3). The output of
this approach is a series of putative objective reactions,
one for each restart. Objective reactions that yield a poor
value in the outer optimization (i.e., for which the sum-
squared error between experimental and calculated fluxes
is relatively high) are removed from the solution set. The
remaining putative objective reactions are then clustered
into groups based on similarity, and the most populous
cluster is chosen as the consensus objective reaction (see
Figure 3(b), item 4, as well as Additional file 2). This last
step seeks to eliminate solutions to the outer problem that

constitute suboptimal local minima. It is assumed that the
global minimum to the outer problem (i.e., the best
match between BOSS-derived and experimental fluxes,
thereby leading to the likely objective reaction) will draw
from a larger portion of the initial state space than any
local minimum, and thus will gather the greatest propor-
tion of the restarts when solutions are clustered.

This single-level optimization with multiple restarts, fol-
lowed by clustering and subsequent averaging of the most
populous cluster, ultimately yields a stoichiometrically-
weighted reaction for which the metabolic network is
optimized. This reaction represents a best hypothesis for
the network objective function based on available data
about the system. Determination of the objective reaction
in this manner offers a means to gain insight about net-
work and sub-network objectives and behavior.

Biological System Evaluated: The S. cerevisiae Central 
Metabolic Network
The previously reconstructed S. cerevisiae central meta-
bolic network [22,23] was used to assess the BOSS frame-
work (see Additional file 2). This network is a subset of
the genome-scale S. cerevisiae metabolic reconstruction
[41,42] and comprises the major carbohydrate metabo-
lism pathways of glycolysis, pentose phosphate, and the
citrate cycle, the principal energy metabolism pathway of
oxidative phosphorylation, and a precursor biomass syn-
thesis reaction. The network is comprised of 60 metabo-
lites participating in 62 reactions, including six exchange
reactions, 55 intracellular reactions, and one precursor
biomass synthesis reaction.

A flux distribution for the central metabolic network was
previously characterized experimentally [22,23]. This dis-
tribution was obtained by GC-MS tracing of 13C-labeled
isotopomers, and corresponds to yeast cells cultivated in
batch culture with glucose as the limiting substrate and at
a maximum specific growth rate, μmax, of 0.37 h-1. (See
[23] for complete experimental details.) The BOSS frame-
work was applied to this data set.

In addition, the precursor biomass synthesis reaction,
which balances the major metabolites from central
metabolism that contribute to biomass, was hypothesized
to be the "true" objective function of the system for testing
the BOSS framework. This hypothesis was based on the
underlying premise described previously that organisms
have maximized their growth performance through natu-
ral selection [12]. The precursor biomass synthesis reac-
tion was previously characterized experimentally [22,23].
It is important to note that BOSS does not require an
assumption of an objective function, and we demonstrate
below the success of BOSS at generating a hypothesized
objective function de novo.
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Implementation Details
The general implementation scheme for BOSS is illus-
trated in Figure 3. Specifically, we inputted the stoichio-
metric network reconstruction and isotopomer flux data
for the S. cerevisiae central metabolic network into BOSS
(see Figure 3(a)) and assessed the objective reaction that
it derived (see Figure 3(b)). We evaluated two conditions,
one in which the hypothesized objective function of pre-
cursor biomass synthesis was included in the network
reconstruction inputted into BOSS and another in which
it was excluded. In the second case, BOSS yielded a zero-
vector for the objective reaction, suggesting that the true
objective was already a part of the network reconstruction.
Therefore, we altered BOSS slightly to identify which of
the reactions was the likely objective: we removed, one by

one, each reaction flux from the set of experimental flux
data (vexperimental in Figure 2), and identified in each case
the sum-squared error between the BOSS-derived objec-
tive reaction and the reaction corresponding to the
removed flux. The reaction that exhibited the smallest
sum-squared error through this method was identified as
the objective function. This approach was utilized to
ensure that, if the actual system objective is already in the
stoichiometric network reconstruction, the outer optimi-
zation problem of BOSS does not force flux to go through
that reaction and rather allows the flux corresponding to
the new objective function column to be maximized as
part of BOSS.

The process flow for evaluating BOSSFigure 3
The process flow for evaluating BOSS. A four-step process for evaluating BOSS is illustrated. Specifically, in panel (a), we 
show how we (1) generate a stoichiometric matrix reconstruction for a biological system and (2) obtain experimental flux 
measurements for the reactions within the system. Note that when we tested BOSS on simulated noisy flux data in yeast cen-
tral metabolism, each experimental flux was varied randomly via a normal distribution, with mean and standard deviation equiv-
alent to the mean and standard deviation of the actual experimental fluxes. In panel (b), we show how (3) the reconstruction 
and experimental flux data are inputted into BOSS and stoichiometric coefficients for the objective reaction are identified 
through a multiple-restart strategy that utilizes random initial guesses for the coefficients. Additionally, (4) the resultant objec-
tives with a low sum-squared error between the framework-computed flux data and the experimentally-measured flux data are 
clustered, and the most populous cluster is chosen as representative of the objective function of the system.
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We considered one additional in silico experiment to eval-
uate how well our framework handles the kind of variabil-
ity that is characteristic of actual flux measurements.
Specifically, we assessed how a varying amount of noise
introduced to the set of experimental flux data affects the
objective function derived by BOSS. (See Additional file 3
as well for a discussion of how BOSS handles a paucity of
flux data, as applied to a prototypic system.) To perform
this test, additional steps were performed during data
preparation (see Figure 3(a), item 2). First, each experi-
mental flux for the S. cerevisiae metabolic network was var-
ied randomly via a normal distribution, with standard
deviation equal to a set percent of the initial value of the
flux. Different percent variances, ranging from five percent
to 25 percent in increments of five percent, were consid-
ered. Fluxes with an initial value of zero were varied with
a standard deviation equal to that of the smallest nonzero
flux in the system. BOSS was fed these varied fluxes as
"experimental" fluxes. To avoid biasing results toward one
particular variant of the "experimental" fluxes, we
repeated multiple times this process of randomly varying
the experimental flux distribution. In other words, for any
given percent variance, we tested multiple noisy flux data
sets (n = 20). Consequently, when considering the results
of any BOSS run on noisy flux data, we evaluated the coef-
ficients of the objective reaction for each noisy flux data
set independently.

Assessing the Results of BOSS
To assess the accuracy and efficacy of our BOSS-derived
results, we considered two statistical measures. First, we
computed the sum-squared error between the coefficients
of the BOSS-derived objective reaction and the coeffi-
cients of the hypothesized objective reaction (in this case,
precursor biomass synthesis), normalized to the magni-
tude of the hypothesized objective reaction column vec-
tor. This term is abbreviated SSES throughout the
manuscript. Second, we computed the sum-squared error
between the reaction fluxes outputted by BOSS and the
experimental fluxes inputted to the framework and speci-
fied as constraints. This term, which is equivalent to the
function being minimized in the BOSS outer optimiza-
tion problem, is abbreviated SSEv throughout the manu-
script. Ideally, smaller values of SSEv should correspond to
smaller values of SSES, as smaller values of SSES imply
more accurate objective reactions.

Technical Implementation
Simulations of BOSS were run with GAMS v.22.5 on
Microsoft Windows XP Professional and Linux (Centos5)
machines. The MINOS5 NLP (non-linear programming)
solver was utilized. Results were analyzed using code writ-
ten in MATLAB v.7.5 (part of the MathWorks R2007b
release package), with clustering functionality provided

by the MATLAB Statistics Toolbox (as detailed in Addi-
tional file 2).

Results and Discussion
The S. cerevisiae central metabolic network was used as an
experimental system to evaluate the ability of BOSS to
identify objective functions of biological systems. Addi-
tionally, the network was used to evaluate how well the
framework handles noise in flux distributions, which is a
characteristic of actual experimental measurements. These
results were contrasted with randomly-generated flux data
for the S. cerevisiae central metabolic network as a further
validation of the BOSS framework. We summarize the
results here.

Validation of Objective Function Identification
In inferring the objective function for the S. cerevisiae met-
abolic network with BOSS, two conditions were evalu-
ated. In the first one, the hypothesized objective reaction
(i.e., precursor biomass synthesis) was excluded from the
stoichiometric network reconstruction. BOSS identified
coefficients approximately equal to that of the precursor
biomass synthesis reaction (see Figure 4(a)). The sum-
squared error between the BOSS-computed objective
reaction and the experimentally-derived precursor bio-
mass synthesis reaction, normalized to the magnitude of
the precursor biomass synthesis reaction (SSES), was
8.242 × 10-29. The magnitude of this SSES suggests that
BOSS derives an objective reaction equivalent to the pre-
cursor biomass synthesis reaction, well within the limits
of numerical tolerance.

We also implemented BOSS on the complete S. cerevisiae
central metabolic network, i.e., without removing the pre-
cursor biomass synthesis reaction. When the precursor
biomass synthesis reaction was thus included in the set of
stoichiometric reactions, BOSS yielded a zero-vector for
the objective reaction (SSES = 655.0), suggesting that the
actual system objective was already a part of the stoichio-
metric network reconstruction (see Figure 4(b)). Subse-
quently, we individually removed each of the reaction
fluxes from the pool of experimental fluxes defined in the
outer optimization problem of BOSS (i.e., vexperimental in
Line 1 of Figure 2(a)) and observed the resultant stoichio-
metric coefficients that BOSS derived for the objective
function. SSES values between the reaction whose flux was
removed from vexperimental and the BOSS-derived objective
reaction given removal of that flux were compared for
each reaction in the system (see Figure 4(c)). The reaction
with the smallest SSES (between the BOSS-derived objec-
tive and the experimentally-characterized reaction whose
flux was excluded) was the hypothesized system objective
of precursor biomass synthesis (SSES = 4.210 × 10-4). This
result further validated the ability of BOSS to identify
objective reactions with previously known as well as
Page 7 of 13
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Validating BOSS on the S. cerevisiae central metabolic networkFigure 4
Validating BOSS on the S. cerevisiae central metabolic network. The results of BOSS (blue line and dots) when 
applied to the S. cerevisiae central metabolic network are illustrated and contrasted by the hypothesized objective reaction (i.e., 
precursor biomass synthesis) (open black circles). Panel (a) illustrates the results when the hypothesized objective reaction of 
precursor biomass synthesis is excluded from the network inputted into BOSS. Panel (b) depicts the results when the net-
work is inputted into BOSS with the hypothesized objective reaction. Note that the entire experimental flux distribution was 
provided as input to BOSS in both cases. When the precursor biomass synthesis objective reaction was excluded from the 
network inputted into BOSS, the sum-squared error between the BOSS-derived objective reaction and the expected pre-
cursor biomass synthesis objective reaction, normalized to the magnitude of the precursor biomass synthesis objective reac-
tion (SSES), was 8.242 × 10-29 (panel (a)). By contrast, when the precursor biomass synthesis objective reaction was included in 
the set of stoichiometric reactions inputted into BOSS, the SSES for the BOSS solution was approximately 655.0 (panel (b)). 
Panel (c) depicts a plot of the sum-squared error between the BOSS-derived and the corresponding reaction when the flux 
for each of the 62 reactions in the system was excluded from the pool of experimental fluxes one by one. The smallest SSES 
values were 42.20 and 4.210 × 10-4 and corresponded to the ATP maintenance and biomass production reactions, respectively. 
Consequently, as shown in panel (d), BOSS was able to recapitulate the hypothesized objective reaction of precursor biomass 
synthesis with a SSES = 4.210 × 10-4 when the reaction was included in the network stoichiometry but its experimental flux was 
removed from the available flux data.
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unknown stoichiometry (see Figures 4(c) and 4(d)). Inter-
estingly, the reaction with the next smallest SSES (= 42.20)
was the ATP maintenance reaction, a reaction that has also
been evaluated as an objective of metabolic networks
under some conditions [3,21,43]. All other reactions in
the network had SSES values that were at least an order of
magnitude higher. This key result is also a direct valida-
tion of the hypothesis that biomass production is a rea-
sonable objective function for many metabolic networks;
with the experimentally-generated flux data, BOSS
derived an objective function highly correlated with bio-
mass production although there was no such assumption
a priori.

It is important to note that application of FBA to the S. cer-
evisiae metabolic network does not yield the experimental
flux distribution measured by [23]. Because FBA problems
have large convex solution spaces, many different flux dis-
tributions yield equally optimal results. Therefore, it is sig-
nificant that BOSS is able to infer the correct coefficients
for the precursor biomass synthesis reaction in spite of
this difference. Furthermore, although maximization of
biomass synthesis is hypothesized as the objective of a
metabolic network, the experimental flux data are calcu-
lated based on isotopomer measurements and the under-
lying system stoichiometry but is not biased toward this
objective. Thus, the characterization of biomass as the sys-
tem objective by BOSS is a novel validation of this theo-
retical assumption.

Accounting for Limitations in Experimental 
Measurements: Noisy Flux Data
To account for current limitations in experimental (iso-
topomer) technologies for measuring reaction fluxes, the
S. cerevisiae central metabolic network was evaluated by
BOSS when different levels of noise were introduced into
the experimental flux data. Different percentages of devia-
tion for the flux data were evaluated to determine how
quickly the accuracy of the BOSS-computed objective
reaction degrades with noisy data.

The results for the S. cerevisiae network when varying lev-
els of noise are introduced into the individual flux values
are illustrated in Figure 5. For the purposes of this evalua-
tion, based on the results described above, the hypothe-
sized objective reaction of precursor biomass synthesis
was included as part of the underlying network stoichiom-
etry inputted into BOSS, and the set of experimental
fluxes consisted of all fluxes except for the flux corre-
sponding to this reaction. Figure 5(a) illustrates the nor-
malized sum-squared error between the BOSS-derived
objective reaction and the hypothesized objective func-
tion of precursor biomass synthesis (SSES) for different
percent variances in experimental flux data, ranging from
five percent to 25 percent in increments of five percent.

(As described above, for each increment, 20 unique "ini-
tial" flux distributions, each with the same level of
"noise," were computed, and the results for each of these
20 flux distributions were treated independently of the
others. Therefore, the plot in Figure 5(a) illustrates the
mean SSES across these 20 distributions, as well as the
associated standard deviation within SSES across these 20
distributions.) Up to about 15 percent variance in the flux
data, SSES < 1000, i.e., BOSS is able to generate recon-
structions of the hypothesized objective reaction orders of
magnitude more accurately than when random flux data
are inputted into BOSS (see "Control Case: Random Flux
Data" below). As expected, with increasing noise, the
results of BOSS exhibit increasing mean SSES values and
the variability of SSES across different initial flux sets is
higher. These data support the utility of our framework in
identifying objective functions for biological systems
given the current state of experimental flux measure-
ments.

To further highlight BOSS's performance on noisy flux
data, snapshots of the objective reactions that it generated
at different flux variances are illustrated. Specifically, Fig-
ures 5(b), 5(c), and 5(d) correspond to the coefficients
identified by BOSS (blue error bars) overlaid on the pre-
cursor biomass synthesis reaction (gray bars) for flux var-
iances of 5, 15, and 25 percent, respectively. (Note that,
for each flux variance, 20 unique "initial" flux distribu-
tions were computed. Consequently, the values for the
coefficients derived by BOSS correspond to a representa-
tive result for one of these 20 initial flux sets.) For smaller
flux variances, the pattern of the coefficients identified by
BOSS follows that of the hypothesized network objective
of precursor biomass synthesis that was used to generate
the noisy flux data (see Figure 5(b)). As expected, the
more noisy the flux data, the less precise the objective
reaction identified by the framework (see Figure 5(c)).

It is important to note that this analysis involves artifi-
cially adding noise to an experimental flux distribution.
Although the original experimental fluxes are based on a
steady-state metabolic model of yeast central metabolism,
it is likely that there is some degree of noise already within
the data set as part of the experimental protocol. Conse-
quently, the studies with noise presented here include
even higher degrees of noise than the five to 25 percent
spectrum evaluated. Nevertheless, the results suggest that
BOSS performs well, to an extent, with noisy experimen-
tal data.

Control Case: Random Flux Data
To place these results in context, randomly-generated flux
values coupled with the underlying network stoichiome-
try for the S. cerevisiae central metabolic network were
inputted into the BOSS framework as a negative control.
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These fluxes were generated by specifying a normal distri-
bution statistically similar to the characteristics of the
experimental flux distribution. Specifically, the randomly-
generated fluxes were centered at a mean of 6.697 mmol/
g·h with a standard deviation of 9.521 mmol/g·h, iden-

tical to the mean and standard deviation of the experi-
mental fluxes reported in [23,24]. For this test of random
flux data, no reaction was removed from the stoichiomet-
ric network reconstruction inputted into BOSS to avoid
biasing results in any way toward a particular objective.

Evaluating noise in the flux data in the S. cerevisiae central metabolic network for the precursor biomass synthesis objective reactionFigure 5
Evaluating noise in the flux data in the S. cerevisiae central metabolic network for the precursor biomass syn-
thesis objective reaction. The results of BOSS when noisy flux data are supplied as input to the framework are illustrated 
in the context of the precursor biomass synthesis objective reaction. Panel (a) illustrates the sum-squared error between the 
computed objective reaction and the hypothesized objective reaction of precursor biomass synthesis, when normalized to the 
magnitude of the precursor biomass synthesis reaction. The mean and standard deviation represented by the error bars for 
SSES at each of the percent variances are based on the 20 independent runs at each level of noise (i.e., 20 independent flux dis-
tributions with equivalent amounts of noise randomly inserted). Panels (b), (c), and (d) illustrate the hypothesized objective 
reaction (gray bars) and the BOSS-derived objective reaction (blue dots/lines) when the reaction fluxes in the network are 
varied by 5, 15, and 25 percent of their actual values, respectively. As the variance in the fluxes increases, the performance of 
BOSS degrades. Note that, as described previously in the context of Figures 4(c) and 4(d), to avoid biasing results, the 
hypothesized objective reaction of precursor biomass synthesis was included in the network inputted into BOSS, and the pool 
of experimental fluxes consisted of all fluxes with the exception of the precursor biomass synthesis reaction flux.

a

c

b

0 10 20 30 40 50 60
-20

-15

-10

-5

0

5

10

15

20
BOSS-derived Objective Function, Noise=5%

metabolite

st
oi

ch
io

m
et

ric
 c

oe
ffi

ci
en

t

 

 

Biomass objective
BOSS

0 10 20 30 40 50 60
-20

-15

-10

-5

0

5

10

15

20
BOSS-derived Objective Function, Noise=25%

metabolite

st
oi

ch
io

m
et

ric
 c

oe
ffi

ci
en

t

 

 

Biomass objective
BOSS

0 10 20 30 40 50 60
-20

-15

-10

-5

0

5

10

15

20
BOSS-derived Objective Function, Noise=15%

metabolite

st
oi

ch
io

m
et

ric
 c

oe
ffi

ci
en

t

 

 

Biomass objective
BOSS

d

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000
BOSS at Varying Levels of Noise

amount of noise in flux data (percentage)

su
m

-s
qu

ar
ed

 e
rr

or
Page 10 of 13
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:43 http://www.biomedcentral.com/1471-2105/9/43
However, to ensure that flux was driven through the
objective reaction, thus minimizing SSEv (see discussion
above pertaining to Figures 4(b), 4(c), and 4(d)), the flux
for the precursor biomass synthesis objective reaction was
not included in the pool of experimental flux data input-
ted into BOSS, as described earlier. A total of 100 ran-
domly-generated flux distributions, each with mean and
standard deviation consistent with the experimental flux
data, were evaluated, and the SSES between the hypothe-
sized objective reaction of precursor biomass synthesis
and the BOSS-derived objective reaction was 2.076 × 104.
In addition, the SSEv was 962.9. These results are orders of
magnitude higher than when actual experimental flux
data, or even noisy experimental data, are specified (see
"Validation of Objective Function Identification" above),
thus further confirming the utility of BOSS in inferring
objective functions of biological systems with internal
state measurements.

Conclusion
We present a novel framework called Biological Objec-
tive Solution Search (BOSS) that integrates network sto-
ichiometry and experimental flux data to determine the
most likely objective function for a given biological sys-
tem. We illustrate the utility of BOSS on a model of S. cer-
evisiae central metabolism with a variety of input
conditions, including experimental (isotopomer) flux
data, varied experimental flux data meant to mimic noise
in experimental measurements, and randomly-generated
fluxes. When the underlying network stoichiometry and
all reaction fluxes are specified, BOSS identifies an objec-
tive reaction with a normalized sum-squared error
between the computed objective and the hypothesized
objective (i.e., precursor biomass synthesis) (SSES) of
4.210 × 10-4. Additionally, when noise is introduced into
the flux data to simulate the types of error observed in
experimental flux measurements, BOSS identifies the
objective reaction with a SSES of less than 1000 for up to
15 percent experimental flux noise. Thus, we show how
BOSS can integrate network stoichiometry and internal
state measurements, including in the case of noisy data, to
predict the objective function of a biological system.

Interestingly, researchers have theorized that, through
evolution, metabolic systems have optimized for biomass
production [12]. Here we illustrate that our framework
derives this hypothesized objective reaction, precursor
biomass synthesis, based on the underlying network stoi-
chiometry and a set of experimentally-measured flux data.
This observation validates the BOSS framework and it fur-
ther confirms the precursor biomass synthesis reaction as
an objective of yeast central metabolism.

Current challenges remain in the implementation of the
BOSS algorithm. The transformation of a bi-level to a sin-

gle-level optimization via the strong duality theorem (see
"Methods") introduces a high degree of nonlinearity into
the problem and non-convexity into the solution space,
rendering the BOSS algorithm difficult for nonlinear solv-
ers to tackle. Further, the structure of the inner and outer
problems suggests that the solution space for a BOSS
problem is not smooth, but rather likely contains discon-
tinuous rifts in the value of the optimization parameter
(SSEv) as one moves smoothly through the state space.
These factors complicate the ability of BOSS to determine
a global optimum with a small number of restarts, result-
ing in several hours to days of simulation time depending
on the system and input conditions. Perhaps stronger
nonlinear solvers, more powerful dedicated computers,
and more run-time would yield better predictions of
objective functions. These challenges will need to be
addressed as BOSS is scaled up to genome-scale applica-
tions.

Another hurdle to the meaningful application of BOSS is
the paucity of large-scale experimentally-derived flux sets
in literature. Isotopomer studies, as well as 13C-con-
strained fluxomics studies, tend to use simplified models
of central metabolism that lump reactions together and
thus fail to define a distinct flux for each reaction in the
system [44-47]. These simplifications have been necessary
due to experimental and computational hurdles, but they
limit the degree to which experimental flux data can be
used by BOSS. As more powerful fluxomics techniques
are developed, more complete flux distribution maps will
become available for analysis by BOSS [48].

BOSS is distinguished from preexisting objective-search-
ing algorithms in its ability to define an objective reaction
absent previous knowledge of the stoichiometric structure
of the objective function [3,21]. This attribute could prove
useful in analyzing signaling and transcriptional regula-
tory networks, as their objectives are likely to be more
loosely defined and poorly understood than those of met-
abolic networks [32,49]. Likewise, studying objectives of
multiple metabolically-interacting species or compart-
mentalized metabolic processes (e.g., mitochondrial
metabolism) offers fruitful challenges that cannot be
described as simply biomass production. Such analyses
could lead to a greater appreciation of the driving evolu-
tionary forces that govern these cellular processes, and
could help explain how the whole-cell objective origi-
nates. A framework that predicts objectives of a biological
system based on known properties of the system (e.g., the
stoichiometry of the system and associated reaction
fluxes) thus has the potential to address many critical and
timely questions in biology.
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