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a b s t r a c t 

Ebselen is a synthetic, lipid-soluble seleno-organic compound. The high electrophilicity of ebselen en-

ables it to react with multiple cysteine residues of various proteins. Despite extensive research on

ebselen, its target molecules and mechanism of action remains less understood. We performed bio-

chemical as well as in vivo experiments employing budding yeast as a model organism to understand

the mode of action of ebselen. The growth curve analysis and FACS (florescence activated cell sorting)

assays revealed that ebselen exerts growth inhibitory effects on yeast cells by causing a delay in cell

cycle progression. We observed that ebselen exposure causes an increase in intracellular ROS levels and

mitochondrial membrane potential, and that these effects were reversed by addition of antioxidants

such as reduced glutathione (GSH) or N-acetyl- L -cysteine (NAC). Interestingly, a significant increase in

ROS levels was noticed in gdh3 -deleted cells compared to wild-type cells. Furthermore, we showed that

ebselen inhibits GDH function by interacting with its cysteine residues, leading to the formation of inac-

tive hexameric GDH. Two-dimensional gel electrophoresis revealed protein targets of ebselen including

CPR1, the yeast homolog of Cyclophilin A. Additionally, ebselen treatment leads to the inhibition of yeast

sporulation. These results indicate a novel direct connection between ebselen and redox homeostasis. 
C © 2014 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical

Societies. All rights reserved. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction 

A number of cellular defense mechanisms exist to quench free

radicals and prevent intracellular damage by reducing the harmful

effects of reactive oxygen species (ROS). These mechanisms or factors

include low-molecular-weight antioxidants such as ascorbic acid and

glutathione, and antioxidant enzymes such as thioredoxins, super-

oxide dismutase (SOD), catalase, and glutathione peroxidase [ 1 –3 ].

These activities play a key role in minimizing the physiological lev-

els of ROS. However, with continuous elevation of the levels of ROS,

the defense systems can be exhausted, resulting in cellular damage.

Normally functioning cells can sustain and tolerate background lev-

els of damage, but if an imbalance occurs, cellular damage will be

increased. ROS are reactive in nature and may cause damage to key
� This is an open-access article distributed under the terms of the Creative Commons 

Attribution-NonCommercial-ShareAlike License, which permits non-commercial use, 

distribution, and reproduction in any medium, provided the original author and source 

are credited. 

Abbreviations: CypA, Cyclophilin A; DCFH-DA, 2,7-dichlorodihydrofluorescein di- 
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cellular components including DNA, proteins, and lipids [ 4 , 5 ]. ROS,

including hydrogen peroxide, the superoxide anion, and the hydroxyl

radical are highly toxic oxidants which are inevitably produced in re-

sponse to multiple stimuli [ 5 –9 ]. Therefore, cells possess a complex

system to neutralize the deleterious effects of ROS [ 10 –13 ]. Because

ROS are principal mediators of the cellular damage, compounds that

regulate the fate of such species may be of great importance. 

Ebselen is a synthetic, lipid-soluble seleno-organic compound hav-

ing potent antioxidant capacity. It is also a novel anti-inflammatory

agent having glutathione peroxidase-like activity [ 14 –18 ]. It has

therapeutic activity in neurological disorders, acute pancreatitis,

noise-induced hearing loss, and cardiotoxicity. It also exhibits

antiatherosclerotic, antithrombotic, and cytoprotective properties

[ 15 , 19 –21 ]. However, excessive amounts of ebselen are toxic to the

cells. Ebselen is genotoxic above a concentration of 10 μM in V79

cells [ 22 ]. It induces apoptosis in HepG2 cells through a rapid deple-

tion of intracellular thiols [ 23 ]. At high concentrations, it stimulates

Ca 2 + release from mitochondria via an NAD 

+ hydrolysis-dependent

mechanism, and accelerates mitochondrial respiration and swelling,

which are indicative of deterioration of the mitochondrial function

[ 24 ]. A previous study from our laboratory documented the activa-

tion of DNA repair genes in yeast cells exposed to Ebselen [ 25 ]. 

Seleno-organic compounds exhibit strong electrophilic activity

and are therefore capable of forming selenenyl-sulfide bonds with the
f European Biochemical Societies. All rights reserved. 
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ysteine residues in proteins [ 26 –28 ]. The ability of ebselen to cova- 

ently react with proteins ’ cysteine residues is thought to explain why 

he selenazal drugs modulate the activity of various inflammation- 

elated enzymes, including lipoxygenase, nitric oxide synthase, and 

ADPH oxidase [ 29 –31 ]. Various antioxidant enzymes have evolved 

o regulate the cellular levels of ROS. Glutathione (GSH), which is the 

ost abundant peptide in cells, fulfills several functions, including di- 

ectly scavenging of HO 

· and singlet oxygen [ 32 ]. Glutamate, which is 

equired for the biosynthesis of GSH, is synthesized by GDH. The 2 iso- 

unctional NADP-GDH of Saccharomyces cerevisiae (GDH1 and GDH3) 

 33 –35 ] are involved in the synthesis of GSH, and the normal func- 

ioning of these enzymes is required for the regulation of ROS levels 

 34 ]. Multiple cysteine residues are seen in the primary structure of 

DH3. Hence, selenazal drugs may modulate its activity, resulting in 

ts defective functioning. 

In this study, we report that ebselen potently inhibits chicken GDH 

y reacting with the enzyme’s cysteine residues, leading to its inhi- 

ition. Ebselen exposure induces high intracellular ROS levels, and 

he deletion of yeast gdh3 potentiates ROS production, indicating that 

DH3 is an in vivo target of this drug. Taken together, our results de- 

icts GDH as a novel target of ebselen, and these observations can be 

sed to design ebselen-based molecular therapeutics for the regula- 

ion of ROS levels under various conditions. 

aterials and methods 

eagents and yeast strains 

All reagents, unless otherwise stated, were purchased from Sigma–

ldrich (USA). Yeast strains were grown in SC (synthetic complete) 

edium. All experiments were performed on wild type strain W1588- 

c (MATa ade2-1 can1-100 his3-11, 15 leu2-3, 112 trp1-1, ura3-1, 

AD5 + ), BY4743 (MATa / α his3 �1 / his3 �1 leu2 �0 / leu2 �0 LYS2 / 
ys2 �0 met15 �0 / MET15 ura3 �0 / ura3 �0) gdh1, gdh2 and gdh3 

O generated in BY4743 background were purchased from Open 

iosystem. For sporulation experiment USY61 (MATa / MATalpha 

ra3D0 / ura3D0 his3D1 / his3D1 CAN1 / can1::Ste2::spHis5 flo8D0 / 
o8D0) yeast diploid strain was used, we got this strain as a kind 

ift from Ulrich Schlecht. Ebselen was dissolved in DMSO. Concentra- 

ion of DMSO was kept below 0.1% in all experiments. 

rowth sensitivity and methylene blue assays 

To investigate the effect of ebselen on the growth of yeast mutants, 

ild type yeast strains were inoculated into YPD liquid medium and 

rown to saturation by incubating cultures at 30 ◦C and 200 rpm. Yeast 

aturated cultures were serially diluted (10 −1 , 10 −2 , 10 −3 , 10 −4 ) in 

.0 ml of sterile double distilled water. 3 μl of cultures were spotted 

nto SC agar plates containing ebselen (2.5, 5.0, 7.5 and 10 μM) or 

MSO. Plates were incubated at 30 ◦C and growth of the yeast strains 

ere recorded at time intervals of 24, 48 and 72 h by scanning (HP 

canjet G2410). 

Wild type yeast cells were grown in YPD medium till log phase 

OD 600 equals to 0.6–0.8) and treated with ebselen at different con- 

entrations (DMSO, 5, 10, 20, 30 and 50 μM) for 6 h. After treatment 

D 600 was recorded at regular intervals for growth curve analysis. 

ethylene blue assay was performed as described earlier [ 36 , 37 ] 

fter 3 h of ebselen treatment, cells were stained with 100 μg / ml 

ethylene blue to differentiate between live (unstained) and dead / 
etabolically inactive (dark blue colored) cells. Cells were observed 

nder the bright field microscope by using LAS EZ-V1.7.0 software 

LEICA DM500). 
FACS analysis of yeast cells 

Yeast cells in exponential phase were treated with alpha factor to 

synchronize cells in G1 phase. Cells were released in DMSO (control) 

or 25 μM ebselen containing media for 6 h. Samples were collected at 

regular intervals and harvested by centrifugation. Ethanol was added 

to cell pellets, with vigorous vortexing. Cells were collected by cen- 

trifugation and washed once with 50 mM sodium citrate buffer (pH 

7.0). RNase A was added to the samples and incubated at 37 ◦C for 1 h. 

RNase A-treated samples were transferred to BD FACS flow contain- 

ing 20 mg / ml propidium iodide (Sigma). Cellular DNA was detected 

by a BD FACS Aria III with BD FACS Diva software. 

Detection of cellular ROS levels and assays for mitochondrial membrane 

potential ( ΔΨ ) 

To measure ROS production we used 2,7- 

dichlorodihydrofluorescein diacetate (DCFH-DA) (Sigma, D6883). 

DCFH-DA is membrane-permeable and is trapped intracellularly 

following deacetylation. The resulting compound, DCFH, reacts 

with ROS (primarily H 2 O 2 and hydroxyl radicals) to produce the 

oxidized fluorescent form 2,7-dichlorofluorescein (DCF). ROS anal- 

ysis using DCFH-DA was performed as follows. Yeast cells were 

treated with 10 μM DCFH-DA in culture media for 1 h prior to 

harvesting. Cells were washed twice in ice-cold PBS (phosphate 

buffer saline), resuspended in same buffer and immediately observed 

under fluorescence microscope (AXIOVERT 4.0) using FITC filter. 

The membrane potential-dependent stain MitoTracker (Molecular 

Probes-Invitrogen) was used to assess the mitochondrial membrane 

potential of yeast cells. After treatment with drug approximately 

1 × 10 7 yeast cells were harvested and washed with ice-cold PBS. 

Cells were resuspended in 100 μl of PBS followed by staining with 

MitoTracker. After staining cells were visualized under fluorescence 

microscope (AXIOVERT 4.0) using Rhodamine filter or by FACS. 

For analyzing the effect of reduced glutathione (GSH – 10 mM), 

or N-acetyl- l -cysteine (NAC – 20 mM) supplementation on ROS 

levels and mitochondrial membrane potential, they were added in 

exponential yeast culture 30 min prior to addition of ebselen. Cells 

were further grown for 3 h followed by staining with DCF-DA or 

MitoTracker and immediately analyzed by FACS. 

Glutathione measurement assays 

Glutathione levels were measured using the method described by 

Wu et al. [ 38 ]. Briefly, cells were grown to exponential phase and 

treated with DMSO (control) or ebselen for 3 h, washed with ice 

cold water, and resuspended in 250 μl of cold 1% 5-sulfosalicylic 

acid. Cells were broken by vigorous vortexing with glass beads and 

incubated at 4 ◦C for 15 min. The extract was centrifuged and super- 

natants were used to determine glutathione levels. Total glutathione 

was determined by adding 10 μl of lysate to 150 μl of assay mixture 

(0.1 M potassium phosphate, pH 7.0, 1 mM EDTA, 0.03 mg / ml 5,5 ′ - 
dithiobis(2-nitrobenzoic acid), 0.12 unit of glutathione reductase). 

The samples were mixed and incubated for 5 min at room temper- 

ature followed by addition of 50 μl of NADPH (0.16 mg / ml). The 

formation of thiobis (2-nitrobenzoic acid) was measured spectropho- 

tometrically at 420 nm over a 5-min period. Standard curves were 

generated for each experiment using 0–0.5 nmol of glutathione in 1% 

5-sulfosalicylic acid. To measure GSSG alone, 100 μl lysate samples 

were derivatized by adding 2 μl of 97% 2-vinylpyridine, and the pH 

was adjusted by adding 2 μl of 25% triethanolamine followed by in- 

cubation at room temperature for 60 min. The samples were then as- 

sayed as described above for total GSSG. GSSG standards (0–0.1 nmol) 

were also treated with 2-vinylpyridine in an identical manner to the 

samples. Subtraction of the amount of GSSG in the lysate from the to- 

tal glutathione concentration allowed a determination of GSH levels 
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present in each sample. 

Purification of human recombinant Cyclophilin A 

Plasmid pET28a, encoding residues full length Cyclophilin A hav-

ing N-ter hexahistidine tag, was transformed into Escherichia coli BL21

DE3 cells for expression. IPTG was added to induce the expression

of Cyclophilin A, and the cultures were further incubated at 30 ◦C

for 6 h. The cells producing Cyclophilin A were harvested, resus-

pended in 50 mM Tris–HCl buffer (pH 7.5) containing 2 mM beta-

mercaptoethanol, 10% glycerol, and 0.5 M NaCl, and disrupted by

sonication. The cell debris was removed by centrifugation (27,216 g ;

20 min), and the lysate was mixed gently with 1 ml (50% slurry) of

nickel-nitrilotriacetic acid (Ni-NTA)–agarose resin (Qiagen) at 4 ◦C for

1 h. The Cyclophilin-bound Ni-NTA beads were then packed into an

Econo-column (Bio-Rad) and washed with 100 ml of 50 mM Tris–HCl

buffer (pH 7.5) containing 10% glycerol, 500 mM NaCl, and 5 mM imi-

dazole . His6-tagged Cyclophilin A was eluted by a 3 ml elution buffer

containing 500 mM imidazole. Eluted protein was concentrated and

dialyzed to remove imidazole. 

Analysis of glutamate dehydrogenase activity 

To test the endopeptidase activity of GDH, an in vitro-assay system

was developed as described earlier [ 39 ]. Briefly, for the in vitro prote-

olytic assay 0.5 μg of purified chicken GDH was mixed with 5.0 μg of

chicken brain core histones in 20 μl reaction volume of buffer (25 mM

Tris–Cl, pH 7.5, 150 mM NaCl, 10% glycerol, and 0.1 mM EDTA) and

incubated at 37 ◦C for 1 h. 0.5 μM ebselen was used to check its effect

on GDH activity. The reaction was stopped by boiling in SDS–PAGE

sample loading buffer. Cleavage of H3 was monitored by resolving the

reaction mixture on 15% SDS–PAGE. 

Evaluation of effect of ebselen on purified GDH and Cyclophilin A 

Purified chicken GDH was incubated with 0.5 μM ebselen in

sodium phosphate buffer (pH 7.2) for 30 min at 37 ◦C. Similarly recom-

binant Cyclophilin A was incubated with increasing concentration of

ebselen. The native and ebselen-modified GDH and Cyclophilin A were

incubated with SDS sample buffer with or without a reducing agent

for 5 min at 100 ◦C. The samples were separated by SDS–PAGE. The

gel was trans-blotted onto a nitrocellulose membrane and western

blotting was performed with anti-GDH (Sigma, SAB2100932-50UG)

and anti-Cyclophilin A (Millipore, # 07-313) antibody. 

Yeast sporulation assay 

The following media were used for growth and sporulation of

Saccharomyces cerevisiae : rich media YPD (1% yeast extract, 2% bac-

topeptone, 2% glucose), pre-sporulation media (0.5% ammonium sul-

fate, 0.17% yeast nitrogen base, 1% bactopeptone, 1% potassium ac-

etate, 0.5% yeast extract, 1.02% potassium hydrogen phthalate) and

sporulation media (2% potassium acetate). A fresh yeast colony was

inoculated into 5 ml YPD and grown over night to saturation. 200 μl of

this cell culture were inoculated into 30 ml of pre-sporulation media

and grown until an optical density at 600 nm between 1.0 and 1.5 was

reached. The cell suspension was centrifuged for 3 min at 3000 rpm

and washed twice with 50 ml of pre-warmed water. Finally, the cell

pellet was resuspended in 50 ml sporulation media. Cells were fur-

ther grown for 24 h and sporulation was analyzed by visualizing cells

under bright-field microscope (LEICA DM500) by using LAS EZ-V1.7.0

software. 

For analysis of DNA content during sporulation, yeast strain USY61

were grown following sporulation protocol as described above. After

transferring cells in sporulation media, 1 ml of cell suspension was
taken out at regular intervals (0, 2, 4, 6 and 8 h) from DMSO, ammo-

nium sulfate (2 mM) or ebselen (30 μM) treated samples. Cellular

DNA was detected by a BD FACS Aria III with BD FACS Diva software. 

Analysis of ROS levels Cda2 expression during sporulation 

For analyzing ROS levels during sporulation yeast cells were

treated with 10 μM DCFH-DA in culture media for 1 h prior to har-

vesting. Cells were washed twice in ice-cold PBS (phosphate buffer

saline), resuspended in same buffer and immediately observed un-

der fluorescence microscope (AXIOVERT 4.0) using FITC filter. To an-

alyze the effect of ebselen on sporulation the expression of Cda2, a

sporulation-specific chitin deacetylase involved in the biosynthesis of

the spore wall component chitosan, was monitored. Experiment was

conducted as described earlier [ 40 ]. Briefly, a colony from USY613

(USY61 + pCDA2-eGFP::HygB) was grown overnight till saturation in

SC supplemented with Hygromycin B. 200 μl of this cell suspension

was inoculated into 30 ml of pre-sporulation media (supplemented

with Hygromycin B) and grown until an optical density between 1.2

and 1.6 was reached. The cell suspension was centrifuged and washed

with 50 ml of pre-warmed water. Finally, the cell pellet was resus-

pended in 50 ml sporulation media containing DMSO (control), 2 mM

ammonium sulfate or 30 μM ebselen and 10 ml cells harvested at

regular intervals (0, 6, 12, 18, 24 h). Extracts were made from the

cell pellet following TCA method. Cda2 expression was analyzed by

western blotting using anti-GFP antibody. 

Sample preparation for proteomic analysis 

Cells were harvested and dispersed in lysis buffer (50 mM Tris–

HCl, pH 7.5, 0.1% Triton X-100, 5% glycerol, 0.6 M NaCl, 5 mM EDTA,

5 mM DTT, 0.5 mM PMSF, protease inhibitor cocktail, 0.1 times the

volume of solution containing 1 mg / ml DNase I, 0.25 mg / ml RNase A,

50 mM MgCl 2 ). Samples were processed according to the 2D Clean-Up

kit protocol (GE Healthcare). Protein concentration was determined

by Bradford (Sigma) and 200 μg proteins were rehydrated on 7 cm

Immobiline TM (pH 3–10) DryStrip (GE Healthcare) for 12 h in Immo-

biline DryStrip Reswelling Tray. First dimensional Isoelectric focusing

(IEF) was performed in Ettan-IPGphor ® Isoelectric focusing unit (GE

Healthcare) followed by sequential equilibration in buffer contain-

ing DTT and IAA. Second dimensional SDS–PAGE was done. Selected

differentially expressed protein spots were identified by mass spec-

trometry (National Centre for Biological Sciences, Bangalore, India). 

Results 

Increasing concentration of ebselen inhibits growth of yeast cells 

To determine the effective dose of ebselen, we performed the spot

test, growth curve analysis, and the methylene blue assay. For the

spot test, we used increasing concentrations of ebselen (2.5, 5.0, 7.5,

and 10.0 μM) incorporated in YPD (yeast extract powder 1%, pep-

tone 2%, dextrose 2%) agar medium. We observed a dose-dependent

decrease in the cell survival of wild type cells ( Fig. 1 A). For growth

curve analysis, exponential phase-yeast cells were treated with eb-

selen (5.0, 10.0, 20.0, 30.0, and 50.0 μM) for 6 h. We found that in-

creasing concentrations of ebselen were toxic to yeast cells, as shown

by the reduction of growth ( Fig. 1 B). The result of growth curve anal-

ysis in liquid medium was consistent with that of methylene blue

assay. For methylene blue assay, the cells were treated with ebselen

at same concentrations mentioned above for 3 h. Live cells remained

unstained while dead cells or metabolically inactive cells became dark

blue. With increasing concentrations of ebselen (from 5 to 50 μM),

the number of dead / metabolically inactive cells increased ( Fig. 1 C).

Microscopic examination along with growth curve analysis indicated

the toxicity of ebselen at higher doses. 
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Fig. 1. Increasing concentration of ebselen inhibits growth of yeast cells: (A) Spot test of wild type cells (WT1588-4C) in presence of DMSO (control), 2.5, 5.0, 7.5 and 10.0 μM 

ebselen. Yeast saturated cultures were serially diluted (10 −1 , 10 −2 , 10 −3 , 10 −4 ) in 1.0 ml of sterile double distilled water. (B) Wild type yeast cells were grown in YPD medium until 

log phase reached at OD600 (0.6–0.8) then treated with ebselen at different concentrations (5, 10, 20, 30 and 50 μM) for 6 h. Growth was recorded by taking aliquots at regular 

interval. (C) Methylene blue assay was performed in treated and untreated cells and observed under microscope with magnification 400 × . (D) FACS analysis showing the effect 

of the ebselen on yeast cell cycle progression. Wild-type cells were cultured in SC medium to exponential phase and treated with alpha factor to synchronize all cells in G1 phase. 

After synchronization cells were released in either DMSO (control) or 25 μM ebselen containing media. The culture was sampled at indicated time points and cellular DNA content 

was analyzed by FACS. 
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Ebselen treatment causes delay in cell cycle progression 

Based on our growth curve experiments, we observed that the

growth rate of yeast cells was significantly reduced upon ebselen

treatment, indicating that the drug is possibly causing defects in nor-

mal cell cycle. To validate this hypothesis, we performed FACS anal-

ysis to observe the cell cycle progression in the presence or absence

of ebselen. Exponentially growing yeast cells were synchronized by

alpha factor treatment for 2 h. After synchronization G1 arrested cells

were released in 25 μM ebselen or DMSO containing media. The

DMSO treated cells quickly moved to G2 phase within 60 min of re-

lease from alpha factor arrest ( Fig. 1 D) while ebselen inhibited the

movement of cells for prolonged time ( Fig. 1 D). Even after 360 min of

release in ebselen containing media all cells were not able to progress

to G2 phase suggesting that ebselen treatment causes delay in cell

cycle progression. 

Ebselen potentially inhibits the growth of wild type S. cerevisiae in a 

ROS-dependent manner by increasing the mitochondrial membrane 

potential ( ΔΨ ) 

Next, we tried to define the intracellular molecular targets of ebse-

len in S. cerevisiae , aiming to understand the molecular insights of ROS

generation upon ebselen treatment. Yeast in the exponential phase

were treated with increasing concentrations of ebselen (5, 10, 20, and

30 μM ) or 1 mM hydrogen peroxide for 3 h. Hydrogen peroxide

present in the medium served as a positive control for ROS. Notably,

ebselen induced a dramatic increase in ROS generation, which was

revealed by H 2 DHFA staining ( Fig. 2 A). We did not observe a ROS

increase at low concentration of ebselen (5 and 10 μM) suggesting

that high doses of ebselen are required to enhance ROS levels ( Fig.

2 A). Additionally our FACS analysis also exhibited similar results as

observed in microscopic images. Ebselen treatment causes increase

in ROS upon ebselen treatment in a dose dependent manner ( Fig. 2 C).

We used MitoTracker to monitor the mitochondrial membrane

potential ( ΔΨ ). This probe irreversibly stains mitochondria in a ΔΨ
-dependent fashion (the staining is more intense when ΔΨ is high).

As shown in Fig. 2 B, MitoTracker staining could be imaged without

drug treatment only at enhanced contrast. However, with increasing

concentrations of ebselen, especially at 20 or 30 μM, a strong Mito-

Tracker staining was evident and �Ψ increase was observed when

1 mM H 2 O 2 was added ( Fig. 2 B). Similar increase in fluorescence was

observed in FACS analysis ( Fig. 2 D). These results suggested that the

abnormally elevated �Ψ results from inhibition of ΔΨ - dependent

processes in S. cerevisiae cells. 

As an additional test to substantiate our observations we mea-

sured total glutathione, GSH and GSSG levels upon ebselen treatment.

Oxidative stress is indicated by increased total glutathione, GSH and

GSSG levels, and a decreased in GSH:GSSG ratio [ 38 ]. We calculated

these parameters and compared wild type cells grown in DMSO (con-

trol) and 30 μM ebselen. Comparison of untreated versus the ebselen

treated samples indicated that the treatment causes the elevation

of oxidative stress parameters. Upon ebselen treatment total glu-

tathione, GSH, and GSSG were elevated relative to untreated and the

GSH: GSSG levels were reduced after treatment ( Fig. 2 E). 

Supplementation of reduced glutathione (GSH) or N-acetyl cysteine 

(NAC) rescues ebselen induced increase in ROS / mitochondrial 

membrane potential 

To determine whether the ROS accumulation in ebselen treated

cells is facilitated by increase in free radicals, we evaluated the effect

of ebselen on ROS levels in presence of the antioxidants, such as N-

acetyl- l -cysteine (NAC) and reduced glutathione (GSH). As shown in

Fig. 3 A, the addition of the 10 mM GSH or 30 mM NAC restored the

growth of cells in the presence of ebselen (7.5 μM). NAC or GSH has
been shown to exert antioxidant functions through scavenging ROS

by the reaction with its thiol group. The ROS and mitochondrial mem-

brane potential was measured upon ebselen treatment in presence

or absence of NAC or GSH. As shown in Fig. 3 B and C, the ROS level

upon ebselen treatment was markedly suppressed by NAC or GSH.

Taken together, these results suggest that ebselen causes generation

of reactive oxygen species leading to growth inhibition / cell death in

yeast cells. 

gdh3-deletion in S. cerevisiae potentiates ROS generation by ebselen 

Among the ROS-scavenging systems, the GSH system, which con-

sists of GSH, GPx, and glutathione reductase, is the most important

intracellular defense mechanism [ 41 ]. GPx catalyzes the reduction of

H 2 O 2 and oxidizes GSH to GSSG. GSSG is then reduced back to GSH

by glutathione reductase [ 42 ]. Hence, the ability of the cells to reduce

GSSG or synthesize GSH from glutamate is the key to effectively elim-

inate ROS-mediated cell damage [ 43 ]. The two isofunctional NADP-

GDH of S. cerevisiae (GDH1 and GDH3) are involved in the synthe-

sis of GSH and they differ in their allosteric properties and in the

rates of α-ketoglutarate utilization [ 34 ]. Hence, we next investigated

the functional role of glutamate dehydrogenases (GDH1, GDH2, and

GDH3) in the ebselen-mediated ROS generation. To this end, we first

tested whether gdh1, 2, or 3 deletions affected the levels of ROS under

normal conditions. The basal levels of ROS were not changed signif-

icantly in DCF-DA stained gdh1 / gdh2 / gdh3 -deleted cells compared

to similarly stained wild type cells ( Fig. 4 A). When we investigated

alterations in the ROS levels in the presence of ebselen, the ROS in-

crease was prominent at 20 μM in gdh3 Δ cells compared to that in

gdh1 Δ, gdh2 Δ, and wild type cells ( Fig. 4 B). 

Ebselen inhibits GDH by binding with its cysteine residue 

Based on experiments performed on yeast cells, we found that

GDH3 might a molecular target of ebselen. To further validate this

hypothesis, we analyzed the effect of ebselen on purified chicken

GDH by performing histone H3 digestion assay. We have identified

GDH as a novel histone H3 protease [ 44 ]; hence, we performed H3

clipping by GDH in the presence or absence of ebselen. We observed

the complete inhibition of H3 digestion / GDH activity in the presence

of 0.5 μM ebselen ( Fig. 5 A, lane 5), suggesting that this drug inter-

feres with the proteolytic activity of GDH. According to the literature,

it is well established that ebselen acts as potent inhibitor of various

proteins that have multiple cysteine residues [ 29 –31 ]. In fact, ebselen

makes covalent bonds with the proteins ’ cysteine residues, making

them inactive if that residue is critical for the function. Chicken GDH

also has several cysteine residues ( Fig. 5 D); hence, we analyzed the

GDH activity in the presence of β-mercaptoethanol and ebselen. In-

terestingly, GDH activity was restored when β-mercaptoethanol was

added to the reaction mixture containing ebselen ( Fig. 5 A, lane 3).

Ebselen did not react with the histones present in the reaction ( Fig.

5 B) because there is no difference in the pattern of histone bands in

the presence or absence of ebselen when a non-reducing dye is used

( Fig. 5 B, compare lanes 2, 3 and 4). 

We next characterized the ebselen-treated GDH by non-reducing

and reducing SDS–PAGE ( Fig. 5 C). When subjected to the non-

reducing SDS–PAGE, the native (unoxidized / monomer) form of GDH

migrated as a single protein band of about 50 kDa ( Fig. 5 C, lane 1).

However, upon incubation with 0.5 μM ebselen, GDH was converted

to a higher molecular weight protein species probably corresponding

to the intermolecular cross-linking as observed in western blotting

with GDH antibody ( Fig. 5 C, lane 2). Moreover, the formation of these

modified proteins was not detected during the reducing SDS–PAGE

( Fig. 5 C, lane 3), and since the same concentration of DMSO was used

in the control reaction showing no effect of solvent on GDH ( Fig. 5 D),

we suggest that ebselen primarily formed selenenyl-sulfide (–Se–S–)
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Fig. 2. Ebselen treatment increases reactive oxygen species production and mitochondrial membrane potential in S. cerevisiae cells. ROS production detected by (A) DCF-DA and 

mitochondrial membrane potential by MitoTracker (B) in control cells and cells treated for 3 h. Cells were treated with 1 mM H 2 O 2 for 3 h and it served as positive control. In A and 

B the upper panels show phase contrast microscopy; the lower panels show fluorescence microscopy of the same cells. (C and D) Yeast wild type strain was grown in SC media 

till exponential phase. Cells were treated with indicated concentration of ebselen for 3 h. The cells were then stained with DCF-DA or MitoTracker Red and examined by FACS as 

described in materials and methods. (E) Wild type cells were grown in DMSO or indicated concentration of ebselen for 3 h. GSH, GSSG, and the GSH:GSSG ratios were determined. 

Values are means S.D. of three independent cultures. 
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Fig. 3. Effect of exogenous supply of GSH or NAC on ebselen induced ROS accumulation. (A) Spot test of wild type cells (WT1588-4C) supplemented with either NAC or GSH, and 

plates containing ebselen (7.5 μM) with either NAC or GSH. Yeast saturated cultures were serially diluted (10 −1 , 10 −2 , 10 −3 , 10 −4 ) in 1.0 ml of sterile double distilled water and 

spotted onto the plates. Cells were cultured at 30 ◦C for 2–3 days. (D and E) Wild-type yeast strain grown in SC media supplemented with or without 10 mM GSH or 20 mM NAC 

for 1 h followed by exposure to 30 μM ebselen for 3 h. Yeast cells were processed for FACS analysis after staining with either DCF-DA (D) or MitoTracker Red (E). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and / or disulfide (–S–S–) linkages within GDH. Taken together, these

results suggested that ebselen abrogates GDH activity by interacting

with its cysteine residues and that this activity can be reversed in the

presence of reducing agent. 

Ebselen alters the proteome profile of yeast cells 

To observe the effect of ebselen on the global protein profile, we

performed proteome profiling using 2D gel electrophoresis ( Fig. 6 A),

which revealed an alteration in the expression of a few proteins when

comparing the control and 25 μM ebselen-treated samples. To iden-

tify those proteins, spots were excised from the two-dimensional

gels, subjected to trypsin digestion, and then successfully analyzed

by a mass spectrometry analysis. The details of identified protein

spots are shown in Table 1 . The identified proteins fall into sev-

eral different functional classes, including protein synthesis (TMA19,

RPL12A, EFB1, Eukaryotic translation initiation factor 5A-1) glycolytic
enzymes (glyceraldehyde 3-phosphate dehydrogenase, Phosphoglyc-

erate mutase), chaperone proteins (Hsp10, peptidyl-proryl cis–trans

isomelase) and antioxidant protein Peroxiredoxin type-2. 

One of the spot identified through mass spectrometry was CPR1.

We performed non-reducing SDS–PAGE in the presence or absence

of ebselen examining the protein Cyclophilin A (CypA, human ho-

molog of yeast CPR1). CypA is conserved throughout the phylogenetic

tree from yeast to human [ 45 , 46 ]. CypA possesses a peptidylprolyl

cis–trans isomerase activity that converts the cis and trans config-

urations of the peptide bonds that precede the amino acid proline

[ 47 ]. Interestingly, we observed the appearance of high molecular

weight complexes with Cyclophilin A ( Fig. 6 B and C), suggesting that

a phenomenon similar to that observed with GDH takes place with

Cyclophilin A as well ( Fig. 6 C). Further studies should be carried out

to determine the reasons of such alterations. 
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Fig. 4. gdh3 -dependent ROS generation by ebselen in S. cerevisiae . Wild-type and the gdh1, gdh2 and gdh3 -deletion mutant were treated with 20 μM ebselen for 2 h. Then, they 

were stained with 10 μM H 2 DCFDA for 1 min, and the level of ROS was observed by fluorescence microscopy. (A) Background ROS levels in WT, gdh1, gdh2 and gdh3 -deletion 

mutants. Upper panels show phase contrast microscopy; the lower panels show florescence microscopy of the same cells. (B) ROS level in mutant and wild-type cells. 

Table 1 

List of spots identified by mass spectrometry. 

Spot No. 

Protein description 

(OS = Saccharomyces 

cerevisiae ) Amino acid Accession MW [kDa] pI Score 

1 Phosphoglycerate 

mutase 1 (PGM1) 

247 P00950 27.6 8.84 2920.62 

2 Glyceraldehyde-3- 

phosphate 

dehydrogenase 3 

(TDH3) 

332 P00359 35.7 6.96 932.30 

3 60S ribosomal 

protein L12-A 

(RPL12A) 

165 P0CX53 17.8 9.41 4979.88 

4 10 kDa heat shock 

protein, 

mitochondrial 

(HSP10) 

106 P38910 11.4 9.00 4922.87 

5 Elongation factor 

1-beta (EFB1) 

206 P32471 22.6 4.45 10084.36 

6 Translationally- 

controlled tumor 

protein homolog 

(TMA19) 

167 P35691 18.7 4.56 6741.90 

7 Eukaryotic 

translation initiation 

factor 5A-1 (HYP2) 

157 P23301 17.1 4.96 8620.94 

8 Peroxiredoxin 

type-2 (AHP1) 

176 P38013 19.1 5.16 5587.1 

9 Peptidyl-prolyl 

cis–trans isomerase 

(CPR1) 

162 P14832 17.4 7.44 7673.50 
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Fig. 5. The effect of ebselen on GDH. (A) The effect of ebselen on GDH protease activity was analyzed by incubating purified core histones with chicken GDH in presence and / or 

absence of β-mercaptoethanol. (B and C) Effect of ebselen on core histones and on GDH protein profile was analyzed by resolving proteins on non-reducing and reducing SDS–

PAGE, followed by coomassie brilliant blue R staining (B) and by western blotting with anti-GDH antibody (C) respectively. (D) The cysteine residues (labeled in red) of GDH were 

highlighted as the probable interacting site for ebselen. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ebselen inhibits the sporulation of yeast 

The increase in ROS levels is known to adversely affect several

biological pathways [ 6 ]. Based on our results, we found that ebselen

targets yeast GDH3 to enhance cellular ROS, and GDH3 is known to

be involved in the maintenance of ROS levels during the stationary

phase [ 34 ]. With this background information, we propose that eb-

selen treatment might show effects on the sporulation of yeast cells.

We first determined the sporulation of untreated cells (DMSO con-

trol) and observed that approximately all the cells sporulated within

12 h ( Fig. 7 A), while ammonium sulfate, which is a known inhibitor of

sporulation, strongly reduced spore formation ( Fig. 7 A). In contrast,

ebselen completely abolished the sporulation at a concentration of

20 and 30 μM ( Fig. 7 B). Even after 24 h, no spores were detected in

the ebselen-treated culture. At lower concentrations (5 and 10 μM)

of ebselen treatment, there was no significant difference in spore

morphology compared to that of untreated cells, suggesting that, at

higher doses of ebselen, sporulation was inhibited ( Fig. 7 B). Upon vi-

sual inspection of sporulating cultures by microscopy, marked mor-

phological differences were observed. In the DMSO control, most cells

formed an ascus with spores, whereas the ammonium sulfate-treated

cells had round and inflated shapes ( Fig. 7 A). In contrast, cells that

sporulated in the presence of ebselen (20 μM) accumulated small

granular bodies of unknown nature ( Fig. 7 B, inset), but were devoid

of spores, while 30 μM ebselen-treated cultures showed no morpho-

logical changes like ammonium sulfate-treated cells. 

To substantiate our observations we have analyzed the ROS levels

during the processes of sporulation. We observed ebselen treatment

leads to increase in ROS levels at earlier time point (8 h) compared to
DMSO treated (control) cells in which there was no increase in DCF-

DA fluorescence ( Fig. 7 C). This result suggests that the early increase

in ROS levels due to ebselen treatment causes inhibition of sporu-

lation. Furthermore, we also analyzed the DNA content during the

sporulation processes. Normally the total DNA content is duplicated

(2C-4C) in the sporulation process. Interestingly, our result from FACS

analysis revealed that the pre-meiotic DNA synthesis is inhibited in

presence of ebselen ( Fig. 7 D). Ammonium sulfate (2 mM) treated cells

served as positive control. Additionally, we also examined the expres-

sion of Cda2p, which is required for the formation of chitin wall of

the spore tetrad. The relative increase in Cda2 levels upon ebselen

treatment was significantly less compared to DMSO (control) treated

samples as revealed by western blotting ( Fig. 7 E). Altogether, these

results suggest that ebselen-dependent increase of ROS levels leads

to inhibition of sporulation. 

Discussions 

Many mechanisms exist to regulate the cellular levels of ROS, oth-

erwise their reactive nature may cause damage to key cellular com-

ponents including DNA, proteins, and lipids [ 5 ]. When the cellular an-

tioxidant capacity is exceeded, oxidative stress can result [ 48 ]. Delete-

rious pleiotropic effects of oxidative stress are observed in numerous

disease states and are also implicated in a variety of drug-induced

toxicities [ 49 , 50 ]. We examined the effect of ebselen on the cellular

levels of ROS. Ebselen exhibits strong electrophilicity that underlies

its ability to covalently react with protein cysteine residues to form

selenyl-sulfide bonds [ 51 ]. It has been demonstrated that ebselen

can react rapidly with free thiol groups including protein thiols and
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Fig. 6. Ebselen alters the proteome profile of yeast cells: two dimensional gel electrophoresis gels are showing differentially expressed proteins in control (DMSO) and 25 μM 

ebselen treatment. (A) Proteins were separated in the first dimension on IEF gel (7 cm, pH 3–10) and then run on 12% SDS–PAGE. The red circles represent the protein spots which 

were excised from the gel for mass spectrometric analysis. The effect of ebselen on recombinant human Cyclophilin A. 5.0 μg CyPA incubated with increasing concentration of 

ebselen for 30 min, followed by running non-reducing SDS–PAGE (B) silver stained photograph, (C) corresponding cyclophilin A western signal image. Arrows indicate cyclophilin 

A complex. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 
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on-protein thiols, such as those of glutathione, N-acetyl- l -cysteine, 

ithioerythritol, and dihydrolipoate [ 21 , 23 , 52 ]. Our studies support 

he possibility that this electrophilicity allows ebselen to react with 

ultiple cysteine residues of various proteins, representing the pri- 

ary mechanism by which ebselen inhibits that particular protein / 
nzyme activity. According to the DHF staining results, we identified 

DH as one of the targets of ebselen, subsequently leading to the in- 

rease of ROS levels. Non-reducing SDS–PAGE confirmed that ebselen 

s a chemically reactive species capable of converting GDH to the high- 

olecular weight (hexamer) protein species by a mechanism involv- 

ng intermolecular cross-linking reactions, as already reported by our 

aboratory [ 44 ]. The disappearance of the modified form of GDH un- 

er the reducing SDS–PAGE indicates that the modified GDH protein 

s a disulfide-linked complex. It has been described in several studies 

hat ebselen inhibits function of various thiol containing proteins for 

xample Mycobacterium tuberculosis antigen 85 [ 53 ], NO synthases 

 54 ], H + / K( + )-ATPase [ 55 ], Lactate dehydrogenase [ 56 ], Heme en- 

yme indoleamine 2,3-dioxygenase (IDO) [ 57 ], Diguanylate cyclases 

 58 ], Alcohol dehydrogenase [ 59 ], JMJD2A [ 60 ] and many more. In all 

f these cases ebselen interferes with their SH groups leading to loss 

f their enzymatic activity. Furthermore the activity of these enzymes 

an be restored if reducing agents (DTT or beta-mercaptoethanol) are 

dded along with ebselen; similarly GDH activity is also restored in 

resence of reducing agent (beta-mercaptoethanol) suggesting that 

ike other known targets of ebselen ‘GDH ’ is an another target. We 

ave observed a similar phenomenon when GDH was treated with 

iamide [ 44 ]. Interestingly, yeast GDH3 was found to have a more 

ignificant role in the maintenance of ROS levels upon ebselen treat- 

ent than GDH1 and GDH2 ( Fig. 4 A and B). Our present study is in 

greement with reported literature, which shows that GDH3 is re- 

uired to maintain ROS levels during the stationary phase [ 34 ]. 

Cells are equipped with enzymatic and nonenzymatic antioxidant 
systems to eliminate ROS / RNS and maintain redox homeostasis [ 61 –

63 ]. A major class of enzymatic antioxidants, which catalyze the dis- 

mutation of O 2 
− to H 2 O 2 are the superoxide dismutases (SODs) [ 64 ]. 

Further conversion of H 2 O 2 to H 2 O + O 2 occurs through the action 

of catalase, a heme-based enzyme that is normally localized in the 

peroxisome [ 65 ]. H 2 O 2 is converted to O 2 through coupled reactions, 

with the conversion of reduced glutathione (GSH) to oxidized glu- 

tathione (GSSG), catalyzed by glutathione peroxidase (GPX) [ 66 –68 ]. 

Our results demonstrated that ebselen treatment causes alteration in 

oxidative stress parameters, the oxidized glutathione (GSSG) was in- 

creased significantly while the total glutathione and GSH levels were 

also increased. These results suggest that ebselen treatment leads to 

oxidative stress. 

The redox system is essential in maintaining cellular homeostasis 

[ 61 , 69 ]. Importantly, the increase in mitochondrial ΔΨ in yeast was 

shown to play a role in the cell death induced by acetic acid [ 70 , 71 ] or

by expression of Bax [ 72 ]. In both of these cases, a mitochondrial ΔΨ
increase was followed by strong elevation of the ROS levels. Based on 

the results from present study, we hypothesize that the generation of 

ROS and the increase in mitochondrial ΔΨ will lead to apoptotic cell 

death. It has been already shown that ebselen treatment causes the in- 

duction of apoptosis [ 23 , 73 , 74 ], which substantiates our hypothesis. 

Previously, it has been shown that ebselen treatment causes a dose- 

and time-dependent loss of mitochondrial membrane potential and 

release of cytochrome c [ 73 ]. Furthermore, ebselen also inhibits ATP 

hydrolysis [ 75 ] and causes deterioration of mitochondrial function- 

ing [ 24 ]. Consistent with these studies we have observed alteration in 

mitochondrial membrane potential and increase in intracellular ROS 

levels indicating that mitochondrial physiology is severely affected 

following exposure to ebselen. An increase in ROS levels leads to an 

alteration in various cellular processes [ 76 ]. Accordingly, we found 
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Fig. 7. Ebselen strongly inhibits sporulation in yeast. (A) Microscopic images of cells sporulated for 24 h in the absence of drug (control), in the presence of 2 mM ammonium 

sulfate, (B) or increasing concentration of ebselen. Part of the 20 μM ebselen treated image was magnified; arrows indicate granular bodies of unknown origin. (C) Microscopic 

images of cells sporulated for indicated time (0, 8 and 16 h) in the absence of drug (DMSO), in the presence of 30 μM ebselen. The upper panels show phase contrast microscopy; 

the lower panels show fluorescence microscopy of the same cells after staining with DCF-DA. (D) Analysis of pre-meiotic DNA synthesis in a control (DMSO), and cells treated with 

ammonium sulfate (2 mM) or Ebselen (30 μM) through FACS. Samples were taken at regular interval as indicated in figure after induction of sporulation. Samples were subjected to 

FACS analysis and results were processed with BD FACS Diva software. (E) Yeast strain USY613 (USY61 + pCDA2-eGFP::HygB) was cultured as described in materials and methods 

and treated with 30 μM of ebselen or 2 mM ammonium sulfate for 24 h. 10 ml cells were harvested at regular intervals (0, 6, 12, 18, 24 h). Whole cell extracts were prepared by 

TCA extraction method and samples were subjected to western blot anlaysis using indicated antibodies. Tbp and Gapdh served as loading controls. 
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hat yeast cells exhibited delayed cell cycle progression upon expo- 

ure to ebselen, suggesting that the cells takes more time to overcome 

he stress generated due to the treatment. Interestingly, at high dose 

bselen treatment (50 μM), the extent of oxidative stress-induced 

ellular damage is irreversible because, as evidenced by methylene 

lue staining, it leads to cell death ( Fig. 1 C). Oxidative stress not only 

erves as a type of stimulus that can trigger stress-response signal- 

ransduction pathways, but also can modulate cell death / survival 

hrough direct oxidative modifications of the target molecules, in- 

luding DNA, lipids, and proteins. It is widely recognized that free 

adicals or ROS are involved in speeding the aging process or short- 

ning the life span. At elevated concentrations, ROS exert various 

eleterious effects on normal cellular pathways; here, we showed 

he inhibitory effect of ROS on yeast sporulation ( Fig. 7 ). Meiosis and 

porulation in yeast and spermatogenesis in higher eukaryotes are 

nalogous developmental pathways [ 77 , 78 ]. One of the key players 

n yeast sporulation is Cyclophilin A [ 79 ], which was identified by 

wo-dimensional gel electrophoresis ( Table 1 ) as one of the targets of 

bselen. Our in vitro results clearly demonstrated that ebselen treat- 

ent results in the formation of high molecular weight complex of 

yclophilin A ( Fig 6 B and C), but its enzymatic activity needs to be 

ested. Cyclophilin A is conserved from yeast to human and is en- 

oded by the CPR1 gene [ 80 ]. Cyclophilin A is one of the members of a 

lass of ubiquitous and highly conserved enzymes collectively known 

s peptidyl-prolyl cis –trans isomerases, or prolyl-isomerases, which 

atalyze the cis –trans isomerization of the peptide bonds preceding 

roline residues [ 47 ]. Its role in the process of yeast sporulation is 

eing elucidated and was shown to be required for efficient sporula- 

ion [ 79 ]. Based on our present observations, we can hypothesize that 

bselen treatment may negatively impact gametogenesis in humans 

y targeting Cyclophilin A, because the processes of yeast sporulation 

nd spermatogenesis in human are conserved. Hence, future studies 

hould be performed to validate these observations on human sub- 

ects. 

Taken together, our present study sheds light on the mode of ac- 

ion of ebselen. We have identified the novel function of ebselen as 

n inducer of cellular ROS by inhibiting the function of GDH enzyme 

hrough a covalent crosslinking of its cysteine residues. Elevated lev- 

ls of ROS lead to delayed cell cycle progression, inhibition of sporula- 

ion, and cell death. The remarkable reactivity of ebselen at micromo- 

ar concentrations with the components of the cellular redox system 

eads to various deleterious effects. Hence, further studies aiming to 

dentify the cellular targets of ebselen are required to explore the 

echanisms of action and the possible side effects of this promising 

linically used agent. We hope that this study will aid in the enhanced 

nderstanding of the effects of ebselen on biological systems. 
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