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Functional dyspepsia is a clinically common functional gastrointestinal disorder with a high
prevalence, high impact and high consumption of medical resources. Themicrobiota in the
gastrointestinal tract is a large number of families and is one of the most complex microbial
reservoirs in the human body. An increasing number of studies have confirmed the close
association between dysbiosis of the gastrointestinal microbiota and the occurrence and
progression of functional dyspepsia. Therefore, we reviewed the role of dysbiosis of the
gastrointestinal microbiota, H. pylori infection and gastrointestinal microbiota metabolites
in functional dyspepsia, focusing on the possible mechanisms by which dysbiosis of the
gastrointestinal microbiota contributes to the pathogenesis of functional dyspepsia.
Several studies have confirmed that dysbiosis of the gastrointestinal microbiota may
cause the occurrence and progression of functional dyspepsia by disrupting the biological
barrier of the intestinal mucosa, by disturbing the immune function of the intestinal mucosa,
or by causing dysregulation of the microbial-gut-brain axis. Probiotics and antibiotics have
also been chosen to treat functional dyspepsia in clinical studies and have shown some
improvement in the clinical symptoms. However, more studies are needed to explore and
confirm the relationship between dysbiosis of the gastrointestinal microbiota and the
occurrence and progression of functional dyspepsia, and more clinical studies are needed
to confirm the therapeutic efficacy of microbiota modulation for functional dyspepsia.
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INTRODUCTION

Functional dyspepsia (FD) is one of the most common types of functional gastrointestinal diseases
(FGIDs) in clinical practice, with a high prevalence affecting 10%–30% of adults and 3.5%–27% of
children worldwide (Drago et al., 2021). The main clinical symptoms of patients are early satiety,
postprandial discomfort, epigastric pain, epigastric distension, epigastric burning, loss of appetite,
belching, nausea, and vomiting, which are often accompanied by anxiety and depression (Potter and
Talley, 2020; Zand et al., 2021). It not only affects the life and work of patients, but also brings
economic pressure to patients and national medical services. According to the Rome IV diagnostic
criteria, FD refers to the presence of the above symptoms, but no gastrointestinal organic or
structural lesions explained by gastroenteroscopy, ultrasound, computed tomography,
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gastrointestinal barium meal examination and other
examinations (Wei et al., 2020). Clinically, FD can be divided
into epigastric pain syndrome (EPS), postprandial distress
syndrome (PDS), and EPS-PDS overlap group. Among them,
patients with EPS have epigastric pain and epigastric burning as
the main clinical symptoms, and patients with PDS have
postprandial fullness and early satiety as the main clinical
symptoms. In our Asian countries, patients with PDS type are
the most common (Asano et al., 2017).

According to existing studies, the occurrence of FD is
associated with gastrointestinal motility disorders, increased
visceral sensitivity, impaired gastric tolerance, impaired
gastrointestinal mucosal integrity, abnormal function of brain-
gut axis, increased eosinophils in duodenum, dysbiosis of the
gastrointestinal microbiota, Helicobacter-pylori (H. pylori)
infection, post-gastrointestinal infection, diet, genetics, mental
and psychological factors (Madisch et al., 2018; Black et al., 2020;
Ford et al., 2020). Currently, gastrointestinal motility agents, anti-
anxiety and depression drugs, H. pylori eradication drugs,
Chinese acupuncture and Chinese herbal medicine are also
used to treat FD in clinical practice (Kang et al., 2019; Ford
et al., 2021; Ho et al., 2021; Kwon et al., 2021). The human
digestive tract is the largest reservoir of microbiota in the body, so
it is easily affected by the microbial ecological environment. In
recent years, an increasing number of studies have confirmed that
dysbiosis of the gastrointestinal microbiota plays an important
role in the occurrence and progression of FD (Tziatzios et al.,
2020; Lee, 2021).

GASTROINTESTINAL MICROBIOTA

The gastrointestinal microbiota is an important component of the
human body. The normal human gastrointestinal tract contains
more than 1,000 species and more than 100 trillion microbes.
These microbiota reside in the human gastrointestinal tract and
play an important role in maintaining the gastrointestinal barrier,
immune and metabolic functions (Barko et al., 2018). The human
gastrointestinal tract has the most dense and complex microbiota
pool in the body, and these gastrointestinal microbiota are
interdependent with the human body, forming a mutually
beneficial relationship; and they contain more than 100 times
the total number of human genes, making it a large gene pool
worthy of study. The huge number of the gastrointestinal
microbiota in the gastrointestinal tract in a certain proportion
to achieve a dynamic balance of species and number.
Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes
were the main microorganisms isolated from human
gastrointestinal tract, accounting for more than 98% of the
total number of the gastrointestinal microbiota (Huang et al.,
2019). The fecal and intestinal biopsy tissues of healthy subjects
showed a predominance of the Firmicutes, followed by the
Actinobacteria and Bacteroidetes (Vaga et al., 2020). Once this
balance is disrupted, a series of pathological changes can occur
due to dysbiosis of the gastrointestinal microbiota. In recent
years, the correlation between the gastrointestinal microbiota and
human health and diseases has become one of the hot spots, and

more and more studies have shown that the occurrence and
progression of many human diseases are more or less related to
the dysbiosis of the gastrointestinal microbiota, such as
inflammatory bowel disease (Lloyd-Price et al., 2019), FD
(Tziatzios et al., 2020), irritable bowel syndrome (Shin et al.,
2019) and other gastrointestinal diseases, hypertension (Hsu
et al., 2019) and other cardiovascular diseases (Brown and
Hazen, 2018), respiratory diseases such as asthma (Huang and
Boushey, 2015), Alzheimer’s disease (Borsom et al., 2020),
malignant tumors (Saus et al., 2019), diabetes (Gou et al.,
2021), etc.

GASTROINTESTINAL MICROBIOTA AND
ITS METABOLITES AND FD

Gastrointestinal Microbiota and FD
Proteobacteria phylum belongs to Gram-negative bacteria, which
is the largest phylum of bacteria and one of the most abundant
phyla in the human gastrointestinal microbiota. Its name comes
from Proteus, the god capable of shape-shifting in ancient Greek
mythology. Proteobacteria phylum is divided into five classes, α,
β, γ, δ, and ε, according to rRNA sequences, and the bacteria are
highly heterogeneous and can present different morphologies.
Within humans, Proteobacteria phylum exists not only in the
gastrointestinal tract, but also in the skin, mouth, vagina and
other parts, which can be symbiotic bacteria or pathogenic
bacteria. An increased abundance of Proteobacteria is a sign of
dysbiosis of the gastrointestinal microbiota and can be used as a
potential diagnostic criterion for diseases (Shin et al., 2015). Most
of the bacteria in Firmicutes phylum belongs to the Gram-positive
bacteria, and it’s named for the thicker cell wall of most of the
bacteria in the phylum, which is often spherical or rod-shaped
under the microscope. Firmicutes phylum can be divided into
three classes: anaerobic Clostridium, facultative or aerobic
Bacillus, and non-cell wall Hymenomycetes. Actinobacteria
phylum is also Gram-positive bacteria, named for the radiating
growth of their colonies, which has a higher GC content than
Firmicutes phylum. Bacteroidetes phylum is abundant in the
gastrointestinal tract of humans and animals, accounting for
more than 60% of the total gastrointestinal microbiota of the
digestive tract. And it can be divided into three classes,
Bacteroidetes, Flavobacteria and Sphingobacillaceae.
Bacteroidetes phylum is involved in the fermentation of
carbohydrate, the utilization of nitrogenous substances and the
biotransformation of bile acids and other steroids in the human
gastrointestinal tract.

Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes
are known as the “four phyla” of the gastrointestinal microbiota
in the human body (Rizzatti et al., 2017). Once their relative
abundance or composition proportion in the gastrointestinal
tract is abnormal, it will cause dysbiosis of the gastrointestinal
microbiota and lead to diseases. In recent years, the development
of research technologies such as analytical biology, 16SrDNA
high-throughput sequencing, and gene sequencing has facilitated
the study of the gastrointestinal microbiota and increased the heat
on the correlation between the gastrointestinal microbiota and
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human health and disease. Table 1 summarizes data from studies
investigating gastrointestinal microbiome alterations in FD.

In one study, sequencing of feces from rats in a liver-depression
and spleen-deficiencymodel of FDusing 16S rDNAhigh-throughput
sequencing technology revealed that the relative abundance of the
Bacteroidetes phylum in the feces of rats with FD was significantly
decreased compared to healthy rats, whereas the relative abundance
of the Proteobacteria and Firmicutes phylum was significantly
increased (Qiu et al., 2017). In another experimental animal study,
it was also found that the relative abundance of Bacteroidetes,
Lactobacillus and Prevotellaceae in the gastrointestinal tract of FD
mice decreased, while the relative abundances of Proteobacteria,
Verrucomicrobia, Epsilonbacteraeota, Firmicutes, Lachnospiraceae
NK4A136 group, and Lachnospiraceae increased (Zhang et al.,
2020). In addition, 16SrRNA sequencing of duodenal mucosal
flora of 9 FD patients and nine healthy subjects showed that
Streptococcus was the most abundant in the duodenal mucosa of
both FD patients and healthy subjects, but there was a significant
decrease in the relative abundance of Actinomycete, Atopobium
Collin, Leptotrichia Trevisan, Prevotella, and Veillonella in the
duodenal mucosa of FD patients compared to normal subjects.
Moreover, the total relative abundance of bacteria was positively
correlated with the severity of clinical symptoms of the patients
(Zhong et al., 2017). In one study, FD patients were found to have
significantly increased the phylum Firmicutes and Streptococcus in
the upper gastrointestinal tract compared to healthy subjects, and the
relative abundance of Streptococcus was positively correlated with
upper gastrointestinal symptoms (Fukui et al., 2020). In another
study, it was shown that FD patients had reduced abundance of
Prevotella and increased abundance of Bifidobacterium and
Clostridium compared to healthy subjects, and that the relative
abundance of Prevotella was negatively correlated with the severity
of PDS symptoms (Nakae et al., 2016).

In conclusion, it is evident that the disturbance in the relative
abundance and composition of the microbiota in the
gastrointestinal tract is important for the process of FD
occurrence and progression. In addition, different segments of
gastrointestinal tract contain different microbiota. Studies have

shown that human colon segments are dominated by anaerobic
bacteria such as Bacteroidetes and Lachnospiraceae, while small
intestine segments are dominated by parthenogenic anaerobic
bacteria (Frank et al., 2007). Compared with healthy controls, FD
patients not only had different gastrointestinal microbiota, but
also had different oral microbiota abundance and composition.
Proteobacteria were the dominant bacteria in FD patients’ saliva,
while Bacteroidetes were the dominant bacteria in healthy
controls. According to 16SrRNA sequencing of saliva, the
abundance of Spirochaetes in FD patients was higher than that
in healthy controls, while the abundance of Fusobacteria, TM7
and Proteobacteria was lower than that in healthy controls, and
the levels of Kingella and Abiotrophia genus levels were also
significantly different (Liu et al., 2021).

Gastrointestinal Microbiota Metabolites
and FD
The gastrointestinal microbiota has a complex metabolic process
in the human body. It not only provides itself with the necessary
energy for growth and reproduction, but also can use the
intestinal contents and the endogenous mucus secreted by the
intestinal epithelium to produce a variety of metabolites,
including short-chain fatty acids (ScFAs), cholic acid, choline
metabolites, phenols, lipids, carbohydrates, etc. These metabolites
may be harmful or beneficial to the human body, and are closely
related to human health and the occurrence and progression of
many diseases. Table 2 summarizes data from studies
investigating metabolites of the gastrointestinal microbiota.

The metabolites of ScFAs include formic acid, acetic acid,
propionic acid, butyric acid, etc. Formic acid is less abundant in
the intestinal tract, while the content of the latter three accounts
for more than 90% of the total ScFAs in the intestinal tract (Ríos-
Covián et al., 2016). ScFAs are mainly produced by the
Clostridium group of Firmicutes phylum, as well as by
Lactobacillus, Bifidobacterium, Eubacteriaceae and Fecal
bacteria using some dietary fiber, resistant starch,
oligosaccharides and other compounds that are not easy to

TABLE 1 | Gastrointestinal microbiome analysis studies in functional dyspepsia.

Ref Species Number (FD/
controls, n)

Technique for microbiota
identification

Principal findings

Qiu et al.
(2017)

Rats 3/3 16S rDNA V4 gene
sequencing

Lower abundance of the bacteroidetes phylum, higher abundance of the
proteobacteria and firmicutes phylum

Zhang et al.
(2020)

Mice 12/12 16S rRNA gene sequencing Down regulation of bacteroidetes, Lactobacillus, and prevotellaceae, up regulation of
proteobacteria, verrucomicrobia, epsilonbacteraeota, firmicutes, lachnospiraceae
NK4A136 group, and lachnospiraceae

Zhong et al.
(2017)

humans 9/9 16S rRNA gene sequencing Lower abundance of actinomycete, atopobium collin, leptotrichia trevisan, prevotella,
and veillonella, The total relative abundance of bacteria was positively correlated with
the severity of clinical symptoms

Fukui et al.
(2020)

humans 11/7 16S rRNA V3-V4 gene
sequencing

Up regulation of the phylum Firmicutes and Streptococcus, The relative abundance of
Streptococcus was positively correlated with upper gastrointestinal symptoms

Nakae et al.
(2016)

humans 44/44 16S rDNA gene sequencing Lower abundance of Prevotella, higher abundance of Bifidobacterium and Clostridium,
The relative abundance of Prevotella was negatively correlated with the severity of PDS
symptoms
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digest in the intestinal tract (Markowiak-Kopeć and Śliżewska,
2020). Acetic acid is the metabolite produced by fermentation of
most bacteria, propionic acid is the main metabolite of
Bacteroidetes, and butyric acid is the main metabolite of
Firmicutes. Studies have shown that ScFAs can regulate the
pH value in the intestine, promote the absorption of water,
sodium, calcium, magnesium and other substances, and
provide more than 70% of the energy for the intestinal
epithelial cells, especially butyric acid (Serpa et al., 2010).
ScFAs are also able to inhibit the multiplication and growth of
pathogenic bacteria and the activity of intestinal inflammatory
mediators, thus playing an anti-inflammatory role in the
intestinal tract (Havenaar, 2011). In recent years, studies on
the pathogenesis of FD have shown that the damage of
duodenal mucosal barrier and immune activation played an
important role in the pathogenesis of FD, and more than 40%
of FD patients had microinflammatory cell infiltration in the
duodenum (Nojkov et al., 2020). In addition, gastrointestinal
motility disorders is an important pathogenesis of FD. And
interstitial cells of Cajal (ICCs) are the pacemaker cells of
gastrointestinal tract, which can form SIP syncytium structures
with surrounding platelet-derived growth factor receptor α-
positive cells (PDGFRα+) and smooth muscle cells (SMCs)
through tight intercellular gap junctions (Baker et al., 2013). It
can also form a nerve fibers-ICCs-SMCs network with the
surrounding enteric nervous system and SMCs through tight
intercellular gap junctions, which plays an important role in
regulating the pacing and slow wave propagation of the
gastrointestinal tract (Sanders et al., 2014). Studies have shown
that ScFAs are able to maintain the integrity of gap junctions in
the intestine.

Lipid metabolites include cholesterol, lipopolysaccharide
(LPS), peptidoglycan, and sphingolipids, which are mainly
produced by Bifidobacterium, Lactobacillus, Enterobacteriaceae
and Clostridium. Studies have shown that lipid metabolites can
affect intestinal permeability and intestinal immunity. LPS is
generally released by the death lysis of Gram-negative bacteria,

and it stimulates tumor necrosis factor alpha (TNFα),
interleukin-1β (IL-1β), interferon-gamma (IFNγ), interleukin-8
(IL-8) and other inflammatory factors are released to disrupt the
body’s immune system and induce inflammatory responses
(Alexandrov et al., 2020). Sphingolipids can be produced by
the intestinal symbiotic bacteria Bacteroidetes and
Prevotellaceae. It has been found in animal studies that
sphingolipids can also aggravate intestinal inflammation
(Brown et al., 2019). Indole-derived metabolites are produced
by the fermentation of Clostridium sporogenes and Escherichia
coli. Such metabolites are able to participate in the regulation of
gastrointestinal disorders by regulating the brain-gut axis and
protecting against stress-induced damage in the gastrointestinal
tract. Tryptophan is a key monoamine neurotransmitter involved
in the regulation of central neurotransmission and intestinal
physiological functions, and studies have shown that the
gastrointestinal microbiota can regulate the brai006E-gut axis
through tryptophan metabolism (Gao et al., 2019; Gao et al.,
2020).

H. PYLORI, GASTROINTESTINAL
MICROBIOTA AND FD

H. pylori is a Gram-negative that colonizes mainly the stomach
and duodenum and interacts with the gastrointestinal microbiota.
H. pylori colonization in the stomach and duodenum can cause
changes in pH and mucosal damage in the stomach and
duodenum, which can further cause colonization by other
bacteria, leading to changes in the gastrointestinal microbiota.
Sequencing of 16S rRNA genes showed significant differences in
the abundance of bacteria on the gastric and duodenal mucosa
between H. pylori-positive and H. pylori-negative subjects, with
H. pylori- patients having significantly higher levels of
Helicobacter, while the relative abundance of the phylum
Actinobacteria, Bacteroidetes, Firmicutes and Clostridium were
significantly lower (Schulz et al., 2018). Another study showed

TABLE 2 | Studies of gastrointestinal microbiota metabolites and their effects.

Ref Metabolites Primary sources Effects

Markowiak-Kopeć and Śliżewska,
(2020); Serpa et al., (2010); Haveaar,
(2011)

ScFAs (formic acid, acetic
acid, propionic acid, butyric
acid)

The Clostridium group of Firmicutes phylum, and
Lactobacillus, Bifidobacterium, Eubacteriaceae,
Fecal bacteria

Regulation of the pH value in the intestine;
Promoting the absorption of water, sodium,
calcium, magnesium and other substances;
Inhibiting the multiplication and growth of
pathogenic bacteria and the activity of intestinal
inflammatory mediator; Maintaining the integrity
of gap junctions in the intestine.

Alexandrov et al. (2020) Lipid (cholesterol, LPS,
peptidoglycan)

Bifidobacterium, Lactobacillus,
Enterobacteriaceae and Clostridium

Regulation of the intestinal permeability and
intestinal immunity; Disruption of the body’s
immune system and induction of inflammatory
responses.

Brown et al. (2019) Lipid (sphingolipids) Bacteroidetes and Prevotellaceae Aggravating intestinal inflammation

Gao et al., (2019); Gao et al. (2020) Indole-derived (tryptophan) Clostridium sporogenes and Escherichia coli Regulation of the brain-gut axis and protection
against stress-induced damage in the
gastrointestinal tract
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that H. pylori infection can cause changes in the relative
abundance of Neisseria, Rothia, TM7-3, Leptotrichia,
Lachnospiraceae, Megasphaera, F16, Moryella, Filifactor, and
Paludibacter bacteria and disrupt the normal colonization of
the duodenum (Maeda et al., 2022). H. pylori infection can
also mediate the body’s immune response, thus affecting the
gastrointestinal microbiota. It was found that H. pylori-positive
patients had significantly different abundance of microbiota in
the stomach compared to H. pylori-negative subjects, and their
serum Foxp3, interleukin-10 (IL-10), and transforming growth
factor-β (TGF-β) levels were increased, consistent with increased
T-regulatory cell responses (Brawner et al., 2017). In addition, the
microbiota in the gastrointestinal tract can also affect the
colonization of H. pylori, and studies have found that
Lactobacillus can inhibit the growth of H. pylori strains and
can be used in the treatment of H. pylori infections (Salas-Jara
et al., 2016; Huang et al., 2022). Studies have shown a significant
correlation between H. pylori infection and the composition of
the gastrointestinal microbiota, particularly Prevotella copri and
Eubacterium biforme (Lapidot et al., 2021).

Previous studies have confirmed that there is a causal
relationship between H. pylori infection and dyspeptic
symptoms, and that H. pylori infection is an important
pathological factor in the occurrence and progression of FD,
and its specific mechanism of action may be related to
inflammation of the gastrointestinal mucosa and altered
gastrointestinal motility (Kim et al., 2017; Koletzko et al.,
2019). A follow-up of H. pylori-positive people revealed that
patients with a history ofH. pylori infection were at higher risk of
developing FD (Loor et al., 2021). In contrast, H. pylori
eradication treatment is effective in improving symptoms in
patients with H. pylori-associated dyspepsia (Tanaka et al.,
2021). H. pylori infection has the ability to affect not only the
microbiota in the gastrointestinal tract but also the microbial
metabolism, which affects the occurrence and progression of FD
through these pathways (White et al., 2021).

POSSIBLE MECHANISMS OF FD DUE TO
THE DYSBIOSIS OF GASTROINTESTINAL
MICROBIOTA
Disruption of the Intestinal Mucosal Barrier
The normal intestine is protected by a biological barrier that
separates the intestinal luminal contents from the internal
environment of the organism and prevents the invasion of
foreign bacteria, which is called the intestinal mucosal barrier.
It is a semi-permeable barrier that allows the absorption and
transport of nutrients but not the entry of harmful substances,
luminal antigens and pathogens, and plays an important role in a
variety of physiological functions such as digestion, absorption
and metabolism (Farré et al., 2020). The composition of the
intestinal mucosal barrier includes the mucus layer of the
intestine, intestinal epithelial cells, microbiota in the intestine
and antimicrobial peptides secreted by intestinal epithelial cells,
etc. The mucus layer is located in the innermost layer of the
intestinal cavity, which on the one hand can facilitate the

downward movement of the intestinal contents down the
intestine, and on the other hand separates the intestinal
contents from the intestinal epithelial cells, which can protect
the intestinal epithelium from acids, digestive enzymes, and
pathogenic bacteria in the intestinal lumen (Paone and Cani,
2020). When the abundance and composition of the
gastrointestinal microbiota are altered, the number of
beneficial bacteria in the intestine decreases and the number
of pathogenic bacteria increases, and pathogenic bacteria, as well
as the endotoxins released by them, can invade the intestinal
mucosa, which can damage the intestinal mucosal barrier and
cause increased permeability of the intestine. Studies have shown
that the gastrointestinal microbiota can affect the barrier function
of the intestinal mucosa directly by stimulating the proliferation
of epithelial cells or inducing the secretion of cytokines by
epithelial cells, and indirectly by synthesizing essential
nutrients, vitamins and ScFAs, which are energy sources for
intestinal epithelial cells.

Damage to the intestinal mucosal barrier can cause
increased permeability of the intestinal mucosa and reduced
blockage of harmful substances by the intestinal mucosal
barrier, which is one of the important mechanisms in the
pathogenesis of FD (Taki et al., 2019). In a pilot study using
measurement of baseline impedance to assess the integrity of
the small intestinal mucosa, baseline impedance was found to
be significantly lower in the duodenum and jejunum of
patients with dyspepsia compared to healthy controls,
indicating that patients with dyspepsia have impaired small
intestinal mucosal integrity and increased permeability
(Nakagawa et al., 2020). In addition, tight junction proteins
play an important role in the barrier function of the duodenal
mucosa, and tight junction proteins such as ZO-1 and CX43
are commonly used as indicators to assess the barrier function
and permeability function of the intestinal epithelial mucosa
(Oshima and Miwa, 2016). Studies show that monobutyric
acid and monovaleric acid in ScFAs can upregulate the
expression of the tight junction protein ZO-1 and thus
protect the intestinal mucosal barrier (Nguyen et al., 2020).
Intestinal epithelial cells are an important component of the
intestinal mucosal barrier and are differentiated from stem
cells at the base of the intestinal mucosal crypts, and the
maintenance and repair of the intestinal mucosal barrier
depends on the normal proliferation and differentiation of
these stem cells (You et al., 2021). TheWnt/β-catenin signaling
pathway is a key regulator of intestinal epithelial stem cells and
plays an important regulatory role in the proliferation and
maintenance of intestinal epithelial stem cells (Koch, 2017).
Studies have shown that Citro Bacter and Salmonella can cause
excessive proliferation of stem cells at the base of the intestinal
mucosal crypts in mice and instead disrupt the intestinal
epithelial barrier, whereas Lactobacillus reuteri and
Lactobacillus acidophilus can protect the integrity of the
intestinal epithelial barrier and maintain the intestinal
mucosal barrier function by modestly regulating the
proliferation of intestinal epithelial cells and increasing the
secretion of antimicrobial peptides through activation of the
Wnt/β-catenin signaling pathway (Wu et al., 2020).
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Disturbance of the Intestinal Immunity
Another important role of the gastrointestinal microbiota is to
shape the intestinal immune response as well as to initiate
systemic innate immunity. Recent studies have confirmed that
immune activation of the duodenal mucosa plays an important
role in the development and progression of FD, with mild
inflammatory cell infiltration of the duodenum present in
upwards of 40% of FD patients (Nojkov et al., 2020).
Dysbiosis of the gastrointestinal microbiota can cause
abnormalities in the intestinal barrier and function, which can
activate the intestinal immune response and trigger
gastrointestinal diseases such as FD. A one-year follow-up of
patients with gastroenteritis caused by Salmonella infection
revealed a significant increase in the probability of FD (Mearin
et al., 2005), and an increase in the number of eosinophils and
mast cells was evident in the gastric mucosa and duodenal
mucosa of FD patients after infection (Kindt et al., 2009). An
animal study showed that gut flora feeding germ-free mice drove
the development of B lymphocytes and T lymphocytes in mice,
and also reduced interleukin-4 (IL-4) production and increased
interleukin-12 (IL-12), IL-10 and IFNγ production (Hrncir et al.,
2008). Another study showed that nuclear factor-κB (NF-κB) is a
key regulator of immune function and has an important role in
the pathogenesis of autoimmune diseases as well as inflammatory
diseases (Sun, 2017). Activation of the Akt/NF-κB signaling
pathway can lead to the release of inflammatory factors in the
intestinal barrier, resulting in intestinal inflammation. In
contrast, the intestinal microbial metabolites ScFAs can inhibit
NF-κB transfer and suppress the secretion of inflammation-
related factors interleukin-2 (IL-2), interleukin-6 (IL-6), and
TNF-α.

In addition, small intestinal bacterial overgrowth (SIBO)
characterized by an increased concentration of bacteria in the
small intestine, is also an important mechanism in the
pathogenesis of FD (Gurusamy et al., 2021). Usually, the
bacterial concentration in the small intestine is lower than 103
colony forming units (CFU)/mL, and the bacterial species is
predominantly Gram-positive. Bacterial concentrations higher
than 105 CFU/ml in the small intestine are diagnosed as SIBO,
and also in the intestine of patients with the presence of SIBO,
bacterial species are found to be altered, often with large numbers
of Gram-negative and anaerobic bacteria (Losurdo et al., 2020).
Studies have shown that there are two possible mechanisms by
which SIBO triggers FD: one may be the direct damage to the
integrity of the intestinal mucosa by overgrown bacteria, which
can lead to increased intestinal mucosal permeability, the other
may be the activation of the intestinal immune response by
metabolites produced by these bacteria, causing the release of
inflammatory factors or immune mediators that trigger the
intestinal inflammatory response (Gasbarrini et al., 2007;
Lauritano et al., 2010).

Dysregulation of the Microbial-Gut-Brain
Axis
The physiological activity of the gastrointestinal tract is regulated
by the enteric nervous system, the central nervous system and the

autonomic nervous system in multiple ways, among which there
is a bidirectional regulation mechanism between the gut and the
brain. The interaction between the microbiota in the intestine, the
intestine and the central nervous system constitutes the
microbial-gut-brain axis, which refers to the phenomenon that
changes in the microbiota in the intestine can cause changes in
various physiopathological activities in the intestine, and then
transmit the stimuli to the central nervous system, which in turn
can regulate various physiopathological activities in the intestine.
Under stress conditions, alterations in central nervous system
activity can also regulate gastrointestinal motility, immunity,
secretion, and other functions as well as affect the composition
of the gastrointestinal microbiota (Wang and Kasper, 2014).
ScFAs, metabolites of the gastrointestinal microbiota, are often
considered as key mediators of communication between the
central nervous system and the intestine, and ScFAs induce
intestinal secretion of glucagon-like peptide 1 (GLP1), γ-
aminobutyric acid (GABA), and other hormones that can
transmit stimuli to the central nervous system via the
circulatory system or the vagal pathway (Silva et al., 2020). In
addition, the gastrointestinal microbiota such as Bacteroides,
Bifidobacterium, Escherichia coli can also overproduce
neurotransmitters such as GABA (Strandwitz et al., 2019).

In one study, it was found that feeding with a high-fat diet can
lead to dysbiosis of the gastrointestinal microbiota and stimulate
Toll-like receptors 4 (TLR4) inflammation on microglia by
increasing LPS ectopic and activating LPS-binding proteins
(LBP) activation of the pathway (Jamar et al., 2021). In
another animal study, TLRs expression was elevated and
gastrointestinal motility was decreased after stimulation of
mice using antimicrobial drugs, suggesting that the
gastrointestinal microbiota can regulate gastrointestinal
motility function stimulating neuroimmunity through
activation of TLRs inflammatory pathway (Grasa et al., 2015).

Other Mechanisms
The process of FD is closely related to factors such as gastrointestinal
motility disorders and gastrointestinal hypersensitivity, which in
turn are closely related to the gastrointestinal microbiota. 5-
Hydroxytryptamine (5-HT), as an immunomodulatory factor, is
present in large quantities in the gastrointestinal tract and is involved
in the regulation of gastrointestinal motility and sensation (Fu et al.,
2019). Dysbiosis of the gastrointestinal microbiota and some of the
metabolites it produces can lead to an increase in the number ofmast
cells in the intestinal mucosa, thus causing the release of active
substances such as 5-HT and histamine in the gastrointestinal tract,
which are involved in the regulation of gastrointestinal dynamics and
visceral sensitivity. It has been shown that the increased abundance
of Prevotella, Lactobacillus and Alistipes in the intestine is positively
correlated with the concentration of saturated long-chain fatty acids
(SLCFAs), and the increased concentration of SLCFAs in the
intestine can promote the contraction of intestinal smooth
muscle, which causes increased intestinal motility (Zhao et al.,
2018). The injection of bacteria into germ-free rats induces an
increase in gastrointestinal slow-wave activity.

In addition, there was a correlation between the
gastrointestinal microbiota and the visceral pain pathway,
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where the presence of inflammatory stimuli in germ-free mice
was found to diminish pain perception, while the use of probiotics
effectively improved the pain response inmice; indicating that the
presence of the gastrointestinal microbiota can influence the
onset and progression of gastrointestinal disease processes not
only by affecting gastrointestinal myoelectric activity, but also by
affecting visceral nociception, among other pathways
(Chichlowski and Rudolph, 2015).

POTENTIAL TREATMENT FOR FD:
MODULATING MICROBIOTA

Since dysbiosis of the gastrointestinal microbiota is closely related
to the occurrence and progression of FD, regulation of the
gastrointestinal microbiota becomes one of the potential
therapeutic modalities for FD. In a randomized controlled trial
using probiotics (Bacillus coagulans MY01 and Bacillus subtilis
MY02) versus placebo for the treatment of patients with FD, the
efficacy of the treatment group with probiotics was significantly
higher than that of the placebo group, but there was no significant
difference between the efficacy of patients in the placebo group
who were also using proton pump inhibitors and the treatment
group (Wauters et al., 2021). In another clinical randomized
controlled trial, treatment of FD with a mixture of probiotics
(Bacillus coagulans, Bacillus clausii, and Bacillus subtilis) was
significantly more effective than the placebo group in improving a
variety of clinical symptoms such as eructation, bloating,
belching, and acid reflux in patients (Soman and Swamy,

2019). It was also found that dietary treatment with a protein
formula supplemented with Lactobacillus rhamnosus was
effective in preventing FGIDs in children with milk allergy
(Nocerino et al., 2019). The Extra-virgin olive oil diet, which
is rich in probiotics, is also effective in improving the digestive
symptoms of FD patients (Ianiro et al., 2013). A large number of
studies have confirmed that probiotics can effectively regulate the
gastrointestinal microbiota and are safe and effective for the
treatment of FD, which may provide a potential mechanism
for the clinical treatment of FD. In addition, probiotics have
been shown to inhibit H. pylori and thus may improve H. pylori-
associated dyspepsia symptoms, but some studies have also found
that probiotics are still effective in improving symptoms in FD
patients with H. pylori-uninfected (Ohtsu et al., 2017).

CONCLUSION

The mechanism of FD due to dysbiosis of the gastrointestinal
microbiota mainly includes two situations: on the one hand, the
abnormal composition and abundance of the gastrointestinal
microbiota itself causes gastrointestinal tract dysfunction, and on
the other hand, the change of metabolites due to the alteration of the
gastrointestinal microbiota leads to abnormal gastrointestinal tract
function. A large number of basic and clinical studies have shown
that there are dysbiosis of the gastrointestinal microbiota such as
decreased diversity and abundance of the gastrointestinal microbiota
in FD patients and animals, especially the decrease of relative
abundance of Firmicutes phylum, which dominates

FIGURE 1 | Disease models for the pathogenesis of FD associated with gastrointestinal microbiota (created with BioRender.com).
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gastrointestinal microbiota and plays an important regulatory role in
maintaining immune homeostasis in the intestine. In addition,
abnormal metabolites of the gastrointestinal microbiota can also
disrupt the intestinal biological barrier and immune barrier. Both
dysbiosis and abnormal metabolites of the gastrointestinal
microbiota can mediate the occurrence and progression of
gastrointestinal diseases by disrupting the intestinal mucosal
barrier, disturbing the intestinal immune function, and causing
dysregulation of the microbial-intestinal-brain axis (Figure 1).

Since dysbiosis of the gastrointestinal microbiota is one of the
pathological mechanisms in the pathogenesis of FD, probiotics
and H. pylori eradication drugs are commonly used in clinical
treatment to treat FD. A large number of studies have confirmed
that H. pylori eradication drugs can effectively inhibit the
activity of H. pylori in the gastrointestinal tract, while
probiotics can effectively regulate the microbiota in the
gastrointestinal tract and inhibit the growth of harmful
bacteria, thus protecting the barrier function of the
gastrointestinal mucosa and immune function and effectively
preventing and treating the occurrence of FGIDs (Padole et al.,
2021; Wauters et al., 2021). Currently, probiotics have been
widely used in the clinical treatment of FD, irritable bowel
syndrome (Moeen-Ul-Haq et al., 2022), functional constipation
(Kim et al., 2021), functional diarrhea (Jung et al., 2022) and
other gastrointestinal diseases, and probiotics have been
effective in the clinical treatment of these FGIDs.

The gastrointestinal microbiota in human body is influenced
by many factors, including daily diet, living habits, drug
consumption, genetics, environmental factors, stress factors,
etc. These factors have a certain influence on the structure and
composition of the gastrointestinal microbiota. And the
gastrointestinal microbiota in humans varies with age, and
studies have shown that the intestinal tract of newborns is
dominated by the colonization of parthenogenic anaerobic
bacteria such as Enterobacteriaceae, Streptococcus and
Lactobacillus, while after 1 week of life the intestinal tract is
dominated by anaerobic bacteria such as Bifidobacterium,
Clostridium and Bacteroides, but when they begin to add
complementary foods, the gastrointestinal microbiota also
begins to become diverse and relatively stable (Grier et al.,
2017). Due to the individual variability of the gastrointestinal
microbiota, both techniques and tools are currently challenging
for humans to study the interactions between host diseases and
the gastrointestinal microbiota.
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