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Abstract

In recent years, various large-scale proteomic studies have demonstrated that mitochondrial

proteins are highly acylated, most commonly by addition of acetyl and succinyl groups.

These acyl modifications may be enzyme catalysed but can also be driven non-enzymati-

cally. The latter mechanism is promoted in mitochondria due to the nature of the mitochon-

drial microenvironment, which is alkaline and contains high concentrations of acyl-CoA

species. Protein acylation may modify enzyme activity, typically inhibiting it. We posited that

organismal ageing might be accompanied by an accumulation of acylated proteins, espe-

cially in mitochondria, and that this might compromise mitochondrial function and contribute

to ageing. In this study, we used R. norvegicus, C. elegans and D. melanogaster to compare

the acylation status of mitochondrial proteins between young and old animals. We observed

a specific age-dependent increase in protein succinylation in worms and flies but not in rat.

Rats have two substrate-specific mitochondrial deacylases, SIRT3 and SIRT5 while both

flies and worms lack these enzymes. We propose that accumulation of mitochondrial protein

acylation contributes to age-dependent mitochondrial functional decline and that SIRT3 and

SIRT5 enzymes may promote longevity through regulation of mitochondrial protein acylation

during ageing.

Introduction

Mitochondrial dysfunction and hypo-metabolism are well-documented features of the ageing

process in many organisms, ranging from nematodes to humans [1–4]. Impaired mitochon-

drial function is also commonly observed with ageing in various model organisms [5–7]. Mito-

chondrial dysfunction, moreover, plays an important role in the development and progression

of many age related diseases [8–11]. Detrimental mutations in genes involved in mitochondrial

function and particularly in homeostasis reduce lifespan or hasten the onset of neurodegenera-

tive diseases in a variety of animals, including humans [8,9,12–14].

PLOS ONE | DOI:10.1371/journal.pone.0168752 December 29, 2016 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Hong SY, Ng LT, Ng LF, Inoue T,

Tolwinski NS, Hagen T, et al. (2016) The Role of

Mitochondrial Non-Enzymatic Protein Acylation in

Ageing. PLoS ONE 11(12): e0168752. doi:10.1371/

journal.pone.0168752

Editor: Axel Imhof, Ludwig-Maximilians-

Universitaet Muenchen, GERMANY

Received: July 8, 2016

Accepted: December 6, 2016

Published: December 29, 2016

Copyright: © 2016 Hong et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The authors would also like to gratefully

acknowledge the Singapore Ministry of Education

(MOE). Work in the authors’ laboratory is

supported by MOE Academic Research Fund to JG

and NT (MOE2014-T2-2-120 to JG, MOE2014-T2-

2-039 to NT). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168752&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168752&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168752&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168752&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168752&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168752&domain=pdf
http://creativecommons.org/licenses/by/4.0/


The most widely proposed mechanism for ageing-associated mitochondrial dysfunction is

oxidative stress [15–18]. Mitochondrial oxidative stress is mainly due to reactive oxygen spe-

cies (ROS) generated by the electron transport chain (ETC). ROS can react with mitochondrial

DNA and proteins, leading to the formation of adducts that, in turn, may impair the function

of the ETC. It has been proposed that, as a result of ETC dysfunction, more ROS are produced

and thus a vicious cycle of increased oxidative damage may ensue [19], however the evidence

for this cycle is at best equivocal [20,21]. The causal role of ROS mediated mitochondrial dam-

age in ageing has also been questioned as attempts to lower ROS levels (e.g. with antioxidants

or by overexpression of ROS detoxifying enzymes) do not consistently extend lifespan, and

because ageing is not always correlated with a consistent increase in markers of oxidative dam-

age [22–27]. Therefore, although it is clear that mitochondrial function declines with age in

most animals, the molecular cause for this decline remains controversial.

Recently, protein acylation has been identified as a mechanisms that is distinct from other

forms of posttranslational protein modification but can also impair protein function [28–31].

Protein acylation is the addition of an acyl group, typically to the ε-amino group of lysine resi-

dues in proteins. The substrates for protein acylation are usually energy rich acyl-coenzyme A

thioesters such as acetyl-CoA, succinyl-CoA and malonyl CoA, resulting in protein acetyla-

tion, succinylation and malonylation, respectively [32]. Protein acylation can be mediated

enzymatically through the action of acetyl transferases and can be reversed through deacylat-

ing enzymes (HDACs) of the histone deacetylase family (comprising of various classes) and

the Sirtuin family [33–35]. The best characterized functions of protein acetylation are chroma-

tin regulation as well as transcriptional regulation through the acetylation of histone proteins

and transcription factors [36,37]. In addition, it has been recognised that different forms of

acylation of other cellular proteins can also regulate cellular processes, including autophagy

and cellular metabolism [38–40]. Notably, the regulation of protein acylation, specifically

through Sirtuin deacylating enzymes, has been recognized to play an important role in ageing

at least in various model organisms [41,42].

Interestingly, recent proteomic studies have demonstrated that mitochondrial proteins,

including many metabolic enzymes and ETC subunits, are highly acylated in vivo [29–31,38,

43,44]. In functional studies, acylation of mitochondrial proteins was shown to most com-

monly inhibit protein or enzyme function but the exact mechanism and, in particular, the

acyl transferases involved in mediating the acylation of mitochondrial proteins are currently

unclear [28,45]. As originally described by Paik (1970), proteins can also be acetylated non-

enzymatically[46]. Recent work has shown that mitochondrial protein acetylation and succi-

nylation is likely predominantly mediated in a non-enzymatic manner [47–49]. Such non-

enzymatic protein acylation in mitochondria is favoured by the high concentrations of acetyl-

CoA and succinyl-CoA present in mitochondria and by the alkaline microenvironment in the

mitochondrial matrix [32,47,48,50]. Of particular interest in the context of ageing is the notion

that this non-enzymatic mitochondrial protein acylation may contribute to mitochondrial dys-

function during ageing and to the pathogenesis of various human diseases.

In this study, we set out to test some of the expected consequences of the hypothesis that

mitochondrial dysfunction during ageing is associated with increased mitochondrial protein

acylation levels. In order to quantify mitochondrial protein acylation, we have used a Western

blotting based approach. First, we optimized and validated antibodies and extraction protocols

for the quantification of protein acylation (acetylation and succinylation) in tissue extracts.

After extensive antibody validation, we confirmed that conditions prevalent in mitochondria

promote protein acylation and that this process can be reversed by recombinant SIRT3 pro-

tein. We then compared the mitochondrial acylation status in ageing nematodes (Caenorhab-
ditis elegans), flies (Drosophila melanogaster) and rodents (Rattus norvegicus). In rats we
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compared acylation levels in brain, liver and heart tissue at different ages while in C. elegans we

determined acylation levels at different ages in wild-type and long lived (age-1) mutants and

compared ageing trends in acylation with protein carbonylation (oxidative damage). For age-

ing nematodes and rat brain tissue we also determined parameters of mitochondrial function

(oxygen consumption) in tissues from ageing animals to quantify age-dependent decline in

respiratory capacity. Our study shows that there is a specific increase in protein succinylation

in both C. elegans and D. melanogaster but not in rats, at least for the ages tested. This change

in acylation is associated with by a clear age-dependent decline in the metabolic activity of

nematodes but not rat brains. Interestingly, protein succinylation in nematodes appears to

show ageing trends that are at least as robust as those for protein oxidation. These results are

consistent with the hypothesis that substrate-specific mitochondrial deacylases in rat amelio-

rate age-dependent increases in mitochondrial protein acylation and warrant further study in

ageing models and humans.

Material and Methods

2.1 C. elegans

The temperature sensitive sterile Caenorhabditis elegans strains TJ1060 [spe-9(hc88) I; fer-15
(b26) II] and TJ1062 [spe-9(hc88) I; fer-15(b26) age-1(hx542) II] provided by Caenorhabditis
Genetics Center (Minneapolis, MN), were used in this study. The nematodes were propagated

at 15˚C and maintained at 25˚C on nematode growth medium (NGM) plates supplemented

with Escherichia coli OP50-1 as food source [51]. All strains are infertile at 25˚C. Age-synchro-

nized animals were prepared by hypochlorite treatment. Eggs were allowed to hatch and age-

synchronized animals were harvested at day 5 and day 12 of adulthood.

2.2 D. melanogaster

Fruit flies (Drosophila melanogaster, OregonR) of mixed gender were cultured on medium

containing glucose (6g Bacto agar, 114g glucose, 56g cornmeal, 25g live yeast and 20ml of 10%

Nipagin in 1l final volume). Ten age-synchronized 1-, 10- and 30-day-old flies were collected

in micro-centrifuge tubes. Whole fly lysates were prepared by homogenizing ten flies in lysis

buffer containing 280mM sucrose, 0.1% Triton-X, 10mM Tris-HCl (pH 7.4), 1mM EDTA,

0.5mM protease inhibitor PMSF, deacetylase inhibitors 500nM trichostatin A (TSA) and

10mM nicotinamide (NAM). SDS sample loading buffer was then added to the samples and

subjected to SDS-PAGE and western blotting.

2.3 R. norvegicus

All animals tissues used in this study were surplus tissues from male rats (250– 350g) taken

from the control groups of two experiments (one using Wistar and the other Sprague-Dawely

rats) carried out at DSO Singapore National Laboratories. Access to food and drinks of all con-

trol animals was ad libitum and animals were kept on a 12h/ 12h light/ dark cycle. Animals

were sacrificed by first anaesthetizing them with ketamine (75mg/kg) and xylazine (10mg/kg)

intraperitoneally, followed by transcardial puncture. All animal experiments were approved by

the DSO Institutional Animal Care and Use Committee (DSO IACUC).

2.4 Selection of age-groups

Nematodes of this strain and at the temperature used typically survive to a maximum age of

18–20 days with a median lifespan of about 10 days [52] while the average lifespan of fruit fly

at 25˚C is about 60 to 80 days, with maximum lifespan of 70 to 90 days [25,53]. For all animals
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we have chosen ages at which we expected to see significant age-dependent decline and dam-

age accumulation but well before there is significant mortality and associated selection effects.

2.5 Immunoblotting

Proteins were resolved by SDS-PAGE and transferred onto nitrocellulose membrane (Bio-Rad

Laboratories, Inc.). Antibodies used to probe the membrane were: mouse anti-GST, goat anti-

pan acetyl antibody (sc-8649; Santa Cruz Biotechnology), mouse anti-acetyl lysine (05–515

clone 4G12; Millipore), anti-rabbit acetylated-lysine (#9441, CST), anti-rabbit succinylated-

lysine (PTM Biolabs), mouse anti-NDUFS3 antibody (Abcam).

2.5.1 Protein carbonyl content (PCC) determination. Protein carbonyl content was per-

formed as described in [54,55]. Briefly, two hundred nematodes were assayed for protein car-

bonyl content. The nematodes were collected, washed in M9 buffer and sonicated on ice in

PBST (phosphate-buffered saline with 0.1% Tween-20) containing 1mM PMSF. Protein con-

centration of the lysates was determined using Bradford protein assay (Bio-Rad Laboratories,

Hercules, CA, USA). PCC of the lysates were determined using the Oxyblot Protein Oxidation

Detection Kit (Milipore, Billerica, MA, USA). 2μg of lysate was derivatized and transferred

onto a nitrocellulose membrane via slot blot (Bio- Rad, Hercules, USA) under vacuum. The

membrane was blocked and probed with anti-dinitrophenylhydrazine primary antibody

(1:150), followed by secondary detection with an anti-rabbit horseradish peroxidase- conju-

gated IgG antibody (1:300). Protein bands were visualized using a chemiluminescence sub-

strate mixture (Pierce Biotechnology, Thermo Fisher Scientific, Waltham, MA, USA).

2.6 Preparation of recombinant Sirt3

GST-Sirt3 fusion protein plasmid was generated by inserting Sirt3 coding sequence (Accession:

NM_012239) corresponding to 15–399 amino acids into the pGEX-KG vector. The fusion protein

was then expressed in BL21 bacteria and purified using GSH-agarose beads (GE Healthcare).

2.7 Mitochondria extraction

2.7.1 Mouse/Rat. Mitochondria were extracted from mouse or rat tissues by differential

centrifugation as previously described [56] using mitochondrial isolation buffer that contained

280mM sucrose, 10mM Tris-HCl (pH 7.4), 1mM EDTA as well as the deacetylase inhibitors

500nM trichostatin A (TSA) and 10mM nicotinamide (NAM).

2.7.2 C. elegans. Mitochondria from 10,000 nematodes were extracted as previously

described [54]. Nematodes were washed in S-basal buffer (100mM NaCl, 5.7mM K2HPO4,

44.1mM KH2PO4, 0.01mM cholesterol) and homogenized in isolation buffer (210mM manni-

tol, 70mM sucrose, 0.1mM EDTA, 5mM Tris-HCl, pH 7.4). Debris and nuclei were removed

from the homogenate by differential centrifugation at 600g for 10 min at 4˚C. Mitochondrial

pellet was obtained by centrifuging the supernatant at 7200g for 10 min at 4˚C and re-sus-

pended in Tris-EDTA buffer (50mM Tris-HCl, 0.1mM EDTA, pH 7.4). Mitochondria were

kept at -80˚C until further analysis.

2.8 Measurement of oxygen consumption

2.8.1 Brain Extract. Oxygen utilization was measured using a Clark type oxygen electrode

(Rank Brother Ltd). Mitochondria were resuspended in respiratory buffer consisting of

225mM sucrose, 10mM KCl, 1mM EDTA, 10mM K2HPO4-KH2PO4, 5mM MgCl2 and 10mM

Tris- HCl (pH 7.4). Glutamate-malate, ADP and FCCP were added sequentially to measure

the different respiratory states.
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2.8.2 C. elegans. Oxygen consumption rates of C. elegans were measured using Seahorse

XF-96 analyser as previously described in [57] with some modifications. Briefly, ten age-syn-

chronized day 5 and day 12 nematodes were collected into each well of the seahorse utility

plate containing M9 buffer. Basal oxygen consumption rate, maximal and spare respiratory

capacity of the nematodes were determined by normalizing to the number of worms per well.

2.9 In vitro non-enzymatic acetylation assay

Mitochondria extracted from mouse liver were incubated for 6 hours at 37˚C in buffer con-

taining 150mM NaCl and 50mM Tris-HCl (pH 8.0), supplemented with either 1.5mM acetyl-

CoA or 1.5mM sodium acetate.

2.10 In vitro deacetylation assay

Mitochondrial extracts subjected to the in vitro non-enzymatic acetylation assay were incu-

bated with recombinant GST-tagged SIRT3 in SDAC buffer (50mM Tris-HCl pH 9, 4mM

MgCl2, 50mM NaCl, 0.5mM DTT) and 1mM NAD+ at 37˚C for 3 hours with gentle shaking.

The reaction was then stopped by the addition of 4x SDS loading buffer.

Results

Validation of acetylated lysine antibodies

In our study, we were interested in studying two specific forms of acylation; acetylation and

succinylation. As commercially available anti-acetylated lysine antibodies are raised against

slightly different antigens, these antibodies likely have different specificity and sensitivity in

detecting acetylated proteins. Because our studies were greatly dependent on high specificity

and sensitivity, we initially compared anti-acetylated lysine antibodies from three different

sources. We first tested the antibodies by blotting against mitochondrial extracts from mouse

brown adipose, heart and liver tissues. We observed that antibodies from Santa Cruz and CST

gave a similar band pattern, suggesting that these antibodies detected overlapping acetylated

proteins (Fig 1A). In contrast, the Millipore antibody gave a very different band pattern. The

Western blot results also suggest that the level of mitochondrial protein acetylation as well as

the specific modified proteins vary between tissues.

We subsequently tested the antibodies in western blots of mitochondrial lysates subjected

to an in vitro non-enzymatic acetylation reaction, as previously described by Wagner and

Payne [47]. In this experiment, we incubated native or heat denatured mouse liver mitochon-

dria in alkaline buffer supplemented with either 1.5mM acetyl-CoA or 1.5mM sodium acetate

followed by western blot analysis. As shown in Fig 1B, a marked increase in acetylated proteins

was detected in the Western blot probed with the CST antibody in mitochondria treated with

acetyl-CoA, but not with the negative control sodium acetate. In contrast, no significant spe-

cific increase in the signal was observed with the Santa Cruz and Millipore antibodies, suggest-

ing that these antibodies have lower sensitivity to detect protein acetylation. Of note, the

results with the CST antibody also confirm previous findings by Wagner and Payne (2013)

that non-enzymatic protein acetylation occurs upon incubation of mitochondria in the pres-

ence of acetyl-CoA in an alkaline environment. The increase in the level of acetylated proteins

upon denaturing of proteins (which leads to the exposure of more lysine residues) is also con-

sistent with a non-enzymatic acylation mechanism [47].

To further validate this approach, we then performed in vitro deacetylation assays to confirm

that decreased mitochondrial protein acetylation levels in deacetylated samples could reliably

be detected by our method. We initially subjected mitochondrial extracts to non-enzymatic
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Fig 1. Validation of acetylated and succinylated lysine antibodies. (A-B) Three commercial anti-acetylated lysine antibodies

i.e. 05–515 clone 4G12 (Millipore), sc-8649 (Santa Cruz), #9441 (CST) were compared by three different methods, i.e. (A)

Mitochondrial lysates extracted from different mouse tissues were subjected to western blotting. (B) In vitro non-enzymatic

acetylation assay using acetyl-CoA or sodium acetate (NaOAc; negative control) was conducted followed by western blot

analysis. (C) In vitro deacetylation assay using mouse liver mitochondria and eluted recombinant GST-SIRT3 or GST-SIRT3

The Role of Mitochondrial Non-Enzymatic Protein Acylation in Ageing

PLOS ONE | DOI:10.1371/journal.pone.0168752 December 29, 2016 6 / 17



acetylation and subsequently washed off the excess acetyl-CoA before incubating the mitochon-

drial lysates with either recombinant GST or recombinant GST-SIRT3 protein. As shown in Fig

1C, for mitochondrial lysate that was incubated with recombinant GST-SIRT3 protein, there

was a marked uniform decrease in band intensity compared to lysate that was incubated with

control recombinant GST protein. These results further validate the CST antibody, which was

used in subsequent experiments to detect mitochondrial protein acetylation. Furthermore, the

results also confirm that the signal detected after the in vitro incubation of mitochondria with

acetyl-CoA at alkaline pH is indeed due to protein acetylation and that SIRT3 can efficiently

remove this modification.

In order to measure protein succinylation we used the only commercially available antibody

that has been used in previously published studies (Materials and Methods). When using

subcellular fractions from mouse liver and C. elegans, we detected no significant protein succi-

nylation of the postmitochondrial fraction, but abundant protein succinylation in the mito-

chondrial and somewhat less signal in the nuclear fraction. The band pattern in the nuclear

fractions resembles that of the mitochondrial fraction, and the mitochondrial marker protein

NDUFS3 was present in both the mitochondrial and nuclear fractions at a level that resembled

that of the succinylated proteins. These results strongly suggest that the signal detected in the

nuclear fraction is due to mitochondrial contamination. The preferential detection of succiny-

lated proteins in mitochondria is consistent with previous findings [43] and also validates the

antibody used in our study.

Mitochondrial protein acylation increases with age in C. elegans

We first tested the hypothesis that acylation of mitochondrial proteins increases with age in

N2 wild-type (WT) C. elegans. We extracted mitochondria from ageing WT animals followed

by western blotting and quantification using densitometry and normalization against the mito-

chondrial loading control NDUFS3. When blotting for mitochondrial acetylation (Fig 2A i),

we observed a very strong signal at low molecular weight (~20kda). It is likely that this signal

represents acetylated histone proteins as we detected the presence of histone H3 contamina-

tion in the mitochondria enriched fraction. Hence, when quantifying the western blot results

using densitometry, we excluded bands with a molecular weight of 20kDa or less. When ana-

lysing three independent experiments (Fig 2A ii), we observed an apparent (but non-signifi-

cant) trend to accumulation of acetylated mitochondrial proteins between young (day 5) and

old (day 12) WT C. elegans. To further explore the role of acylation in ageing we also deter-

mined age-dependent changes in mitochondrial protein acetylation in a long-lived mutant

strain (age-1) of C. elegans. The age-1 mutation was the first single gene mutation identified to

significantly extend the lifespan of C. elegans. Mutant animals of this strain are long-lived,

exhibit increased resistance to several stressors but also suffer from evolutionary trade-offs

[58–60]. However, there was no difference in protein acetylation status between young and old

WT or age-1 animals (Fig 2A ii).

Given our observation that protein succinylation was significantly enriched in mitochondria,

we expected that protein succinylation would occur preferentially in mitochondria of ageing C.

elegans and therefore determined protein succinylation in whole worm lysate and mitochon-

drial protein extract of ageing WT and age-1 C. elegans (Fig 2B i). Protein succinylation was

bound to GSH-agarose was performed and subsequently subjected to western blotting. (D) Subcellular fractionation of mouse

liver homogenate or C. elegans was performed to isolate nuclear fraction (nuclear), postmitochondrial supernatant (PMS) and

mitochondria enriched fraction (mito) for western blotting. Absence of signal in the PMS and a similar pattern in the nuclear and

mito fraction that corresponds to the abundance of mitochondrial NDUFS3 indicates mitochondria-specific succinylation.

doi:10.1371/journal.pone.0168752.g001
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Fig 2. Mitochondrial acylation increases to a similar degree in carbonylation with ageing in C. elegans.

Subcellular fractionations of C. elegans homogenates were performed followed by western blotting using anti-

acetylated lysine antibody(A) or anti-succinylated lysine antibody(B). Protein carbonyl content was determined

using slot blot followed by derivaziation and detection using anti-2,4-dinitrophenylhydrazine antibody(C). (Ai,

Bi) The western blots shown are representative of three independent experiments. Densitometry was then
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indeed significantly more prominent in mitochondrial protein than in total protein, similar to

the mitochondrial marker protein NDUFS3. Furthermore, the band pattern of succinylated

proteins was highly similar in the mitochondrial and total protein fraction, thus confirming

preferential succinylation of proteins in mitochondria. For both WT and age-1 animals protein

succinylation showed a significant age-dependent increase in the mitochondrial extracts (Fig 2B

ii) with a similar trends in whole worm lysate. Age-dependent increases in oxidative damage to

protein are commonly measured using protein carbonyl content. Such protein modification by

carbonylation is associated with ROS mediated damage and is well characterised to increase sig-

nificantly with age in C. elegans [61,62]. To compare protein succinylation patterns with this,

well-established type of modification, we therefore also determined protein carbonyl content in

mitochondrial protein. As expected, protein carbonyl levels increased significantly with age in

WT C. elegans (Fig 2C). Strikingly, the accumulation in protein succinylation was at least as

large in magnitude compared to the accumulation in oxidatively modified protein as deter-

mined via protein carbonyl levels (Fig 2).

Given the hypothesis that non-enzymatic protein acylation may result in mitochondrial

dysfunction, we then determined metabolic capacity in both old and young animals of both

strains using a Seahorse metabolic analyser. This analyzer allows determination of basal oxy-

gen consumption as well as maximal oxygen consumption and spare respiratory capacity, a

measure of the extent to which mitochondria can upregulate flux through the ETC in response

to increased metabolic need [57]. As expected, we found that, while basal respiration was com-

parable, maximal and spare respiratory capacity of old (day 12) worms were substantially

lower compared to young (day 5) animals (Fig 2D ii and 2 iii). This drop between age 5 and 12

was more pronounced and statistically significant in WT but smaller in the slower ageing age-
1 animals. Interestingly, young age-1 animals exhibit a significantly lower maximal respiratory

capacity compared to WT, however, compared to WT, age-1 animals experience a smaller age-

dependent decline such that, by day 12, age-1 animals show a trend towards having a higher

maximal capacity than WT (Fig 2D ii). Taken together, our results are suggestive of age-depen-

dent increases in mitochondrial protein acylation, in particular succinylation, in C. elegans.
This age-dependent increase in succinylation appears more robust that than the well-estab-

lished increase in protein carbonyl content in mitochondria. While age-1 animals show similar

acylation levels as WT animals, these data were consistent with the observation that young

age-1 animals exhibited lower spare respiratory capacity than young WT animals.

To further investigate age-dependent protein acylation to mitochondrial protein we used

another short-lived, simple model organism, D. melanogaster. Similar to C. elegans, neither

SIRT3 nor SIRT5 are present in this organism [63]. We collected flies on day 1, day 10 and day

30 and prepared total fly homogenates that were used for western blotting using succinyllysine

specific antibody. We were unable to measure mitochondrial protein acetylation using the

total fly homogenates because, in contrast to succinylation, protein acetylation is ubiquitous

throughout the cell. As before, western blot results were quantified by densitometry and nor-

malized to mitochondrial NDUFS3. Consistent with the results in C. elegans, we observed an

apparent age-dependent increase in mitochondrial protein succinylation between day 1 to day

30 (Fig 3). This impression was confirmed statistically by analysing the densitometric data

performed to quantify the mitochondrial acylation status. The data shown in (Aii, Bii, Cii) represent the average

(±SD) of three independent experiments. (D) Oxygen consumption of Day 4 and Day 12 worms measured

using Seahorse flux analyzer. Bar graphs shown represent basal respiration (i), maximal respiration (ii), spare

respiration (iii) and non-mitochondrial respiration (iv) of C. elegans. (A-D) Statistical analysis was performed

using unpaired t-test, * = p�0.05, ** = p�0.01, *** = p�0.001 and **** = p�0.0001.

doi:10.1371/journal.pone.0168752.g002
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(P<0.01, One-way ANOVA). Together, these data show that there is a consistent pattern of

increasing protein succinylation in mitochondrial proteins in both short-lived model organ-

isms lacking mitochondrial sirtuins.

Mitochondrial protein acylation does not increase with age in rats

We then carried out analogous studies in rodents. For this part of the study, we used two dif-

ferent outbred rat strains, Wistar and Sprague Dawley (SD), for our experiments. We isolated

liver, heart and brain tissues from 5 young Wistar and 4 young SD rats (1 or 1.5months old)

and from 4 middle aged Wistar and 5 middle aged SD rats (18 or 11.5 months old) rats and

subsequently extracted mitochondria. We carried out oxygen consumption measurements

using mitochondria extracted from brain. We choose brain because of the significance of this

tissue in ageing and age related diseases. However, despite the fact that neurons are post-

mitotic cells and accumulation of mitochondrial damage, e.g. as a result of non-enzymatic pro-

tein acetylation, should be more readily observable, we detected no significant age-dependent

differences in the state 3 respiration rate and the maximal respiratory capacity for either rat

strains (Fig 4D), indicating that there was no significant mitochondrial decline between the

ages of 1 and 18 month. We then determined protein acylation in isolated mitochondria of

liver, heart and brain. As previously, we quantified the signal for each lane using densitometry

and normalized against the mitochondrial loading control NDUFS3. The data are presented in

the form of a dot plot together with the Western blot images (Fig 4). Each dot in the dot plot

represents the acylation status of an individual rat. As shown in Fig 4, we observed a relatively

wide distribution of the acylation status in all tissues of both the young and middle-aged

groups, suggesting that mitochondrial protein acetylation varies between individual rats. How-

ever, in SD rats the data points were found to be more closely clustered (Fig 4A–4C). Never-

theless, overall, there were no age-dependent changes in mitochondrial protein acetylation

and succinylation. These data are consistent with the lack of change in oxygen consumption

rate over the same period of time.

Fig 3. Mitochondrial succinylation increases with ageing in D. melanogaster. D. melanogaster were

homogenized and the whole fly lysates were used for western blotting using anti- succinylated lysine antibody. The

bar graph represents the average (±SD) of three independent experiments. Statistical analysis was performed using

unpaired t-test, * = p�0.05and ** = p�0.01.

doi:10.1371/journal.pone.0168752.g003
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Fig 4. Mitochondrial acylation in young and old rats. Subcellular fractionations of rat liver, heart and brain tissues were performed followed by western

blotting using anti- acetylated lysine (A) or anti-succinylated lysine (B) antibody. Densitometry was then performed to quantify the mitochondrial acylation

status. (C) Subcellular fractionations of rat, i.e. Wistar and SD brain tissues were performed followed by oxygen consumption measurement using a Clarke

electrode and the state 3, state 4 and maximal respiratory rates are shown. The data shown in (A, B, C) represent the average (±S.E.M), expressed as fold

increase compared to young rat. Each data point represents an individual rat.

doi:10.1371/journal.pone.0168752.g004
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Discussion

The underlying hypothesis of our study is that an age dependent increase in mitochondrial

protein acylation contributes to mitochondrial dysfunction during ageing and regulates organ-

ismal lifespan. This hypothesis is based on several well established observations in the litera-

ture: (1) Dysregulation of mitochondrial homeostasis has been implicated in ageing and a

number of age-related diseases [12,64,65]. (2) A number of large scale proteomic studies have

shown that mitochondrial proteins are highly acylated [29,43,66–68]. (3) In most cases, studies

have shown that these modifications have an inhibitory effect on the function of the modified

proteins and mitochondrial function overall [31,32,45]. Hence, our study sought to determine

if there is any correlation between mitochondrial protein acylation and age using different

model organisms.

Our results suggest that acylation, or more specifically succinylation, of mitochondrial pro-

teins increases in an age dependent manner in C. elegans and D. melanogaster but not in rats.

One explanation for this difference may be that, compared to C. elegans and D. melanogaster,
mammals express several isoforms of the sirtuin family of NAD-dependent deacetylases, some

of which are localized in mitochondria. Both rodents and humans express seven sirtuins,

including SIRT1, the homolog of yeast Sir2, as well as three mitochondrial sirtuins, SIRT3,

SIRT4 and SIRT5. In contrast, in C. elegans only SIRT1 and SIRT4 are present [63]. SIRT1 is

mainly found in the nucleus. SIRT4, although localized to mitochondria, lacks significant dea-

cetylase and desuccinylase activity [69] and reportedly functions as an ADP-ribosyl transferase

or as lipoamidase regulating pyruvate dehydrogenase complex activity [63,70,71]. Whether it

can also function as a deacetylase is currently controversial. On the other hand, mitochondrial

SIRT3 and SIRT5, which catalyse the removal of acetyl- and succinyl-groups from lysine resi-

dues, respectively, are absent in C. elegans [63]. This may also explain why there is no difference

between age-1 and WT in terms of the rate of protein succinylation. While the long-lived age-1
phenotype is associated with increased stress resistance and reduced damage accumulation, C.

elegans may just lack any mechanism to remove succinylation. The increase in mitochondrial

protein succinylation was comparable in magnitude to the accumulation of oxidative damage as

determined as protein carbonyl content (Fig 2). Both oxidative damage and protein succinyla-

tion are expected to negatively affect protein function and the significant increase in succinyla-

tion therefore suggests that protein succinylation might affect mitochondrial function to a

similar extent as oxidative damage.

We observed that the number of strongly acylated mitochondrial proteins is relatively low.

This is in contrast to the findings reported by large-scale mass spectrometry studies that have

identified large numbers of modified proteins [29,43]. However, this is most likely due to

methodological differences because, unlike mass spectrometry, western blotting predomi-

nantly detects proteins that are acylated at relatively high stoichiometry. In contrast, recent

mass spectrometry based studies in Saccharomyces cerevisiae reported that the vast majority of

mitochondrial and cytoplasmic acetylation and succinylation occurs at very low stoichiometry

[30,48,50]. It might therefore not be surprising that the number of strongly acylated mitochon-

drial proteins detected by Western blot is relatively low. Such highly modified proteins are,

however, likely to be associated with be the most physiologically significant changes during

ageing and it might be useful to determine age-dependent changes in stoichiometry of mito-

chondrial protein acylation.

We subsequently attempted to test whether mitochondrial protein acylation increases with

age in mammals by using two different strains (Wistar and SD) of rat. For the Wistar strain,

we used 1 month old versus 18 months old rats while for the SD strain we compared 1.5

months old versus 11.5 months old rats. However, we did not observe significant changes in
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the acylation status in most of the tissues of either rat strain. We were unable to detect any sig-

nificant decline in mitochondrial function in these animals. A potential explanation for this

observation is that there was simply not enough time for animals to develop significant age-

dependent mitochondrial decline and it is therefore possible that both our failure to detect

clear differences in acylation and oxidative phosphorylation activity was due to the suboptimal

age ranges of the cohorts used in our studies. However, rats also possess seven sirtuins (SIRT1-

SIRT7), including mitochondrial SIRT3 and SIRT5. In contrast, nematodes and many arthro-

pods (e.g. D. melanogaster) lack mitochondrial sirtuins and thus are deficient in mitochondrial

deacetylase and desuccinylase activities [63]. Another explanation for the lack of increase in

these modifications, even over the course of 10 months, may therefore be that mitochondrial

sirtuins efficiently prevent accumulation of acylated mitochondrial proteins during ageing.

Consistent with this, it has recently been shown that Sirt3 in mice is essential to maintain

mitochondrial protein acetylation at very low stoichiometry [48,50,72]. Finally, in addition to

differences in sirtuin deacetylase expression it is also possible that the differences between

nematodes, fruit flies and rats are due to intrinsic differences in mitochondrial acetyl-CoA and

succinyl-CoA concentrations. It is well known that the mitochondrial acetyl-CoA and succi-

nyl-CoA concentrations undergo changes under physiological and pathological conditions

that are accompanied by changes in mitochondrial protein acylation. For instance, fasting,

resulting in increased acetyl-CoA generation from free fatty acids in the liver, results in in-

creased liver mitochondrial protein acetylation [49,50]. Mutations in NADP+ isocitrate dehy-

drogenase in cancer, which are known to lead to the accumulation of the oncometabolite

R-2-hydroxyglutarate, result in competitive inhibition of succinate dehydrogenase, accumula-

tion of mitochondrial succinyl-CoA and hypersuccinylation of mitochondrial proteins [73]. It

is thus possible that age dependent increases in mitochondrial protein acylation are dependent

on changes in mitochondrial acetyl-CoA and succinyl-CoA concentrations. Of note, a recent

study has found that early ageing is associated with elevated acetyl-CoA concentrations in flies

[42]. This also raises the possibility that altered expression or activities of human SIRT3 and

SIRT5 may contribute to ageing in humans, especially as human SIRT3 and SIRT5 genes have

been associated with survival to old age and ageing brain health [74–76].

Supporting Information

S1 Fig. Mitochondrial acylation in young and old rats. Subcellular fractionations of Wistar

(A) and SD (B) rat liver, heart and brain tissues were performed followed by western blotting

using anti- acetylated lysine or anti-succinylated lysine antibody.

(TIF)
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