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Abstract: The problem of 3D gaze estimation can be viewed as inferring the visual axes from eye
images. It remains a challenge especially for the head-mounted gaze tracker (HMGT) with a simple
camera setup due to the complexity of the human visual system. Although the mainstream regression-
based methods could establish the mapping relationship between eye image features and the gaze
point to calculate the visual axes, it may lead to inadequate fitting performance and appreciable
extrapolation errors. Moreover, regression-based methods suffer from a degraded user experience
because of the increased burden in recalibration procedures when slippage occurs between HMGT
and head. To address these issues, a high-accuracy 3D gaze estimation method along with an efficient
recalibration approach is proposed with head pose tracking in this paper. The two key parameters,
eyeball center and camera optical center, are estimated in head frame with geometry-based method,
so that a mapping relationship between two direction features is proposed to calculate the direction
of the visual axis. As the direction features are formulated with the accurately estimated parameters,
the complexity of mapping relationship could be reduced and a better fitting performance can be
achieved. To prevent the noticeable extrapolation errors, direction features with uniform angular
intervals for fitting the mapping are retrieved over human’s field of view. Additionally, an efficient
single-point recalibration method is proposed with an updated eyeball coordinate system, which
reduces the burden of calibration procedures significantly. Our experiment results show that the
calibration and recalibration methods could improve the gaze estimation accuracy by 35 percent
(from a mean error of 2.00 degrees to 1.31 degrees) and 30 percent (from a mean error of 2.00 degrees
to 1.41 degrees), respectively, compared with the state-of-the-art methods.

Keywords: head-mounted gaze tracker; visual axis; 3D gaze estimation; head pose tracking; recali-
bration; polynomial regression

1. Introduction

As an effective way of revealing human intentions, gaze tracking technology has been
widely applied in many areas, including marketing, ergonomics, rehabilitation robots and
virtual reality [1,2]. Gaze tracking systems can be divided into remote and head-mounted
gaze trackers (HMGT) [3]. The remote gaze tracker is typically placed on a fixed location
such as a desktop, to capture images of the user’s eyes and face by a camera. The HMGT
system is usually fixed to the user’s head, which includes the scene camera to capture the
view of the scene and eye camera to observe eye movement. The feature of allowing users
to move freely makes HMGT more flexible and suitable for tasks such as human–computer
interaction in a real 3D environment. Therefore, HMGT has received extensive attention by
many researchers in recent years.

The problem of 3D gaze estimation can be viewed as inferring visual axes from eye
images captured by cameras. Typically, there are two different gaze estimation methods
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which are model-based and regression-based methods, respectively. The model-based
methods utilize extracted features from eye images to build a geometric eye model and
calculate the visual axis. Traditional model-based methods employed multiple eye cameras
and infrared light sources to calculate optical axis, and then calculate the angle Kappa
between the optical axis and the visual axis with single-point calibration [4,5]. The main
merits are rapid calibration and robustness against system drift (the slippage of HMGT),
but the complex setting of cameras and lights requirements limit its application. As the
HMGT with simple camera setting can be developed more conveniently, it has a broader
application prospect. Some research utilized inverse projection law to calculate the pupil
pose with simple camera setting. The contour-based method in [6] designs a 3D eye model
fitting method to compute a unique solution by fitting a set of eye images, but the gaze
estimation accuracy is relatively low due to the corneal refraction of the pupil. The method
in [7] models the corneal refraction by assuming the physiological parameters of the eyeball,
but the performance is not stable because physiological parameters of the eyeball vary
from person to person. In addition, it is challenging for these methods to extract the
pupil’s contour accurately in the eye image due to the occlusion of eyelids and eyelashes.
Therefore, it is difficult for model-based methods to get high-accuracy visual axes with a
simple camera setting.

In contrast, the regression-based methods usually adopt single eye camera. The key
idea of this kind of method is to establish a regression model to fit the mapping relationship
between eye image features and gaze points in scene camera coordinate system [8,9]. This
kind of method has two sources of error, namely parallax error and extrapolation error.
The noticeable extrapolation error may occur due to the underfitting situation caused by
improper regression models or calibration point sampling strategy. The parallax error is
caused by the spatial displacement between the eyeball and the scene camera [10]. For
instance, the corresponding eye image features of the points on visual axis are the same,
but their coordinates in the scene camera coordinate system are different, which leads to
one-to-many relationships.

To reduce extrapolation error, different mapping functions are investigated, in which
the polynomial regression is the most common model. The method in [11] compares dif-
ferent polynomial functions and chooses the best performer to estimate the gaze point.
However, the functions higher than two orders can not reduce extrapolation errors sig-
nificantly [12]. In [1,13], the Gaussian process regression is investigated as an alternative
mapping function, but the accuracy performance of the Gaussian process regression is unsta-
ble. To improve the estimation accuracy of gaze depth, some methods employ MLP neural
network to estimate the depth with inputs of pupil centers or pupillary distance [14,15],
but the gaze estimation models based on neural network require more training data, which
causes a heavier burden of calibration procedures.

To prevent parallax error, some methods determine the depth of 3D gaze point by
analyzing scene information. The method in [16] uses SLAM to extract environmental
information. Then, the 3D gaze point is estimated by using the correspondence relationship
between the triangles containing 2D gaze points in the scene camera image and triangles
containing 3D gaze points in the real world. In [17], SFM (Structure from Motion) is utilized
to estimate the 3D gaze point, with two different head positions to look at the same place.
However, the performance of these methods gets worse when acquiring sparse feature
points from scene image. A more common method is to calculate the visual axes of both
eyes and intersect them to get 3D gaze point. The method in [18] sets calibration points
on a screen with fixed depth and requires the user to keep the head still, then employs a
polynomial function to fit the mapping relationship between 2D pupil center and 3D gaze
point. The visual axis is determined by the fixed eyeball center and the estimated gaze
point on the screen. As an improved method, the method in [19] requires two additional
calibration points outside the mapping surface, then a more precise position of the eyeball
center is calculated by triangulation. In [9], the calibration data are collected by staring at
a fixed point while rotating head, the position of the eyeball center is set to an estimated
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initial value, and the loss function based on the angular error of the visual axis is employed
to optimize parameters. Obviously, the above methods infer the visual axis by calculating
the eyeball center and the direction of line of sight. However, the eyeball centers are usually
estimated with data-fitting methods, which can be sample dependent and have limited
generalization ability.

In summary, existing regression-based paradigms face three main issues. The first one
is how to formulate an appropriate regression model. Most paradigms utilize the image
pupil center and the gaze point as input and output features [9,19]. However, it may lead to
inadequate fitting performance and appreciable extrapolation errors due to the complexity
of the human visual system. The second one is how to define a proper calibration point
distribution over the whole field of view. Existing paradigms sample the calibration points
over a casual field of view [9,20]. However, a significant accuracy degradation would occur
when the gaze direction is outside the calibration range due to the extrapolation error.
The third one is the lack of an elegant recalibration strategy. The mapping relationship
between input and output features would change as the HMGT slips. Without an efficient
recalibration strategy, the user needs to repeat primary calibration procedures to rectify
relative parameters of the gaze estimation model with a heavy burden [21,22].

To address these issues, a hybrid gaze estimation method is proposed with real-time
head pose tracking in this paper. On one hand, it utilizes the human eye geometric model
to analyze the parameters that influence the pose of visual axis and estimates the key
parameters eyeball center and camera optical center in head frame. On the other hand, it
employs a polynomial regression model to calculate the direction vector of the visual axis.
The main contributions of this paper are summarized as follows:

(1) A novel hybrid 3D gaze estimation method is proposed to achieve higher gaze esti-
mation accuracy than the state-of-the-art methods. The two key parameters, eyeball
center and camera optical center, are estimated in head frame with geometry-based
method, so that a mapping relationship between two direction features is established
to calculate the direction of the visual axis. As the direction features are formulated
with the accurately estimated parameters, the complexity of mapping relationship is
reduced and a better fitting performance can be achieved.

(2) A calibration point sampling strategy is proposed to improve the uniformity of
training set for fitting the polynomial mapping and prevent appreciable extrapolation
errors. By estimating the pose of the eyeball coordinate system, the calibration
points are retrieved with uniform angular intervals over human’s field of view for
symbol recognition.

(3) An efficient recalibration method is proposed to reduce the burden of recovering
gaze estimation performance when slippage occurs. A rotation vector is introduced
to our algorithm, and an iteration strategy is employed to find the optimal solution
for the rotation vector and new regression parameters. With an updated eyeball
coordinate system, only one extra recalibration point is enough for the algorithm to
get comparable gaze estimation accuracy with primary calibration.

The rest of the paper is organized as follows. Section 2 describes the proposed meth-
ods in primary calibration and recalibration. Section 3 presents the experimental results.
Section 4 is the discussion, and Section 5 is the conclusion.

2. Materials and Methods
2.1. Model Formulation

The key point of 3D gaze estimation is to estimate the visual axis in a scene camera
coordinate system by analyzing images captured by the eye camera. To design a high-
accuracy gaze estimation model to calculate the visual axis, the relationship between eye
image features and visual axis is derived based on a geometric eye model [23].

As shown in Figure 1a, the optical axis passes through the eyeball center E ∈ R3×1

and actual pupil center Pac ∈ R3×1. The visual axis is represented as the line formed by
eyeball center E and gaze point P ∈ R3×1. There is an angle κ between the optical axis and
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visual axis. Because of the corneal refractive power, the pupil captured by the eye camera
is not actual pupil but virtual pupil. The 2D pupil center

(
ex, ey

)
can be connected with eye

camera optical center Poc ∈ R3×1 to form one straight line passing through Pvc ∈ R3×1,
whose direction vector is Vpc. Vpc can be calculated by

[
P0
1

]
= sc

ecT·

K−1
cam

ex
ey
1


1


Vpc =

P0−Poc
‖P0−Poc‖

(1)

where sc
ecT is the transformation matrix between scene camera and eye camera, Kcam is the

intrinsic matrix of eye camera and P0 is a point on the line formed by Poc and Pvc. Then,
the direction vector of visual axis, Vgaze can be calculated by

Pvc − Poc = γ·Vpc[
Pac
1

]
=

ap
vpT·

[
Pvc
1

]
Vgaze = va

oaR· Pac−E
‖Pac−E‖

(2)

where ap
vpT is the transformation matrix between actual pupil and virtual pupil and va

oaR is
the rotation matrix between the visual axis and optical axis. γ is the offset distance between
eye camera optical center and virtual pupil center. Thus, the point P on the visual axis can
be calculated by

P = E + λ·Vgaze (3)

where λ is a proportional coefficient. To calculate the visual axis, sc
ecT, E, γ, va

oaR, ap
vpT need to

be estimated. The flowchart of the calculation is shown as Figure 1b. For the key parameters
sc
ecT and E, the accurate values are estimated with proposed geometry-based method. The
details are described in Sections 2.2 and 2.3. For other parameters γ, va

oaR and ap
vpT that

are related to corneal refraction, it is difficult to get accurate values. Because they are
usually calculated with average eyeball physiological parameters which vary from person
to person. By sampling calibration points, a quadratic polynomial model is employed to fit
the nonlinear mapping from Vpc to Vgaze, which actually reflects the inherent impacts of
these parameters as shown in formula (2). The details are described in Section 2.4.

Figure 1. Illustration of gaze estimation model. (a) Each eye image feature (2D pupil center) corre-
sponds to a vector Vpc which is used as the input feature to calculate the vector Vgaze. Noted that E is
assumed as the intersection of all visual axes. (b) Flowchart of the model formulation.
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2.2. Estimation of the Transformation Matrix sc
ecT

The estimation method for calculating the transformation matrix between cameras
and HMGT based on 6D pose trackers is shown in Figure 2. The left side is a calibration
tool on which a checkerboard is fixed with a 6D pose tracker (Tracker-1). The right side
is the developed HMGT. A 6D pose tracker (Tracker-0) is fixed with it to track the head
pose. Noted that the transformation between different 6D pose trackers can be obtained in
real time. During the calibration, we captured n images of checkerboard by the camera,
saving the corresponding transformation matrix between Tracker-0 and Tracker-1 for each
image frame. By utilizing the camera calibration toolbox in MATLAB, the transformation
matrix ec

cbT between the checkerboard and eye camera for each frame can be calculated.
Then, the transformation matrix between Tracker-0 and the eye camera corresponding to
the i′th images can be calculated by:

tra0
ec Ti =

tra0
tra1Ti·cb

tra1T−1
i ·

ec
cbT−1 (4)

Figure 2. Illustration of estimation method for the cameras’ coordinate system. The left eye camera is
taken for example.

The transformation matrix tra0
ec Ti can be decomposed into a translation vector ti and a

rotation matrix Ri. The rotation matrix Ri can be converted to a quaternion qi. To calculate
the average transformation, the average translation vector t is calculated by

t =
1
n

n

∑
i=1

ti (5)

The average quaternion q is calculated by the proposed method in [24],

q = argmax
q∈S3

qTMq (6)

where S3 denotes the unit 3 sphere,

M =
n

∑
i=1

qiq
T
i (7)

The average quaternion q is the eigenvector of M corresponding to the maximum
eigenvalue. Then, tra0

ec T can be calculated by combining q and t. Similarly, the transfor-
mation matrix tra0

sc T between the scene camera and Tracker-0 can be calculated. Then, the
transformation matrix sc

ecT between the scene camera and eye camera can be calculated by

sc
ecT = tra0

ec T·tra0
sc T−1 (8)
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As shown in Figure 2, cameras and Tracker-0 are fixed with the outer race, the inner
race is fixed with the user’s head when the system is working, and the outer race can rotate
relative to the inner race for suitable wearing. Therefore, the transformation between the
cameras and Tracker-0 is constant, and the estimation for sc

ecT is needed only once.

2.3. Estimation of the Eyeball Center E

Similar to most existing paradigms, the eyeball center E is assumed as the intersection
of different visual axes. Figure 3 illustrates the estimation of the eyeball center by utilizing
the developed calibration tools. The user is required to gaze at a point through a small
hole with different head orientations, and the visual axis is regarded as the line formed
by the gaze point and the center of the hole. Considering that the collected visual axes
may be non-coplanar, the eyeball center E is calculated as the midpoint of the common
perpendicular of two different visual axes. Although the eyeball center is estimated in the
Tracker-0 coordinate system, it can be conveniently switched to the scene camera coordinate
system with estimated tra0

sc T in the previous section.

Figure 3. Estimation of the eyeball center E with developed calibration tools. The transformation
between Tracker-2 and the small hole is predefined, and the coordinate of gaze point in Tracker-3
coordinate system is predefined.

The error analysis of eyeball center calibration is shown in Figure 4a. There are two
different visual axes collected in the Tracker-0 coordinate system. The maximum error
between the collected line and the visual axis is determined by the diameter ∆d of the hole.
The two error cones formed by P12P22 and P21P22 intersect to form a yellow diamond-like
error region on the r − h plane. Assuming that R1 represents the distance between the
eyeball center and the center of the small hole, R2 represents the distance between the
eyeball center and the gaze point. Based on triangular similarity, the region width h1
satisfies,

∆h
h1

=
||P11P12||
||EP12||

=
R2 − R1

R2
(9)

where
∆h =

∆d

2 cos
[
arccos ∆d

2(R2−R1)
−
(

π
2 −

θ
2

)] (10)

As ∆d
2(R2−R1)

is small, arccos ∆d
2(R2−R1)

≈ π
2 , then

h1 =
∆d

2
(

1− R1
R2

)
cos θ

2

(11)
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Figure 4. Error analysis of eyeball center estimation. (a) Error zone illustration. The distance
between eyeball center and calibration tools are assumed as constant values. The r-axis refers to
the line connecting E to the midpoint of P12P22. (b) The relationship between S and R1, R2 when
θ = 90◦, ∆d = 10 mm. Note that the white region in the heat maps means the error is larger than
1000 mm2, and we do not show the detail for better observation.

Based on similar derivation, h2 = h1, the region depth r1, r2 satisfy

r1 ≈ r2 =
∆d

2
(

1− R1
R2

)
sin θ

2

(12)

Then, the area S of error region on the r− h plane can be calculated by

S =
1
2

∆2d

(1− R1
R2
)

2
sin θ

2 cos θ
2

(13)

Based on the above derivation, the strategies to improve the accuracy of eyeball center
estimation can be concluded as:

(1) Reducing ∆d, which is the inner diameter of the small hole;
(2) Reducing R1

R2
, which means increasing the distance between the small hole and gaze

point, and decreasing the distance between the small hole and the user (see Figure 4b);
(3) Setting the angle between two collected visual axes, θ = 90◦, considering the contra-

dictory relation between region width and depth.

2.4. Regression Model Fitting

Utilizing estimated eyeball center scE and sc
ecT in the scene camera coordinate system,

the set of input feature Vpc and output feature Vgaze can be obtained from training set. Then,
a quadratic polynomial regression function is employed to fit the mapping relationship
between Vpc and Vgaze. Assuming Vpc = [x0, y0, z0]

T, Vgaze = [x1, y1, z1]
T, then

Vgaze =

x1
y1
z1

 ∼
βxψ

(
Vpc
)

βyψ
(
Vpc
)

βzψ
(
Vpc
)
 (14)
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where ψ
(
Vpc
)
=
[
x2

0, y2
0, z2

0, x0y0, x0z0, y0z0, x0, y0, z0, 1
]T. βx, βy, βz are 1× 10 matrices.

Assuming β = [βx;βy;βz], the aim is to calculate β by minimizing the average angle error
between the estimated and real visual axis, which is given as

min
{βx ,βy ,βz}

1
N

N

∑
i=1

arccos

 β·ψ
(

Vi
pc

)
·Vi

gaze

‖β·ψ
(

Vi
pc

)
‖‖Vi

gaze‖

 (15)

where N is the number of calibration points. For addressing the nonlinear optimization
problem such as (15), it is paramount to initialize the parameters with reasonable values.
Thus, the initial value of β is calculated by

βinit = Tgaze·ψT
(
ψψT

)−1
(16)

where ψ is the matrix holding
{

ψ
(

Vi
pc

)}
in the whole training set and Tgaze is the matrix

holding
{

Vi
gaze

}
in the whole training set. In combination with the loss function given

as formula (15), the value of β is iterated and optimized with the Levenberg–Marquardt
method [25].

2.5. Sampling and Denoising of Calibration Points
2.5.1. Sampling Strategy of Calibration Points

To fit the regression model, some calibration points are sampled to build the training
set. When the user gazes at each calibration point, the eye images and the coordinates of
the gaze points are collected. They can be transformed to the pairs of input feature Vpc
and output feature Vgaze. To prevent appreciable extrapolation errors and ensure the stable
performance of HMGT, the calibration area should be determined by human’s field of
view. In particular, for the horizontal field of view of a human, symbol recognition and
3D perception happen within 60◦ of the central field of view, and for the vertical field of
view of human, the optimum eye rotation degrees range from −30◦ ∼ 25◦ [26]. Thus,
the vector of visual axis is determined by eyeball horizontal rotation angle α, and vertical
rotation angle β, where α ∈ −30◦ ∼ 30◦, β ∈ −30◦ ∼ 25◦. Assuming that the origin of
the eyeball coordinate system is the eyeball center, the Z-axis points to the horizontally
forward direction, the Y-axis points to the vertically upward direction. The vector of visual
axis can be defined by

ebVgaze(α, β) = Ry(α)Rx(β)V0 (17)

where V0 is the unit direction vector of Z-axis. V0 = [0, 0, 1]T, Rx(β) and Ry(α) denote
rotation matrices around X-axis and Y-axis, respectively, and ebVgaze denotes the vector of
visual axis in the eyeball coordinate system. Considering that the uniformity of training set
has an influence on model fitting, the values of α and β should be uniformly distributed
over their value range. To simplify the calibration procedures, the calibration points of both
eyes are sampled together by defining the union eyeball coordinate system, as shown in
Figure 5a. The midpoint of the left and right eyeball center is defined as the origin of the
union eyeball coordinate system. The sampling points on calibration plane are calculated
by intersecting the predefined visual axes and the plane.
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Figure 5. Illustration of sampling strategy for calibration points. (a) The sampling range on calibration
plane has four vertexes P1, P2, P3, P4 as limits. The polar coordinate (α, β) of P0, P1, P2, P3, P4 are
(0◦, 0◦), (−30◦, 25◦), (30◦, 25◦), (30◦,−30◦), (−30◦,−30◦), respectively. (b) Calibration of the
eyeball coordinate system. The left eye is taken as an example. The rotation pattern yaw and pitch
are used to create horizontal rotation plane (X− Z plane) and vertical rotation plane (Y− Z plane).

Obviously, the pose of the eyeball coordinate system needs to be estimated for calibration
point sampling. As shown in Figure 5b, the user is required to rotate the head in two different
patterns (pitch and yaw) while looking straight ahead. When the user rotates the head, the
coordinate of the eyeball center in the world coordinate system can be calculated by[worldE

1

]
= world

tra0 T·
[tra0E

1

]
(18)

where world
tra0 T is the transformation matrix between the Tracker-0 and world coordinate

system which can be obtained in real time. tra0E is the coordinate of eyeball center in the
Tracker-0 coordinate system. Multiple values of worldE collected in pattern pitch can be
used to create the horizontal rotation plane of eyeball, multiple values of worldE collected
in pattern yaw can be used to create the vertical rotation plane of eyeball. In this way,
the rotation matrix world

eb R between the eyeball and the world coordinate system can be
estimated. Additionally, the rotation matrix sc

ebR between the eyeball and the scene camera
coordinate system can be calculated by

sc
ebR = world

tra0 R−1·world
eb R·tra0

sc R−1 (19)

where world
tra0 R is the collected rotation matrix between the Tracker-0 and world coordinate

system when the user gazes straight ahead. The transformation matrix between the eyeball
and scene camera coordinate system can be represented as

sc
ebT =

[sc
ebR scE

0 1

]
(20)

where scE is calculated in Section 2.4. The eyeball coordinate system calculated by this
method is not accurate, but it is still acceptable because sampling the calibration points
over the rough field of view is enough for preventing appreciable extrapolation errors. The
estimated rotation matrix sc

ebR for both eyes is the same, thus the union eyeball coordinate
system is calculated as

sc
u−ebT =

[sc
ebR scEu

0 1

]
(21)
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where scEu =
scEleft+

scEright
2 , sc

u−ebT represents the transformation between the union eye-
ball coordinate system and the scene camera coordinate system, which is employed for
calibration point sampling.

2.5.2. Denoising Strategy of Calibration Points

In calibration point sampling, the 2D pupil center is extracted from eye image when
the user gazes at each calibration point. However, the coordinates of the 2D pupil center
may fluctuate because of the noise of the image and algorithm, especially when the pupil
contour is partially obscured by the eyelid, which may lead to appreciable error of pupil
center detection. In addition, the user may get distracted and not gaze calibration points,
which results in the collection of outliers. Consequently, it is significant to denoise during
data collection and remove outliers after data collection.

• Denoising in Data Collection

For each calibration point, n eye image frames are sampled and processed to get the 2D
pupil center, respectively. The set of pupil centers are denoted as Ω = {pi}, i = 1, 2, · · · , n.
The aggregation property of samples is used to denoise. The valid set is defined as

Ωvalid = {pi|‖pi − pmedian‖ < rnoise} (22)

where pmedian is the median value of the pupil centers’ coordinates in set Ω, rnoise is the
pupil centers’ noise radius, whose value is set empirically. The number of coordinates in
set Ωvalid is nvalid. When the proportion calculated by nvalid

n is too small (e.g., nvalid
n < 0.5),

collected data for this calibration point would be discarded, otherwise pmedian is regarded
as the 2D pupil center for current calibration points.

• Removing Outliers after Data Collection

Assuming that N calibration points are sampled, the collected data can be processed
to a set ℵ =

{(
Vi

pc, Vi
gaze

)}
, where i = 1, 2, · · · , N; The set ℵ is utilized to fit the regression

model described in Section 2.4, the angular error of visual axis for the k′th data is calculated
as

errk = arccos

(
βℵ·Vk

pc·Vk
gaze

‖βℵ·Vk
pc‖‖Vk

gaze‖

)
(23)

where βℵ is the calculated regression parameters with the set ℵ. The value of errk would
be relatively large if the k′th data are an outlier, thus the k′th data are regarded as an inlier
when errk < τ, where τ is an acceptable error.

2.6. Recalibration Strategy

In practical application scenarios, the slippage between HMGT and head would
inevitably occur. In this situation, the calibrated parameters in the gaze estimation model
are inapplicable, and recalibration is needed for the system to recover gaze estimation
performance. However, it is undoubtedly a burden for users to carry out recalibration
procedures that are as complex as the primary calibration. Therefore, it is essential to design
an easy and efficient recalibration method.

When the slippage occurs, the new eyeball center scEnew and new rotation matrix
sc
ebRnew between the eyeball and scene camera coordinate system can be estimated con-
veniently with the developed calibration tools as described in previous sections. In the
new state, when a pair of data is collected and converted to input vector Vnew

pc and output
vector Vnew

gaze, sc
ebRnew and sc

ebR can be used to switch them from the scene camera coordinate
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system in the new state (after slippage) to the scene camera coordinate system in the old
state (before slippage). The calculation is as follows:

Vold
gaze = β0·ψ

(
Vold

pc

)
Vold

pc = sc
ebR·sc

ebRnew−1·Vnew
pc

Vold
gaze = sc

ebR·sc
ebRnew−1·Vnew

gaze

(24)

where β0 is the calibrated regression parameter. However, formula (24) is not rigorous.
Firstly, the estimated rotation matrix sc

ebR and sc
ebRnew are not precise as mentioned in

Section 2.5, which means the calculated Vold
pc and Vold

gaze are not accurate. Secondly, the
slippage results in the change in relative position between the eye camera and eyeball,
which means the Vpc for the new state (after slippage) and old state (before slippage) are
different, even if they are switched to the same reference coordinate system. Therefore, the
calculated Vold

pc is different from the ground-truth Vpc of the old state, and β0 should be
rectified. As a solution, a rotation vector Vr is introduced to compensate for the orientation
deviation, and a new regression parameter β1 is employed. Assuming Vr = [r1, r2, r3]

T, the

unit vector of Vr, r =
[

r1
‖Vr‖ , r2

‖Vr‖ , r3
‖Vr‖

]T
, the rotation angle θ = ‖Vr‖, the modified formula

is as follows, 
Vold

gaze = β1·ψ
(

Vold
pc

)
Vold

pc = Rerror·sc
ebR·sc

ebRnew−1·Vnew
pc

Vold
gaze = Rerror·sc

ebR·sc
ebRnew−1·Vnew

gaze
Rerror = cos(θ)I + (1− cos(θ))rrT + sin(θ)r∧

(25)

where Rerror denotes the rotation matrix that is converted from the rotation vector Vr and
r∧ denotes the antisymmetric matrix of r. β1 denotes the new regression parameter. Based
on the formula (15) and Levenberg–Marquardt iteration method [25], Vr and β1 are iterated
as unknown variables to find the optimal solution. As the orientation deviation caused by
sc
ebR and sc

ebRnew is small, three components of Vr can be initialized as a small value such
as [0.01, 0.01, 0.01]T. The change in relative position between the eye camera and eyeball
caused by slippage is small, so β1 can be initialized as β0. Considering that Vr and β1
both have initial values which are close to the optimal solution, recalibration does not need
many calibration points in different gaze directions such as primary calibration, but only
one or several calibration points for parameter iteration.

3. Experiment and Results

To verify the effectiveness of our proposed method, the HMGT shown in Figure 2
is developed. This HMGT has two eye cameras (30 fps, 1280 × 720 pixels) to capture
movement of eyes, two scene cameras (30 fps, 1280 × 720 pixels) to capture scene view
and a 6D pose tracker (Tracker-0) to capture the head movement. Before the experiment,
the intrinsic matrix parameters of eye cameras and scene cameras are calibrated by the
MATLAB toolbox. The transformation matrix between eye cameras, scene cameras and
Tracker-0 is estimated by the proposed method in Section 2.2. Five subjects participate
in the experiment. Firstly, the subject needs to calibrate the eyeball coordinate system
with the proposed method in Sections 2.3 and 2.5. Then, the calibration points and test
points for regression model fitting are sampled in union eyeball coordinate system. In
order to evaluate the effects of calibration depth on gaze estimation performance and
compare different methods, calibration points at three different planes distant from the
eyeball center with 0.3 m, 0.4 m and 0.5 m are taken into consideration. At each depth,
42 calibration points and 30 test points are sampled with uniform angular intervals of
visual axis. The positions of them are calculated by intersecting the pre-defined visual axes
and the calibration plane.

As shown in Figure 6, two 6D pose trackers, Tracker-4 and Tracker-5, are fixed with
the arm base and the end effector, respectively. The robot arm can move the end-effector



Sensors 2022, 22, 4357 12 of 17

with a marker to a predefined location in the eyeball coordinate system with real-time head
pose tracking. The 2D pupil center in eye image is detected in real time by the algorithm
investigated in [27]. When the subject gazes at the marker, the 2D pupil center and the
position of the marker are collected in synchronization. The data collection is implemented
by using programming in C++. To verify the effectiveness of recalibration method, all
subjects wear the HMGT twice and repeat the entire calibration twice. The gaze estimation
model is implemented by using programming in MATLAB with collected data. Data
acquired in the first wearing are used to evaluate the gaze accuracy of primary calibration
method, and data acquired in the second wearing are used to evaluate the gaze accuracy
of the recalibration method and compare different methods. The common criterion for
evaluating gaze estimation performance is the angular error between estimated visual axis
and real visual axis. However, it is improper to compare the performances of different
methods with the angular error of visual axis derived with the estimated eyeball center and
the gaze point, considering that the estimated eyeball centers in different methods usually
have different error distributions. Therefore, a more reasonable evaluation criterion, scene
angular error (SAE), is defined as

SAE = arccos
Vs·Ve

‖Vs‖·‖Ve‖
(26)

where Vs is the direction vector from the scene camera optical center to the real gaze point
and Ve is the direction vector from the scene camera optical center to the estimated gaze
point. The estimated gaze point is the intersection of the estimated visual axes of two eyes.

Figure 6. Calibration setup utilizing a UR robot arm and 6D pose trackers.

3.1. Evaluation of Primary Calibration Method

The gaze estimation performance of the primary calibration method based on a train-
ing set at different depths is shown in Figure 7a. It can be found that each situation
achieves better performance than other situations at corresponding calibration plane. For
example, the method achieves the best gaze estimation performance at a depth of 0.3 m
when ZC = 0.3 m. In addition, the mean and standard deviation of error in situation 1
(ZC = 0.3 m) are significantly high while there is no significant difference between situation
2 (ZC = 0.4 m) and situation 3 (ZC = 0.5 m) (paired-t test: tstat = −1.56, p = 0.1213).
This may be caused by the extrapolation error. Because of the use of the union eyeball
coordinate system, the field of view covered by calibration points at different depths is
slightly different due to the depth-dependent parallax between the single and the union
eye visual system (see Figure 7b). As the depth of calibration plane increases, the parallax
becomes smaller, the difference in gaze estimation performance in different situations
becomes smaller.
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Figure 7. Gaze estimation performance of the primary calibration method. (a) Gaze estimation
performance based on training set at different depths. Zc denotes the depth of the calibration plane.
The bold black numbers at the bottom are the angular error in degrees (mean ± standard deviation).
(b) The parallax between the single (left) and union eye visual system. As the depth of calibration
plane increases, the parallax becomes smaller (e.g., θ1 > θ2, θ3 > θ4 ).

3.2. Evaluation of Recalibration Method

The proposed recalibration method re-estimates the transformation matrix between
the eyeball and scene camera coordinate system with the proposed geometry-based method
and utilizes calibration points to rectify the parameters of the gaze estimation model. To
reveal the influence of the number of calibration points on gaze estimation performance in
recalibration, two strategies are implemented and compared. One uses a single calibration
point, and the other uses all calibration points at depth of 0.5 m. As mentioned in Section 2.5,
the positions of calibration points on calibration plane are determined by eyeball horizontal
rotation angle α, and vertical rotation angle β. Without loss of generality, the calibration
point whose polar coordinate (α, β) is closest to (0,0) is selected to verify the single-point
strategy. As shown in Figure 8, the mean and standard deviation of error in situation 1
(single calibration point) are slightly higher than the other two situations. The overall gaze
accuracy performance of them is comparable (the paired-t test: tstat = 1.94, p = 0.053).

Figure 8. Comparison of primary calibration method and recalibration method with different number
of calibration points. The bold numbers at the bottom are the angular error in degrees (mean ±
standard deviation).
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3.3. Comparison with Other Methods

To compare our proposed method with other methods, we implemented and evaluated
the following baseline methods.

• Nonlinear optimization

The method in [9] formulated a constrained nonlinear optimization to calculate the
eyeball center and the regression parameters that were used to map the eye image features
to the gaze vector. The initial position of the eyeball center is assumed by 2D pupil center
and scene camera intrinsic matrix. The constrained search range of the eyeball center is set
as ±[0.05 m, 0.05 m, 0.02 m]. This method needs two calibration planes, and the training
set at depth of 0.3 m and 0.5 m is used for calculating.

• Two mapping surfaces

The method based on mapping surfaces [19] mapped the eye image feature to 3D
gaze point on a certain plane. This way, two calibration surfaces with different depths
correspond to two different regression mapping functions. For a particular eye image, two
different 3D gaze points on different planes can be calculated, then the visual axis can be
obtained by connecting two points. This method also needs two calibration planes and the
training set at a depth of 0.3 m and 0.5 m is used for calculation.

In comparison, our proposed primary recalibration method and recalibration method
use the training set at a depth of 0.5 m. As shown in Figure 9, the proposed primary
calibration method achieves the lowest mean error, followed by the proposed recalibration
method. There is no significant difference between their overall gaze estimation perfor-
mance (the paired-t test: tstat = 1.83, p = 0.068). In addition, the mean error of the
method with nonlinear optimization is slightly lower than the error of the method with two
mapping surfaces. Compared to the method with nonlinear optimization, the proposed
primary calibration and recalibration method improve accuracy by 35 percent (from a mean
error of 2.00 degrees to 1.31 degrees) and 30 percent (from a mean error of 2.00 degrees to
1.41 degrees).

Figure 9. Comparison of the proposed method and state-of-the-art methods at different depths. The
bold numbers at the bottom are the angular error in degrees (mean ± standard deviation).

The scene angular error at each of the 90 test points for different methods is illustrated
in Figure 10. The error of each test point is calculated by averaging the error of the same
test point for all subjects. The primary calibration and recalibration method obtain better
accuracy performance than the baseline method for the 81% of validation points. Although
the accuracy performance of our proposed method at a few points is worse than the
baseline method, the error at these points is relatively low (lower than 2.4 degree) which
is acceptable. In terms of time cost, the baseline method cost 168 s on average while the
proposed primary calibration and recalibration method cost 114 s and 32 s, respectively.
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Therefore, it can be concluded that the proposed methods can achieve better accuracy
performance with less time cost of calibration procedures.

Figure 10. The scene angular error at each of the 90 test points for different methods. Noted that the
error of each test point is calculated by averaging the error of the same test point for all subjects. The
coordinates of these test points are represented in union eyeball coordinate system. (a) Nonlinear
optimization. (b) Primary calibration method. (c) Recalibration method.

4. Discussion

As revealed by the comparison of different methods, the proposed gaze estimation
method achieves better performance than the state-of-the-art methods. The main reason
is that the eyeball and camera coordinate system are estimated accurately in advance so
that they are used as known knowledge to simplify the mapping relationship in regression
model. When slippage occurs, the proposed recalibration strategy can utilize the old
regression parameters as initial value to optimize the new regression parameters with
estimated eyeball coordinate system. That is why the recalibration can get comparable
performance with primary calibration with a single calibration point. As a limitation, our
proposed calibration and recalibration method both require the calibration procedure to
estimate the transformation matrix between eyeball and scene camera coordinate system,
but it is simple and it takes little time (30 s approximately).

To compare our proposed method with other methods which need multiple calibration
depths, the robot arm is adopted in our experiments to sample calibration points at different
depths. However, our proposed method has no requirement for multiple calibration depth,
thus the robot arm is not necessary for practical use. For instance, the combination of
display screen and trackers can be adopted to sample calibration points at a certain depth,
which is more convenient. Noted that the use of the 6D pose tracker can help adjust the
positions of calibration points with the movement of a human’s head. It is user friendly
because there is no need to keep the head still when sampling calibration points. Benefits
always come with costs. The main disadvantage of our proposed method is that the 6D
pose tracker is necessary for calibration procedures. However, the head pose tracking based
on the 6D pose tracker is beneficial for human–machine interaction because the estimated
visual axis can be switched to the world coordinate system.

5. Conclusions

In this article, we propose a high-accuracy hybrid 3D gaze estimation model for
HMGT with head pose tracking. The two key parameters, eyeball center and camera
optical center, are accurately estimated in the head frame with a geometry-based method,
so that a low-complexity mapping relationship between two direction features can be
established with a quadratic polynomial model. The input feature is the unit direction
vector from the eye camera optical center to virtual pupil center and the output feature is
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the unit direction vector of visual axis. The direction features for model fitting are sampled
with uniform angular intervals over human’s field of view, which can help to acquire a high-
quality training set and prevent appreciable extrapolation error. For the slippage between
HMGT and the head, an efficient recalibration method is proposed with single calibration
point after recalculating the eyeball coordinate system. The experiment results indicate
that both the primary calibration method and recalibration method achieve higher gaze
accuracy than state-of-the-art methods. Generally, the advantages of the proposed method
are increasing the gaze estimation accuracy, improving the calibration point sampling
strategy and reducing the burden of calibration procedures. The disadvantage is that the
6D pose tracker is necessary for calibration procedures. In future work, the robustness of
the proposed gaze estimation model should be discussed and improved.
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