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1  | INTRODUC TION

In experiments of resting-state functional magnetic resonance im-
aging (fMRI), the study of connectivity to characterize cerebral 
functional segregation and functional integration has received 
considerable attention. The understanding of brain functional 

organization may provide critical insights to cognitive function, as 
well as mental diseases. Functional connectivity, defined as the cor-
relation or covariance between fMRI time courses, reveals the level 
of synchrony in the fluctuations of blood oxygenation-level-depen-
dent (BOLD) signals between brain regions (Friston, 1994). Brain 
regions with high functional connectivity are generally grouped as 
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Abstract
Resting-state functional connectivity is an important and widely used measure of 
individual and group differences. Yet, extant statistical methods are limited to link-
ing covariates with variations in functional connectivity across subjects, especially at 
the voxel-wise level of the whole brain. This paper introduces a modeling approach 
that regresses whole-brain functional connectivity on covariates. Our approach is 
a mesoscale approach that enables identification of brain subnetworks. These sub-
networks are composite of spatially independent components discovered by a di-
mension reduction approach (such as whole-brain group ICA) and covariate-related 
projections determined by the covariate-assisted principal regression, a recently in-
troduced covariance matrix regression method. We demonstrate the efficacy of this 
approach using a resting-state fMRI dataset of a medium-sized cohort of subjects ob-
tained from the Human Connectome Project. The results suggest that the approach 
may improve statistical power in detecting interaction effects of gender and alcohol 
on whole-brain functional connectivity, and in identifying the brain areas contribut-
ing significantly to the covariate-related differences in functional connectivity.
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functionally related and defined as a functional module/subnet-
work. For example, the default mode network (DMN) is a functional 
subnetwork that shows greater activity during resting states than 
during many task challenges, and has been consistently identified 
through resting-state functional connectivity analysis (Greicius 
et al., 2003). Existing literature has shown that brain functional con-
nectivity varies with respect to individual characteristics, such as 
sex and age (Lopez-Larson et al., 2011; Scheinost et al., 2015; Zhang 
et al., 2016), and in patients with autism spectrum disorders (Assaf 
et al., 2010), Alzheimer's disease (Wang et al., 2007), schizophrenia 
(Lynall et al., 2010), and other psychiatric disorders, as compared to 
healthy controls.

To describe group-level differences in brain functional connec-
tivity, investigators typically perform statistical analysis on each 
individual connection. One critical drawback of this element-wise 
approach is the issue of multiplicity. That is, with p brain voxels/re-
gions, statistical inference needs to account for at least p (p−1) ∕2 
hypothesis tests, one for each matrix element. To circumvent 
this, Zhao et al. (2019) proposed a whole-matrix regression ap-
proach called covariate-assisted principal (CAP) regression. It aims 
to identify a common linear projection of p time courses across 
subjects so that variations in functional connectivity defined by 
the projection can be explained by the covariates of interest. It 
is considered as a mesoscale approach in the sense that with an 
appropriate thresholding, the projection defines a brain subnet-
work. However, this approach suffers from the so-called “curse 
of dimensionality,” in that the dimension of the data, p, cannot 
be greater than the number of fMRI volumes. Therefore, it can-
not be applied to voxel-level fMRI data. Other examples include 
a network-based statistic proposed in Zalesky et al. (2010) and 
a connectome-based pipeline introduced in Shen et al. (2017). 
However, both approaches are for ROI-based networks that are 
constructed from (thresholded) connectivity matrices, and they 
can be hard to scale to large networks at the voxel level. They also 
have different aims from ours. Zalesky et al. (2010) employed a 
hypothesis-driven approach to reduce the dimensionality of brain 
networks while we will develop a data-driven approach building 
on Zhao et al. (2019). Shen et al. (2017) studied the inverse predic-
tion problem than ours, where they used brain connectivities to 
predict demographic/clinical factors.

In this study, we propose an approach, which can be directly 
applied to whole-brain voxel-level data, revealing individual and 
group variations in functional connectivity. The proposed ap-
proach is also a mesoscale approach as it identifies brain subnet-
works shared across subjects. These subnetworks are composite 
of spatially independent components discovered by group inde-
pendent component analysis (ICA Calhoun et al., 2001) and co-
variate-related projections determined by the CAP regression. In 
fMRI studies, ICA is a widely used technique to cluster brain vox-
els into subnetworks (Beckmann, 2012). Applied to resting-state 
fMRI data, spatial ICA identifies spatially independent and tempo-
rally coherent components. Based on the biological assumptions 
regarding spatial contiguity of brain networks across individuals, 

group ICA was introduced for population-level studies (Calhoun 
et al., 2001). Other methods that identify common components in 
large scale data—group principal component analysis (PCA, Smith 
et al., 2014) and template ICA (Mejia et al., 2019), for instance—can 
also be applied to this end.

This paper is organized as follows. In Section 2, we introduce 
our proposed approach. Section 3 presents an application in rest-
ing-state fMRI data obtained from the Human Connectome Project 
(HCP). Section 4 summarizes results with a discussion.

2  | METHOD

Let Yi= (yi1,…, yiTi )
T∈ℝ

Ti×V denote the Ti BOLD scans of V voxels ac-
quired from subject i  (i=1,…, n, n is the number of subjects) in the 
resting-state fMRI study, where yit= (yit1,…, yitV)

T∈ℝ
V is a random 

variable with mean zero and covariance matrix Φi= (�ijk)j,k∈ℝ
V×V. We 

assume that Yi satisfies the following decomposition:

where Ai= (ai1,…, aiTi )
T∈ℝ

Ti×K is the scalar mixing matrix and 
S∈ℝ

K×V is the spatial component maps shared across subjects. 
Model (1) approximates the real fMRI data with a low-rank matrix 
(Calhoun et al., 2001; Smith et al., 2014). One classic way of analyz-
ing above group ICA data is to firstly obtain the Pearson correlation 
between the ICs, that is the correlation between the columns of Ai

. Then, the correlations are Fisher z-transformed and fit in a linear 
regression model. This is conducted on K (K−1) ∕2 pairs of correla-
tions; thus, the p-values are corrected for multiplicity usually fol-
lowing procedures such as the Benjamini–Hochberg procedure to 
control for the false discovery rate (Benjamini & Hochberg, 1995). 
In this study, we propose an approach, where only R(<K) regression 
models will be fitted, which significantly reduces the number of the 
coefficient parameters to be estimated. In addition, the proposed 
approach enables a new decomposition of the brain, and each brain 
map is related to a set of covariates. In comparison, the proposed 
method decomposes the signals into R components that are asso-
ciated with the covariates, which significantly alleviates the multi-
plicity issue and thus can improve statistical power.

For Ai in (1), it is assumed that ait∈ℝ
K is normally distributed with 

mean zero and covariance matrix Σi, that is

where vec (⋅) denotes the vectorization of a matrix; ⊗ is the 
Kronecker product operator; and ITi is the Ti-dimensional identity 
matrix. For i=1,…, n, it is assumed that there exist R (1≤R≤K) in-
dices, denoted as {ci}Rc=1, such that, �ici =�c, and the corresponding 
eigenvalue �ici satisfies the following log-linear model,

(1)Yi=AiS,

(2)vec
(
Ai

)
:�

(
0,Σi⊗ ITi

)
,Σi=ΓiΛiΓ

T
i
=

K∑
k=1

𝜆ik𝛾 ik𝛾
T
ik
,

(3)log
(
�ici

)
=xT

i
�c.
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The covariance matrix,Σi, assumes to have the eigendecomposi-
tion as presented in (2), where Γi∈ℝ

K×K is an orthonormal matrix such 
that �T

ij
�ik=1 if j=k and zero otherwise; and Λi=diag

{
�i1,…, �iK

}
 is a 

diagonal matrix with �ij to be the corresponding eigenvalue. Denote 
Γ=

(
�1,…, �R

)
∈ℝ

K×R as the R columns that are common across sub-
jects and Ui∈ℝ

K×(K−R) the remaining unique columns. Reorganizing 
the columns in Γi,Γi=

(
Γ,Ui

)
. For the eigenvalues of the R common 

components, we consider a log-linear model (3) with the covariates 
of interest, where xi∈ℝ

q is a vector of covariates collected from 
subject i  with the first element one for the intercept, and �c∈ℝ

q is 
the model coefficient forc=1,…,R. LetZi=AiΓ= (zi1,…, ziTi )

T∈ℝ
Ti×R, 

then zit∈ℝ
K follows a normal distribution with mean zero and cova-

riance matrixΛi. Plugging into (1),

where the data are approximated by the R common components, 
and each row of Ω=ΓTS∈ℝ

R×V represents a spatial brain map. Let 
�c= (�c1,…,�cV)

T∈ℝ
V denote the c th row of the inverse loading ma-

trix, that is, zitc=�T
c
yit, for t=1,…, Ti. Under model (3),

In resting-state fMRI studies, time courses are generally stan-
dardized to have identical standard deviation with �ijj=�2

i
=�2, for 

j=1,…,V and i=1,…, n. Variations in functional connectivities are 
then captured by the variations in Var

(
�T
k
yit

)
 through a linear com-

bination weighted by �kj's. Our goal is to identify the weights (the 
spatial maps) Ω as well as the model coefficient �k's. In this sense, 
our proposed approach is a network-level/mesoscale analysis, 
where the network consists of voxels that contribute largely to the 
combination.

Model (1) presents one specific way of decomposing the vox-
el-level fMRI data using group ICA in this paper. By modifying S as an 
initial decomposition, one can apply the proposed method to other 
types of brain parcellation. For example, in a seed-based or a re-
gion-of-interest-based (ROI-based) analysis, each row of S is a vector 
of zeros and ones, where one indicates that the corresponding voxel 
is part of the seed/ROI. In this case, Ω clusters the seeds/ROIs into 
covariate-related groups. For example, in Zhao et al. (2019), the CAP 
approach grouped the DMN ROIs into components related to gen-
der difference and gender and age interactions.

2.1 | Interpretation of the proposed model under a 
special case

The pairwise regression approach (Wang et al., 2007) can be consid-
ered as a special case of the proposed approach with the correspond-
ing �cj to be 

√
2 and the rest zero. For example, considering voxles 1 

and 2, the corresponding �c= (1∕
√
2, 1∕

√
2, 0,…, 0)T. Assuming �=1

, with �i12=�i21, we rewrite model (3) as.

The Fisher z-transformation takes the formula

where r is the Pearson correlation. When �i12≈0, we have

Therefore, model (3) is approximately equivalent to the pairwise 
regression under this special case.

2.2 | Algorithm

To estimate the spatial mapΩ, we propose to estimate S and Γ in two 
steps. Figure 1 demonstrates the estimation procedure in each step. 
In the first step, S, which contains the spatially independent com-
ponents shared across subjects, can be estimated through group 
independent component analysis (ICA, Calhoun et al., 2001) by tem-
porally concatenating BOLD time courses from multiple subjects. 
In practice, in order to reduce the computation complexity and the 
amount of required memory, multiple data reduction steps, typically 
using principal component analysis (PCA), are performed before 
concatenating the time courses (Calhoun et al., 2009). After acquir-
ing IC time courses through dual regression, Γ and�c, for c=1,…,R, 
can be simultaneously identified using the covariate-assisted princi-
pal (CAP) regression approach proposed in Zhao et al. (2019), where 
Γ contains the R common components and R is determined based on 
a metric that measures the level of deviation from diagonality (DfD) 
of the rotated matrix Λ̂i=Γ̂

T
Σ̂iΓ̂, where Γ̂ is the estimate of Γ and Σ̂i 

is an estimate ofΣi, for example, the sample covariance matrix of Ai,  
fori=1,…, n.

where diag (Λ̂i) is a diagonal matrix with the diagonal elements 

the same as in Λ̂i; and det
(
Λ̂i

)
 is the determinant of Λ̂i. If Γ̂ is a com-

mon diagonalization of Σ̂i's; that is, Λ̂i's are diagonal matrices, the 
above metric is one. As suggested in Zhao et al. (2019), one can plot 
the metric over the number of components and choose R before the 
metric grows far away from one or before a sudden jump. The details 
of the CAP procedure are described in Zhao et al. (2019), and the 
implementation can be accomplished using the cap package in the 
open source software R. Thus, we do not repeat the algorithm in 
detail in this manuscript. The last step is the reconstruction of the 

brain maps Ω̂= Γ̂
T
Ŝ, called CAP brain maps. Each CAP brain map, 

after thresholding, should be interpreted as major brain areas 

(4)Yi=AiS≈ZiΓ
TS@ZiΩ,

exp
(
xT
i
�c
)
=�ici =Var

(
zitc

)
=Var

(
�T
c
yit

)
=

V∑
j=1

�2
cj
�ijj+ jl≠

∑
�cj�cl �ijl

log
(
1+�i12

)
=xT

i
�c.

z=
1

2
log

(
1+ r

1− r

)
,

log
(
1+�i12

)
≈ log

(
1+�i12

1−�i12

)
.

(5)DfD
�
Γ̂
�
=

n�
i=1

⎛
⎜⎜⎜⎝

det
�
diag

�
Λ̂i

��

det
�
Λ̂i

�
⎞
⎟⎟⎟⎠

Ti∕
∑

i Ti

,



4 of 12  |     ZHAO et Al.

F I G U R E  1   Algorithm. Step 1: group independent component analysis (ICA) on the whole brain. Step 2: the covariate-assisted principal 
(CAP) regression on the IC time courses to identify projections of the ICs that are associated with the covariates of interest. Step 3: 
reconstruction of the CAP brain maps
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contributing to specific functional connectivity variations explained 
by the covariates, especially those areas with statistically significant 
regression coefficients.

2.3 | Inference

To draw inference on the model coefficients, it is considered to ac-
quire the confidence intervals from bootstrap samples. In each itera-
tion, Ai's are resampled with replacement and fitted into Step 2 in 
Figure 1. Applying each column of Γ̂, we estimate the corresponding 
� using the resampled data. This procedure is repeated for B times, 
and 100(1−�)% confidence intervals are constructed, where � is the 
significance level, for example, �=0.05.

3  | ANALYSIS OF RESTING -STATE FMRI 
FROM THE HUMAN CONNEC TOME 
PROJEC T

We apply our proposed approach to the Human Connectome 
Project (HCP) resting-state fMRI data (scan session REST1_LR). 
The HCP aims to characterize human brain structure, function, 
and connectivity, as well as their variability in healthy adults. We 
use the group ICA data from the HCP, as available at http://www.

human conne ctome proje ct.org/. The fMRI data were first mini-
mally preprocessed following Glasser et al. (2013). The artifacts 
were removed by using ICA + FIX (Griffanti et al., 2014; Salimi-
Khorshidi et al., 2014). Group-PCA results were first generated 
by MIGP (MELODIC's Incremental Group-PCA) from 820 subjects, 
and then fed into group ICA using FSL (https://fsl.fmrib.ox.ac.
uk/fsl/fslwi ki/FSL) MELODIC tool (Beckmann & Smith, 2004; 
Hyvarinen, 1999). Spatial ICA was acquired in grayordinate space 
(surface vertices plus subcortical gray matter voxels; Glasser 
et al., 2013) at various dimensionalities.

In this study, we use the 25-IC data of 109 subjects (aged 22–36) 
from the HCP S500 release. The goal is to discover brain networks, 
within which the functional connectivity varies due to alcohol use, 
and to examine whether the alcohol-induced variation differs by gen-
der. We apply the proposed method (i.e., ICA-CAP) and compare with 
an edge-wise regression approach. In both approaches, the regression 
model includes age (continuous, mean 29.0, SD 3.4), gender (binary, 
41 females and 68 males), alcohol drinker (binary, 67 nondrinkers and 
42 drinkers), and a gender × alcohol interaction (27 female nondrink-
ers, 40 male nondrinkers, 14 female drinkers, and 28 male drinkers) 
as the covariates. In the following, we will focus on the four contrasts 
derived from the gender × alcohol interaction; that is, (1) male versus. 
female among alcohol nondrinkers; (2) male versus. female among al-
cohol drinkers; (3) alcohol drinkers versus. nondrinkers in the female 
group; and (4) alcohol drinkers versus. nondrinkers in the male group.

F I G U R E  2   Effect size with significance 
of the model contrast of gender and 
alcohol in the edge-wise regression. A 
connection indicates that the raw p-value 
of the corresponding pair is <0.05. Red 
color indicates a positive effect, and blue 
indicates negative. The darkness of the 
color and the width of the cord suggest 
the magnitude of the effect. (a) Male 
versus Female (Alcohol nondrinkers). (b) 
Male versus Female (Alcohol drinkers). 
(c) Alcohol drinkers versus nondrinkers 
(Female). (d) Alcohol drinkers versus 
nondrinkers (Male)

http://www.humanconnectomeproject.org/
http://www.humanconnectomeproject.org/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
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In edge-wise regression, functional connectivity between IC's is 
first calculated using Pearson's correlation and then Fisher z-trans-
formed. Linear regression is performed with the Fisher z-trans-
formed correlations as the outcome. We present the corresponding 
effect size in Figure 2 for those pairwise correlations that are signif-
icant for any contrast (at �=0.05). We observe differences in func-
tional connectivity between IC's for all four comparisons. However, 
none of them survives correction for multiple testing following the 
false discovery rate control procedure in Benjamini and Hochberg 
(1995). Though the edge-wise regression approach identifies sub-
tle variations in functional connectivity and the interpretation is 
straightforward, the method suffers from the curse of dimension-
ality as the number of tests increases dramatically as the number of 
components increases.

Using the deviation from diagonality to select model order, the 
proposed ICA-CAP approach identifies five components. Figure 3 
shows the loading profile, Table 1 displays the average percentage 
of variation explained by the five components, and Table 2 presents 
the coefficient estimates (with 95% bootstrap confidence intervals). 
The five identified components in total explain about 14.05\% of the 

data variation when averaging over all subjects. Among all five com-
ponents, C4 demonstrates the largest proportion (5.73\% on aver-
age). Grouping subjects into four subgroups, we observe variations 
in the percentages, which are consistent with the comparisons in 
Table 2. For the components C1, C2, and C4, we observe significant 
gender difference in functional connectivity among alcohol drinkers. 
In addition, among females, the functional connectivity within the 
component network demonstrates a significant difference between 
alcohol drinkers and nondrinkers. For C3, both the alcohol drinkers 
and nondrinkers groups show significant gender difference. For C5, 
all four comparisons reveal significant difference in functional con-
nectivity. Figure S1 in the Supplement presents the scatter plot of 
each gender × alcohol subgroup for the five components. For C1 and 
C3, we fit the edge-wise regression model on the two top loading 
ICs and compare the results with CAP in Figure 4. Though the co-
efficient of alcohol in female and gender difference in the alcohol 
user group are marginally significant in the IC17-IC1 pair, the direc-
tion and trend of the coefficients are consistent with the CAP com-
ponent C1. For C3, the significance of the � coefficients of the top 
loading pair in the element-wise regression is consistent with those 

F I G U R E  3   Loadings of the five identified components from the ICA-CAP approach. ICs in red have loading magnitude >0.15 (gray 
dashed lines). (a) CAP-C1. (b) CAP-C2. (c) CAP-C3. (d) CAP-C4. (e) CAP-C5
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in the CAP components, which verifies the ICA-CAP findings. Here, 
we want to comment that the sign of the loadings in the ICA-CAP 
approach is not identifiable.

Because ICA-based methods, including ours, measure not only 
the function connectivity but also interactions between brain net-
works (Joel et al., 2011), we thus only highlight the regions with high 
loadings in the reconstructed CAP brain map in Figure 5 (also see 
Figure S4 in the supplementary material), since these high loading 
components contribute majority of the variations associated with 
the covariates. Of the five components, we use C1 and C3 as an ex-
ample to further interpret the findings. For C1, the cuneus is among 
the highlighted regions. The cuneus is implicated in cue-elicited 
craving and altered emotion processing in alcohol misuse (Jansen 
et al., 2019; Jasinska et al., 2014). Compared with healthy controls, 
alcohol-dependent participants showed lower degree centrality val-
ues in the cerebellum, visual cortex, and precuneus in graph theo-
retical connectivity analyses (Luo et al., 2017). Another connectivity 
study reported that the precuneus, postcentral gyrus, insula, and 
visual cortex were the main brain areas with reduction in network 
connectivity, perhaps suggesting reduced interoceptive awareness 
in alcohol drinkers, compared to nondrinkers (Vergara et al., 2017). 
Overall, the current findings do not appear to be inconsistent with 
these earlier reports. Nonetheless, we wish to caution that the 
current findings are based on the contrast between drinkers and 
nondrinkers whereas those of the earlier studies typically involved 

heavy and/or dependent drinkers. This component also suggests 
a gender and drinking interaction. Together, these findings add to 
the literature of sex differences in the neural processes underlying 
how alcohol and drinking variables contribute to heavier and prob-
lem alcohol use in both dependent and nondependent drinkers (Hu 
et al., 2018; Ide et al., 2017, 2018; Wang et al., 2019; Zhornitsky 
et al., 2018).

For C3, we observe gender difference in brain functional con-
nectivity. Very few studies have examined gender differences in 
resting-state functional connectivity in neurotypical populations 
within the age range of the current cohort. An earlier study em-
ployed ICA to identify four fronto-parietal networks and showed 
sex differences in two of these networks with women exhibiting 
higher functional connectivity in general, an effect that appeared 
to be independent of the menstrual cycle (Hjelmervik et al., 2014). 
A lifespan study showed that the differences in connectivity be-
tween men and women of 22–25 years of age did not differ signifi-
cantly in functional connectivities (Conrin et al., 2018). However, 
the 26–30 (p=0.003) and the 31–35 age groups (p<0.001) showed 
significant differences. At the most global level, areas of diverging 
sex difference include parts of the prefrontal cortex and the tempo-
ral lobe, amygdala, hippocampus, inferior parietal lobule, posterior 
cingulate, and precuneus. In a study of the elderly, males showed 
greater connectivity than females in the salience network, whereas 
females showed greater connectivity than males in the default 

All
Female 
nondrinkers

Male 
nondrinkers

Female 
drinkers

Male 
drinkers

C1 1.98 1.85 1.74 3.02 1.91

C2 1.64 1.67 1.58 2.21 1.42

C3 2.42 3.15 2.21 2.57 1.93

C4 5.73 5.57 6.19 4.27 5.95

C5 2.27 1.76 2.58 2.54 2.18

Total 14.05 14.01 14.32 14.61 13.41

TA B L E  1   Average percentage of 
variance explained by each component 
from the ICA-CAP approach. The average 
is calculated over all subjects as well as 
subjects within each subgroup of gender 
and alcohol interaction.

Male vs. Female Alcohol drinkers vs. nondrinkers

Alcohol nondrinkers Alcohol drinkers Female Male

C1 −0.026	(−0.287,	
0.241)

−0.461	(−0.785,	
−0.129)

0.530 (0.157, 0.882) 0.095	(−0.131,	
0.307)

C2 −0.002	(−0.189,	
0.202)

−0.421	(−0.624,	
−0.198)

0.343 (0.093, 0.585) −0.075	
(−0.247,	
0.089)

C3 −0.359	(−0.579,	
−0.160)

−0.290	(−0.517,	
−0.067)

−0.209	(−0.469,	
0.050)

−0.140	
(−0.306,	
0.020)

C4 0.014	(−0.191,	0.236) 0.289 ( 0.010, 
0.559)

−0.333	(−0.602,	
−0.079)

−0.058	
(−0.290,	
0.150)

C5 0.351 (0.203, 0.534) −0.165	(−0.336,	
−0.008)

0.326 (0.157, 0.496) −0.190	
(−0.368,	
−0.027)

TA B L E  2   Estimated model contrast 
(and 95% bootstrap confidence interval) 
of gender and alcohol for the five 
identified components from the ICA-CAP 
approach.
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mode network (Jamadar et al., 2018). Here, we demonstrate gen-
der differences in somatomotor and occipital cortex, and cold color 
regions are the orbitofrontal cortex and temporo-parietal junction, 
suggesting that the ICA-CAP provides another analytical approach 
that may capture gender differences in network connectivity.

To examine the reliability of the method, we apply the identified 
linear projections on the rest three scan sessions of resting-state 

fMRI data acquired from the same subjects and obtain the model 
coefficient estimates in model (3). Figure 6 presents the estimated 
model coefficients and 95% bootstrap confidence interval for 
each session, where the linear projections are estimated using the 
data of REST1_LR. From the figure, in CAP-C1, the significance of 
the comparisons is consistent across sessions except for REST2_
LR, where the effects are marginally significant. For CAP-C3, 

F I G U R E  4   A comparison of CAP components with element-wise regression. Figures on the left panel show the loading profile of the 
components/pairs, in the middle displays the corresponding brain map, and on the right presents the estimate of the four comparisons with 
95% confidence intervals. For the element-wise approach, the brain maps are superposition of the two components with equal weights. (a) 
CAP-C1 versus IC1-IC17. (b) CAP-C3 versus IC22-IC23
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significant sex difference among nondrinkers is observed in all 
four sessions. Among alcohol drinkers, sex difference is significant 
in sessions REST1_LR and REST2_LR and marginally significant in 
REST2_RL. The consistency of the findings across sessions not 
only demonstrates the reliability of the method, but also provides 
evidence of the existence of variations in functional connectivity 
in these brain networks. We also repeat the whole process to the 
rest three experimental sessions. The proposed method identifies 
five components in REST1_RL, six components in REST2_LR, and 
four components in REST2_RL. In Figure S6 of the supplementary 
materials, it presents the correlations between the components 
using a chord diagram, where a connection indicates that the cor-
relation between the two components is over 0.5. From the figure, 
the correlations between the first components identified across all 
sessions are relatively high (>0.7), showing moderate reliability of 
the first component. Nonetheless, except for C5 of REST2_LR, the 

rest components are correlated with at least one component iden-
tified in another session. This suggests a potential limitation of the 
proposed approach in reproducing components across sessions.

4  | DISCUSSION

In this study, we propose a voxel-level approach to identify brain 
subnetworks that are associated with covariates of interest. The ap-
proach builds upon two technical components including a dimension 
reduction step and a covariance regression step. In the dimension 
reduction step, we consider the widely used group ICA approach 
to obtain spatially independent components shared by the study 
population. The covariance regression method identifies brain sub-
networks (combinations of the components) that demonstrate pop-
ulation or individual variation in brain functional connectivity. The 

F I G U R E  5   Reconstructed brain maps 
of the five components from the ICA-CAP 
approach (cortical regions). (a) CAP-C1. 
(b) CAP-C2. (c) CAP-C3. (d) CAP-C4. (e) 
CAP-C5
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last step of the proposed approach reconstructs principal compo-
nent brain maps, comprised of orthogonal groups of the ICs, in asso-
ciation with covariates of interest. Compared to a standard pairwise 
approach, which requires fitting separate models for each pair of re-
gions/networks, the utilization of the covariance regression method 
illustrates superior performance by avoiding the massive number of 
univariate tests.

Our method comparison adds a growing literature on compar-
ing multivariate approaches to univariate approaches for functional 
connectivity modeling. The effectiveness of multivariate approaches 
over univariate ones was also observed for multivariate covariance 
measures (Geerligs & Henson, 2016; Yoo et al., 2019). In this man-
uscript, we focused on multivariate modeling of whole correlation 
matrices, instead of each connectivity edge separately.

There are several methodological limitations of our current 
method. Given the current sample size, we did not consider func-
tional connectivity changes over time or cognitive state, also known 
as dynamic connectivity (Hutchison et al., 2013). Additionally, spa-
tial variations in functional connectivity were also found recently 
to be related to cognitive state (Salehi et al., 2019). Our framework 
takes a generalized linear model form, and this makes it amenable 
to inclusion of spatial and temporal covariates. Though estimating 
the spatial and temporal effects seems achievable, proper statistical 
inference would require future work to consider spatial and tempo-
ral dependence in a more complex mixed effects model framework. 
Secondly, our method does not model task activations and even fur-
ther task-induced connectivity changes. It marginally depends on 
the Gaussian distribution assumption, though Pearson's correlation 

is relatively robust against slight departure of Gaussianity. Note that 
the non-Gaussian assumption over spatial maps in our group ICA 
does not apply to our Gaussian likelihood modeling of the extracted 
time courses. Future research is required to extend our method to 
accommodate various ICA approaches (Calhoun et al., 2009) with 
non-Gaussian assumptions on other components. Finally, we took 
a multistage approach which can lead to decreased statistical ef-
ficiency. An alternative approach, though computationally more 
expensive, is to consider fitting CAP regression and group ICA si-
multaneously in a uniform model.

We apply the proposed method to the HCP resting-state fMRI 
data and identify brain subnetworks within which the functional 
connectivity variations can be explained by gender and/or alcohol 
use. Our findings are in line with extant literature, lending evidence 
to the usefulness of the proposed method in investigating the vari-
ability in brain connectomics. The main goal of the analysis herein is 
to assess the effectiveness of the proposed method. Future analyses 
with larger cohorts are warranted to validate the findings here. With 
increased cohort sizes and the availability of more comprehensive 
covariates, the propose method may be adopted to include more 
complex covariates and their interactions.

We also recognize several limitations in our fMRI analysis. First, 
we did not evaluate variations in brain maps related to covariates. 
Though these maps can be useful for generating hypotheses, our 
current implementation does not provide statistical significance of 
these maps or cluster-level p-values. One possible direction to use 
bootstrapped data to evaluate the variations in recovered brain 
maps, though this can be computationally prohibitive not to mention 

F I G U R E  6   Estimated model contrast (and 95% bootstrap confidence interval) of gender and alcohol for all four fMRI scan sessions in 
HCP. The linear projections (CAP-C1 and CAP-C3) are estimated from scan session REST1_LR. Intervals in color (red for positive and blue for 
negative) indicate a significant effect. (a) CAP-C1. (b) CAP-C3
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a potential challenge to match brain maps across bootstrapped sam-
ples. Second, it is expected that many other covariates could impact 
functional connectivity networks, for example, structural imaging 
measures and behavioral assessments. In this first paper, we use 
the basic demographic variables in HCP as a demonstration of our 
method, and our conclusions are subject to confounding from those 
additional covariates not included in the model. Thirdly, we did not 
include additional data or external datasets to validate our findings. 
Here, our analysis should be treated as a confirmatory study illus-
trating a new method. The novel findings by our method should be 
further validated using ideally external data.

5  | CONCLUSION

In this study, we propose a whole-brain modeling approach to dis-
cover variations in brain functional connectivity. The approach can 
be directly applied to voxel-level fMRI data and identifies brain sub-
networks within which variations in functional connectivity are as-
sociated with population/individual covariates of interest. Applied to 
a resting-state fMRI dataset obtained from the Human Connectome 
Project, the proposed multivariate approach is demonstrated to be 
effective with improved statistical power in detecting variations ex-
plained by gender and/or alcohol use.
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