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Abstract
Burn healing should be regarded as a dynamic process consisting of two main, interrelated phases: (a) the inflammatory phase
when neutrophils and monocytes infiltrate the injury site, through localized vasodilation and fluid extravasation, and (b) the
proliferative-remodeling phase, which represents a key event in wound healing. In the skin, both canonical autophagy (induced by
starvation, oxidative stress, and environmental aggressions) and non-canonical or selective autophagy have evolved to play a
discrete, but, essential, “housekeeping” role, for homeostasis, immune tolerance, and survival. Experimental data supporting the
pro-survival roles of autophagy, highlighting its Yang, luminous and positive feature of this complex but insufficient explored
molecular pathway, have been reported. Autophagic cell death describes an “excessive” degradation of important cellular
components that are necessary for normal cell function. This deadly molecular mechanism brings to light the darker, concealed,
Yin feature of autophagy. Autophagy seems to perform dual, conflicting roles in the angiogenesis context, revealing once again, its
Yin–Yang features. Autophagy with its Yin–Yang features remains the shadow player, able to decide quietly whether the cell
survives or dies.
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Introduction

The skin is a complex organized first line of defense.1 The
skin micro-environment is strongly influenced by tem-
perature, diet, pH, moisture, sebum level, resident immune
cells, infectious exposure, and last but not least, oxidative
stress.1–4 However, the skin is gifted with an insufficiently
explored arsenal of molecular and cellular weapons and
able to counterattack potential external threats.1,2 The ef-
ficiency of skin protective function relies mainly on mo-
lecular mechanisms controlling and sustaining the
continuous removal of dead cells and other debris without
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alarming the immune system.1–4 In this context, one of the
main roles will be played by autophagy.5

Skin cell populations are both non-immune and
immune.2,6 Epidermis cells are represented by keratino-
cytes, Langerhans cells (LCs), dendritic epidermal γδ T
cells, melanocytes, and Merkel cells.7 The dermis has
populations of non-immune cells, like fibroblasts, endo-
thelial cells, and neurons and immune cells, such as B cells,
macrophages, T cells, innate lymphoid cells, and NK.1–3

Hypodermis consists of adipocytes, lymphatic and blood
vessels, and nerves.1–3 Normally, the epidermis and dermis
have circulating immune cells (neutrophils, monocytes,
macrophage, αβ T cells, γd T cells, NK cells, B cells, and
innate lymphoid cells) and non-immune cells (such as
keratinocytes, fibroblasts, and melanocytes).1–3

On the other hand, in the skin, both canonical autophagy
(induced by starvation, oxidative stress, and environmental
aggressions) and non-canonical or selective autophagy
have evolved in order to play a discrete, but, essential,
“housekeeping” role, in homeostasis, immune tolerance,
and survival.1,6 The skin is exposed to many and various
environmental stressing factors, so it has big energy and
resource requirements. However, being a nutrient-poor
organ, its functions and survival mainly depend on the
recycling of limited resources via the complex autophagy
system.5,8

Regarding autophagy, of all the organs of the human
body, the skin remains one of the less studied. The aim of
our review is to shed some light upon the vailed roles of
autophagy in burn wounds healing, and, also, to outline its
Yin Yang duplicitous features, as a pro-survival/cell death
initiator mechanism, in burns context. We have focused on
three main topics: (1) the molecular mechanism of the
autophagic process, (2) autophagy as a pro-survival
mechanism in burns, the Yang, and (3) autophagy as a
cell-death promotor pathway in burns, the Yin.

Autophagy

The word “Autophagy” is derived from the ancient Greek
language, and it means self (auto) eating (phagy). The term
autophagy was first presented by Christian de Duve, who
won the Nobel Prize in Medicine for studying lysosomes,
in 1974.9–14 Autophagy is a highly conserved molecular
pathway across eukaryotes’ evolution. This molecular
machine enables the cells to recycle cellular debris via
lysosomes, ensuring, in this way, survival during periods of
nutrient deprivation and stress.9 However, presently, it
becomes clearer and clearer that the pathway of autophagy
is intimately involved, not only in cell adaptation to
starvation but also in inflammation, apoptosis, and cellular
necrosis. The autophagy pathway can be classified as
follows: macroautophagy (canonical autophagy—known
as autophagy), microautophagy, and chaperone-mediated

autophagy.9,11,15 Characteristic of macroautophagy is the
autophagosome formation. The autophagosome represents
a double membrane vesicle, able to engulf cytosolic pro-
teins, damaged organelles, and other cellular
materials.9,11,15

Microautophagy represents the substrate translocation,
via direct protrusion or invagination, into lysosome, for
degradation.9,11,15 The chaperone-mediated autophagy
involves the direct translocation of the substrate proteins
across the lysosomal membrane, by a chaperone protein
Hsc70 (heat shock cognate 70)-mediated mechanism.9,11,15

The molecular orchestra of autophagy is precisely
controlled by the ATG protein group.9,16 Briefly, the main
steps of the autophagic pathway are (1) the pre-initiation
complex organization; (2) the phagophore formation; (3)
autophagosome elaboration; (4) autophagosome–lysosome
fusion triggering the autolysosome formation; and (5)
cargo degradation (Figure 1).9,16–18

The mammalian target of rapamycin (mTOR) represents
the key regulator of autophagy initiation; more precisely,
mTOR inhibition triggers autophagy induction by the as-
sembly of ULK1/2, ATG13, and FIP200, to elaborate the
pre-initiation complex, in the presence of unwanted cellular
debris (mitochondria, pathogens, and protein aggregates,
representing the cargo) (Figure 1).15–17 This molecular
event will, in turn, activate the Class III
phosphatidylinositol-3-kinase (PI3K) complex, formed by
ATG14 (UVRAG)-VPS15-VPS34-Beclin1. The main
function of this complex is to recruit the ATG proteins to
the autophagosome assembly site.15–17 During autopha-
gosome elongation, E3 (Ubiquitin)-ligase ATG7 is re-
cruited to the autophagosome membrane and triggers the
ATG5–ATG12–ATG16L1 complex generation.1,16,19 E2-
like enzyme ATG3 generates the ATG12–ATG3 conjugate,
controlling mitochondrial homeostasis.1,16,19 ATG7 can
recruit ATG3 and ATG10 leading to ATG7–ATG3 and
ATG10–ATG3 complexes, respectively.17,19,20 ATG12-
conjugation is vital for pre-autophagosomes
formation.20,21 ATG3 is involved in the LC3-I conjuga-
tion with phosphatidylethanolamine (PE). LC3 lipidation
with PE forms LC3-II, necessary for the autophagosomes
complete assembly.19–21 LC3-PE is included into the
mature autophagosome.19–21 The completed autophago-
some finally is able to fuse with the lysosome, resulting the
autolysosome inside which the cargo is degraded by ly-
sosomal hydrolases. The degradation products are released
back into the cytosol and recycled.19–21

As mentioned above, mTOR is a critical conductor of
autophagy initiation. Mitogen-activated protein kinase
(MAPK) and protein kinase B (Akt) activate mTOR via the
interaction of tuberous sclerosis complex (TSC) 1/2, Rheb,
and the mammalian target of rapamycin complex 1/2
(mTORC1/2).10 ATG13 and the serine–threonine kinase
ATG1 phosphorylation are inhibited by the activated
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mTOR, suppressing in this way the initiation of the
autophagy pathway.16

Autophagy represents a complex molecular pathway
which should not be considered limited only to cell survival
during starvation. In reality, autophagy plays key role in
regulating important cellular events.9,22–24 This highlights
the importance of investigating autophagy’s hidden in-
fluences on various biological mechanisms, in different
contexts, such as burn wound healing. The inflammatory
response in the skin, induced by environmental irritants,
such as burns, involves autophagy as a complex regulator
of specific molecular events.1

Autophagy: a pro-survival mechanism—the Yang

Compared to other types of wounds, burn wounds are a
special type of skin lesions, in many ways: molecular
events, signaling pathways involved, pathophysiology, and
the entire, imposed management.25 The burn wound
healing should be regarded as a complex and dynamic
process, involving innate immune cells (neutrophils,
monocytes, and macrophages), adaptive immune cells
(alpha beta (αβ) T cells and the gamma delta (γd) T cells),
and non-immune cells (keratinocytes, fibroblasts, mesen-
chymal stem cells, and smooth muscle cells).25,26

Burn healing should be regarded as a dynamic process
consisting of two main interrelated phases: (a) the in-
flammatory phase, when neutrophils and monocytes in-
filtrate the injury site through localized vasodilation and
fluid extravasation; and (b) the proliferative-remodeling
phase, which represents a key event in wound healing,

characterized by fibroblast and keratinocyte activation by
cytokines and growth factors (Table 1).25–27

The most important steps of the burn wound healing are
briefly illustrated in Figure 2.

Autophagy and the inflammatory phase of burn
wound healing

Immediately after the thermal injury occurred, the burn
wound presents three zones: (1) the coagulation zone
(most damaged in the central portion); (2) the stasis zone
or zone of ischemia; and (3) the hyperemia zone
(characterized by increased inflammatory-induced
vasodilation).1,27,28

Hemostasis is initiated immediately after the thermal
injury occurred and involves platelets recruitment and
aggregation; vasoconstriction; secretion of clotting and
growth factors (like platelet-derived growth factor (PDGF),
epidermal growth factor (EGF) and transforming growth
factor-β (TGFβ)) by platelets, macrophages, and fibro-
blasts, triggering the fibrin clot formation at the thermic
injury site. The fibrin clot will serve as a provisional matrix
for the next steps of the healing process.25–28

After the thermal injury occurred, neutrophils,
monocytes, and monocyte-derived macrophages M1 re-
cruited to the lesion site due to localized vasodilation.
These immune cells will practically initiate and amplify
the inflammatory phase.25–28 The macrophages remove
cell debris and pathogens from the injury site. Neutrophils
and macrophages release cytokines (tumor necrosis factor
(TNF); IL-1, IL-8) and growth factors (insulin-like

Figure 1. Main steps of the autophagic pathway.
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Table 1. Autophagy levels during burn wound healing main steps.

Figure 2. The most important steps of burn wound healing.
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growth factor (IGF) and vascular endothelial growth
factor (VEGF)).25–28 Autophagy plays discrete, but,
however, essential roles in the molecular basis of these
immune cells’ activity. Moreover, autophagy should be
regarded as a complex target of the molecular signals
represented by cytokines (Figure 3).1,25–29

As illustrated in Figure 3, autophagy is induced by
interferon (IFN)-γ, interleukin IL-1β, IL-α, and tumor
necrosis factor (TNF)-α.28,29 Important to emphasize is that
the autophagy relationship with IL-α, IL-1β, IL-17, and
TNF-α can be influenced by different conditions, such as a
burn wound.28,29

Bhaskaran outlined that IL-1b could modulate Akt/
mTOR metabolic signaling proteins in T cells. More-
over, these authors have shown that IL-1b increased p-Akt
and p-mTOR expression in naı̈ve and Foxp3+CD4+T
cells.30

The PI3K/AKT/mTOR signaling pathway represents a
key modulator of autophagy. More precisely, the PI3K/
AKT/mTOR pathway activation suppresses autophagy and
promotes inflammatory responses in several diseases.31

Tang et al. have shown that TNF-α-induced PI3K/AKT/
mTOR signaling activation has been abolished by lncRNA
MEG3 (long non-coding RNA maternally expressed gene
3) overexpression in keratinocytes. Moreover, PI3K/AKT/
mTOR pathway inhibition triggered the downregulation of
TNF-α-induced inflammation and restored the autophagy
level.31

The autophagic machine is blocked by IL-4, IL-10, IL-
13, and IL-33.

In turn, autophagy induces the synthesis and secretion of
IFN-γ, TNF-α, and IL-1β and abolishes the TNF-α, IL-17,
IL-1β, and IL-α release.28,29

Neutrophils are the best represented granulocytes and
are considered real attack pawns of the immune system.32

Autophagy role in the neutrophils function is highlighted
by the reported data revealing that autophagy-deficient
neutrophils showed NADPH-oxidase-mediated reactive
oxygen species (ROS) production, impaired degranulation,
and abnormal inflammatory responses.30 Moreover, the
neutrophils from leprosy patients’ skin showed intensified
autophagy and exhibited accelerated apoptosis in vitro.33 In
neutrophil-mediated inflammation, autophagy represents a
protective mechanism.

Neutrophil autophagy blocking may trigger an uncon-
trolled inflammatory response.34 It has been reported that
autophagy decreases cytokine production and down-
regulates neutrophil influx.35,36 Autophagy decreases de-
granulation and ROS generation, triggering apoptosis
downregulation.37,38

Macrophages are phagocyting cells, located in the
epidermis and dermis.6 In normal conditions, these cells are
involved in maintaining the skin immunotolerant
environment.6,39

In macrophages, autophagy also plays key roles re-
garding the functions of these phagocytic cells. These
important roles are outlined by the experimental data re-
vealing that in leprosy patients, skin macrophages pre-
sented significant upregulations of autophagy genes,
especially atg14 and beclin1.40

Other important immune cells, deeply involved in the
burn wound evolution, are the adaptive immune cells, the
alpha beta (αβ) Tcells and the gamma delta (γd) Tcells. The
alpha beta (αβ) T cells (CD8+ T cells and CD4+ T cells) are
maintained in the skin long after the immune response is
over.41–48 Atg7-deficient (αβ) T cells are not able to

Figure 3. The complex interrelations between cytokines and autophagy.
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participate in the skin homeostasis maintenance,49,50 il-
lustrating once again the importance of the autophagic
pathway in sustaining their functions. At the same time,
gamma delta (γd) T cells are found in the epidermis and
dermis and are named dendritic epidermal γd T cells
(DETCs) and dermal γd T cells, respectively.51–53 Like αβ
T cells, they have mediator roles in tissue repair.51,54 γd T
cells are among the first responders to skin damage, in-
cluding burns. This type of T cells is important in main-
taining skin homeostasis in different conditions, including
burns, by releasing cytokines like IGF-1, TNF-α, and KGF-
1. These cytokines underlie their roles in burn wound
repair.54 DETCs develop close contacts with keratinocytes
and have a significant contribution in wound healing.55,56

Interestingly, skin γd T cells are able to sustain autophagy
for survival, also in the absence of cytokines.54,57 These
mentioned experimental data highlight the important roles
performed by autophagy in the molecular landscape of the
functions of immune cells like neutrophils and macro-
phages, especially considering that they are the key players
in the inflammatory phase initiation of burn wound healing.

Autophagy, a complex and dynamic molecular flux,
represents a key point for cell survival.58,59 As mentioned
above, cytosolic LC3 (LC3-I) conversion to the
autophagosome-associated form LC3-II by conjugation of
phosphatidylethanolamine is considered an essential event
for autophagy initiation.60,61 P62 should be regarded as
another autophagy biomarker since after the autophagic
machinery starts, p62 is degraded.58,59 Beclin-1 level can
also be used as an indicator of autophagy.60,61 Putting all
this together, LC3-II and Beclin-1 increment along with
p62 decrease should be regarded as biomarkers of auto-
phagic activity level during burn wound evolution. Heba A
et al. reported experimental data supporting the pro-
survival role of autophagy, highlighting its Yang, lumi-
nous, and positive feature of this complex but insufficient
explored molecular pathway.61 The study of Heba, con-
ducted on skin samples from burn wounds, revealed, by
measuring LC3-II and Beclin-1, a significant decrease of
autophagic level (p < .001) during the first 24 h.61 After
24 h, autophagy intensity began to increase, but it did not
reach the normal level up to 72 h after the burn injury
occurred.61 This increase took place in accordance with the
epithelial cells’ migration and scab formation.61 These
findings outlined the hypothesis that, in the very early stage
of the burn injury, the cell number sustaining autophagy is
reduced, necrosis becoming the main event.61 After 24–
72 h, when the tissue necrosis decreased in intensity, but the
surrounding tissue presented ischemic damages as a con-
sequence of strong inflammatory signals, autophagy re-
enters the scene, as a molecular pro-survival mechanism,
being able to protect cells against these stress effects. This
hypothesis may explain the later increase of autophagy
intensity, illustrated by the LC3-II and Beclin-1 increase.61

It has been shown that excessive exposure to UV ra-
diation results in acute skin damage including epidermal
injuries. These injuries trigger an influx of activated im-
mune cells into the wounded skin bed generating a lo-
calized inflammatory response that further exacerbates
inflammation, altering the tissue repair process.62,63 Das
et al. have shown that a single dose of vitamin D decreased
the UV-induced skin inflammation and was sufficient to
sustain skin cell survival and to accelerate the tissue re-
covery process.64 Strozyc et al. have highlighted that the
uncontrolled cell death caused by excessive UV exposure
may be offset by survival signals transmitted from upre-
gulated autophagy.65 Autophagy is regarded as a powerful
immune regulator able to counteract infection and respond
to toll-like receptor signaling, directing the cells towards
survival or apoptosis.66–68 Moreover, it has been reported
that macrophages autophagy upregulation had protective
effects from acute and chronic organ injury through re-
ducing inflammation intensity, promoting cell survival,
and, finally, supporting the tissue repair process.69–72 Jiang
et al. have also shown that enhanced autophagy had pro-
tective effects against polymicrobial sepsis by dampening
the cytokine storm triggered by microbial load.73

These studies support the conclusion that the enhanced
autophagy represents a very important pro-survival
mechanism, influenced, however, by the surrounding
micro-environment and stress response. However, future
studies are needed in order to clarify the role of vitamin D,
via autophagy, in burn wounds’ recovery.

Autophagy and the molecular landscape of the
proliferative and remodeling phase

The next phase of burn wound healing is the proliferative
and remodeling phase.28,61 The molecular events charac-
terizing this phase are strongly based on fibroblasts, ker-
atinocytes, and endothelial cells recruitment, activation and
proliferation at the wound site.28,61 The proliferation of
these non-immune cells insures the provisional matrix
substitution with a connective tissue matrix (Table 1).28,61

The important next steps are represented by angiogenesis,
granulation tissue formation, and epithelialization
(Table 1).28,61

Keratinocytes are non-immune cells involved in both
angiogenesis (restoring the blood vessels and resuming
circulation) and epithelialization (which means wound
surface closure) modulation of angiogenesis through cir-
cadian oscillation of vascular endothelial growth factor A
(VEGF-A) in epidermal keratinocytes.1,74,75

Keratinocytes represent the foundation of the epidermis.
From all the skin cells, they are the most studied. Human
keratinocytes are able to initiate inflammasomes assembly
upon either UVB irradiation, viral infection, or, probably,
burns.1,74 The keratinocyte growth factor (FGF7/KGF)
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controls keratinocyte differentiation and autophagy initi-
ation. Keratinocyte FGF7/KGF-controlled differentiation
triggers the LC3 expression and autophagy initiation via
the PI3K–AKT–mTOR pathway,76,77 lysosomal enzyme
activation, and cellular components degradation.1,6,78–80 In
the case of Atg7-deficient keratinocytes, N,N0-dimethyl-
4,40-bipyridinium dichloride (paraquat) treatment led to
p53 and p21 accumulation and abnormal cellular aging,79

highlighting the importance of the autophagic machinery.
Reported experimental data revealed that Atg5-deficient
keratinocytes are unable to undergo differentiation.1,81–83

Regarding keratinocytes, autophagy reveals again its
bright, Yang feature.

The resident fibroblasts are transformed into myofi-
broblasts, which will contribute to extracellular matrix
(ECM) deposition.1 The final steps of the proliferative and
remodeling phase are granulation tissue becomes mature
and the ECM is remodeled by matrix metalloproteinases
(MMPs) under the precise control of growth factors and
tissue inhibitors of metalloproteinases (TIMPs), leading to
increased tensile strength (Figure 2).1

Angiogenesis involves endothelial cell activation by
growth factors like FGFs, VEGF, and hepatocyte growth
factor (HGF).84 Angiogenesis, a key pathway in wound
healing, presents the following steps: (1) the surrounding
basement membrane degradation by endothelial proteolytic
enzymes; (2) the initiation of the sprout formation; (3)
endothelial cell proliferation and migration; and (4) tube-
like structure formation by the migrating cells.85,86

All these are sustained by Liang et al. findings, high-
lighting that angiogenesis was stimulated during the heat-
denatured endothelial cell (HDEC) recovery.84 Angio-
genesis initiation has been illustrated by increased endo-
thelial cell proliferation, migration, and tube
organization.87 Liang et al. also pointed, based on their
experimental results, that (1) autophagy level increments
during HDECs recovery depended on intracellular ROS
(reactive oxygen species) generation; (2) autophagy inhi-
bition suppressed endothelial cell proliferation, migration,
and tube-like structure formation, in vitro; (3) autophagy
proved to be vital for pro-angiogenesis during HDECs
recovery, in vivo; and (4) intracellular ROS are subtle but
essential regulators of AMPK/Akt/mTOR signaling, en-
hancing the autophagy level and initiating angiogenesis
during HDEC recovery.84

The post-burn inflammatory phase is characterized by a
huge ROS generation, triggering the progression of the
local and, also, distant inflammatory reactions.88 Imme-
diately after the thermal injury, PMNs invade the lesion
scene inducing the release of massive amounts of ROS in
the interstitial fluid. However, the antioxidant enzyme
concentration and activity in the wound fluid is modest and
insufficient in order to remove the large ROS amounts,
generated during the post-injury phase.

Reactive nitrogen species (RNS) and ROS are highly
reactive species released during the cellular metabolism, in
both normal and pathological conditions. Basal ROS/RNS
levels play essential homeostatic roles in regulating the
molecular signaling pathways, involved in metabolism
control, proliferation, and survival.38,89 However, when the
redox balance is dysregulated and antioxidant defense
systems are surpassed, oxidative stress is initiated. When
oxidative stress defeats the cell capacity to repair oxida-
tively damaged biomolecules (nucleic acids, lipids, and
proteins), oxidative damage is initiated. It has been
highlighted that oxidative stress triggers autophagosomes
accumulation in different types of somatic cells.18,90

However, the precise redox events involved remain un-
clear. It has been reported that ROS are associated with
autophagy induction in starvation conditions.91–93 Oxi-
dative stress-activated autophagy is crucial in protecting
cells from apoptosis.94,95 Autophagy impairment will in-
duce and/or increase the oxidative stress.96 Furthermore,
antioxidant molecules are able to suppress autophagy
initiation, moderately or completely.97 In conclusion, ROS
not only induce the autophagic pathway but also inhibit it,
ROS and autophagy being mutually influenced. ROS,
known as key signaling molecules, are very important
players in the molecular landscape of angiogenesis, con-
trolling indirectly the endothelial cells’ proliferation and
migration.98

Recent data highlighted the significant roles of ROS in
the complex control mechanism of autophagy.99 More-
over, experimental data revealed the autophagy protective
effects against oxidative stress–induced cell death. For
instance, it has been shown that the vascular smooth
muscle cell platelet-derived growth factor has protective
effects against oxidative damage of molecules and 4-
hydroxynonenal induced cell death, by upregulating
autophagy.100 In endothelial cells, autophagy induced by
glycolysis inhibition with 2-deoxy-D-glucose is con-
trolled by AMPK activation through ROS formation.101

Reoxygenation-induced ROS generation also triggers
autophagy upregulation. The same study revealed that
autophagy inhibition increases apoptotic cell death of
primary hepatocytes.102

Liang et al. revealed that both heat treatment and re-
covery significantly stimulated intracellular ROS genera-
tion.103 They also have shown that ROS generation
inhibition by N-acetylcysteine (NAC) triggered the re-
duction of autophagy in HDECs.100 More precisely, NAC
treatment significantly inhibited AMPK phosphorylation
and stimulated AKT and mTOR phosphorylation. This
way, autophagy and, consequently, angiogenesis were
inhibited during the recovery of HDECs in vivo.104 These
data lead to the conclusion that in the HDECs recovery
context, autophagy and angiogenesis are interconnected by
a fine molecular network of ROS. ROS are able to initiate
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autophagy through various signaling pathways, including
AMPK and mTOR pathways, playing crucial roles.84,105

In response to metabolic stress, AMPK is one of the
main actors on the autophagy regulation scene in endo-
thelial cells.104,105 AMPK, as a positive autophagy reg-
ulator, downregulates the AKT/mTOR pathway,106,107

one of the main modulators of autophagy. AKT regu-
lates autophagy mostly via mTOR activity modulation.
AKT pathway initiation by the recombinant active human
AKT1 full-length protein (rAKT) was able to inhibit
autophagy, affecting the angiogenesis process, normally
induced in HDECs by autophagy.84,103 However, future
research will have to clarify the molecular mechanisms
through which ROS induce and support the pro-survival
feature of autophagy during burn wound evolution and
healing.

Autophagic cell death—the Yin

Usually, autophagy initiation in response to stress repre-
sents a pro-survival molecular mechanism. However, in
some specific situations, autophagy changes its protective
role and becomes the mediator and inducer of the auto-
phagic cell death.108 We still know very little about the
autophagy roles in the evolution of burn wounds. Recent
studies revealed that in case of burns, cell death may occur
due to necrosis, autophagy, and apoptosis, all leading
through a specific molecular path to burn injury positive or
negative evolution.109–112

Necroptosis, necrosis, and secondary necrosis following
apoptosis have been recently highlighted as different
mechanisms of cell death.109–112 These mechanisms are
based on similar cellular and molecular events: redox
imbalance, oxidative burst, hyperpolarization of the mi-
tochondrial membrane, and permeation of lysosomal
membrane, and of the cell membrane.109–112

Necrosis is considered an accidental type of cell death,
occurring as a response to severe cell damages, like those
occurred in the first moments of thermic burns.109–112 The
necrotic cell death molecular mechanism can be finely
orchestrated by specific signal transduction pathways, in-
volving both the receptor interaction protein kinase 1 and 3
(RIP1 and RIP3).113 Catabolic processes (necroptosis) also
play important roles on cellular necrosis stage. Necrostatins
are able to specifically inhibit cellular necrosis.110 Sec-
ondary necrosis represents a form of cellular necrosis that
usually occurs in apoptotic cells that escape
phagocytosis.112,114 Autophagic cell death describes an
“excessive” degradation of important cellular components
that are necessary for the normal cell function.115–117 This
deadly molecular mechanism brings to light the darker,
concealed, Yin feature of autophagy.

ROS, like hydrogen peroxide, superoxide radical, and
hydroxyl radicals, are known as key mediators of

progressive tissue damage after initial burn injury.118 The
high ROS levels in the burn wound might be caused di-
rectly by the thermal energy of burns119 and, also, by
xanthine oxidase and NADPH oxidase enhanced
activities.120,121 It has been highlighted that in the zone of
stasis, ROS may be involved in the cell death molecular
mechanism, possibly via an excessive upregulation of the
autophagy pathway.122–125 A possible molecular process
used by the autophagic cell death machinery is lysosomal
membrane permeation as an answer to stressing factors,
like thermic injuries.122–125 Recent studies outlined the
hypothesis that ROS are pawns with decisive roles in the
fate of the molecular match of autophagic cell death.114–116

It has been shown that the released lysosomal cathepsins
have been involved in the oxidative stress–induced
apoptosis.122–125 Moreover, since lysosomes represent
important sources of ROS, they might play important
performances in the redox imbalance initiation and the
exacerbation of oxidative stress, triggering oxidative cel-
lular damages.126–129 However, the complex relationships
between the disrupted redox balance, oxidative stress and
autophagy, and their consequences on burn wound evo-
lution still must be clarified. Many recent research studies
focused on investigating the efficacy of different antioxi-
dant agents in burn wound healing progression. Deniz et al.
have shown that NAC treatment 1 hour after burns pre-
vented an unfavorable progression of burn wound. NAC is
a precursor to reduced glutathione, which has previously
been shown to prevent necrosis in the zone of stasis.130

Starting from these studies, it could be speculated that the
antioxidant treatment would be useful only as long as
autophagy reveals its Yin feature as a cell-death promoter
mechanism. If the autophagic machinery functions as a pro-
survival mechanism, the antioxidant treatment may not
represent an advantage, if antioxidant species, by reducing
ROS levels, could, moderately or completely, trigger
autophagy repression.131 Accumulation of damaged pro-
teins may be responsible for the harmful effects of auto-
phagy suppression.132–135

Tan et al. experimental results revealed higher auto-
phagy rates compared to apoptosis in hair follicle epithe-
lium during the first 24 h after burn injury occurred.60 They
have concluded that in the zone of stasis, both pathways led
to cell death but with a different timing, suggesting that two
different treatment strategies should be used in order to
target both processes. Xiao et al., contrary to the results of
Tan et al., reported decreased autophagy rates early in burn
injury progression and higher autophagic levels later.136

The authors have also outlined that rapamycin increased
the autophagic rate and, consequently, improved wound
healing. These experimental findings suggested that
autophagy should be regarded as a key player in preventing
burn wound unfavorable progression.95 In the burn wound
context, autophagy proved to be both destructive and
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protective for the cell, possibly depending on the timing
from initial injury, the degree of cell damage, and the
evolution of cellular ROS levels.

Future research to discover the autophagy roles in the
zone of stasis will be extremely important in order to es-
tablish whether the therapeutic strategies should be based
on enhancing or inhibiting this complex molecular
pathway.137,138

Nevertheless, the pro-angiogenesis molecular mecha-
nism that occurs during HDEC recovery has yet many
secrets to reveal and it has not been explored enough.
Increasing experimental data lead more and more clearly to
the idea that autophagy is a main actor on the angiogenesis
molecular stage, both in vitro84,139,140 and in vivo.84,141

However, these data also show that autophagy seems to
perform dual, conflicting roles in the angiogenesis context,
revealing once again its Yin–Yang features. Autophagy
initiation in specific circumstances may trigger the death of
endothelial cells. The endogenous angiogenic inhibitor,
endostatin, is able to induce autophagy, triggering endo-
thelial cell death. However, the treatment with 3-
methyladenine, an autophagy inhibitor, abolished the
autophagic-controlled death of endothelial cells.141 Chau
et al. highlighted the existence of a transition between the
autophagy-mediated cell survival to autophagic-controlled
cell death, in hypoxic endothelial cells, in a time-dependent
manner.142 In conclusion, these findings suggest that in
human endothelial cells, (1) endostatin mainly causes
autophagic, rather than apoptotic, cell death; (2) endostatin-
induced autophagic cell death occurs through an oxidative-
independent pathway and in the absence of caspase acti-
vation; and (3) endostatin-induced “autophagic cell death”
is regulated by serine and cysteine lysosomal proteases.

Table 2 presents the Yang versus Yin feature of autophagy
in burns.

In summary, ROS-induced autophagy in burns could
play either a protective role, relieving oxidative stress, or a
destructive one. Deciphering the complex ways by which
autophagy is controlled via the variations of the cellular
redox potential should be considered crucial for future
therapeutic strategies development in burns.

The complex dual role of autophagy is still a matter of
debate. The predominant manifestation of one of the two
contradictory roles (the one that promotes cell survival or
the one that induces apoptosis) may depend on the con-
ditions generated by a specific cellular context. It has been
clearly highlighted that strictly controlled and balanced
lower levels of redox signaling are crucial for normal
autophagy.143 The big question mark arises when the redox
status becomes imbalanced and, consequently, disrupts the
signaling network necessary to control and modulate
autophagy.

In the context of burn wound healing, more and more
evidence sustains the potential communication channels
between the enigmatic autophagic machinery and skin
immune and non-immune cells, against the background of
a local inflammatory state that will resonate in the whole
body. However, the molecular mechanisms that could
clarify the reason for dual features of autophagy in burns
and the roles of these communication channels are not yet
understood.

According to our knowledge, exploring the specialized
literature, we have noticed that until now, there are very few
publications that have focused on the study of autophagy in
the cells from thermal burn injuries. This reduced number
of studies represented one of the starting points in the

Table 2. Examples of Yang and Yin, respectively, features of autophagy.

Examples References

Autophagy as a pro-survival
mechanism—the Yang feature

1. After 24–72 h from the burn injury when the tissue necrosis decreased as
intensity, autophagy changes into a molecular pro-survival pathway,
protecting cells against cell death

28, 61

2. Autophagy plays a main role in angiogenesis (restoring the blood vessels and
resuming circulation) and epithelialization (which means wound surface
closure), mediated by keratinocytes

76–83

3. Autophagy is vital for pro-angiogenesis during the HDECs recovery, in vivo 76–83
4. Intracellular ROS are subtle but essential regulators of AMPK/Akt/mTOR
signaling, enhancing the autophagy level and initiating angiogenesis during
HDECs recovery

84, 103–107

Autophagy, a cell-death promotor—
the Yin feature

Autophagic cell death represents an “excessive” degradation of important
cellular components that are necessary for normal cell function

95, 108–127,
135

Autophagy initiation in specific circumstances may trigger the death of
endothelial cells

84, 139–142

The transition between the autophagy-mediated cell survival to autophagic-
controlled cell death, in hypoxic endothelial cells, is a time-dependent process

141, 142
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elaboration of our article. The purpose of our article is to
outline more visibly the possible importance of autophagy
in the context of thermal burn wounds, especially due to its
dual role, demonstrated in other pathological situations, on
which the evolution of the healing process could depend.
Also, this small number of studies must be considered one
of the limitations of our review.

Conclusions

We hope that all these findings presented here had a little
contribution to a better understanding of this mysterious
and duplicitous molecular machinery, autophagy, in the
context of burn wound healing. There are still some
mysteries regarding the special molecular mechanisms by
which oxidative stress and autophagy mediate and control
cell survival in very stressful conditions, such as burns.
Understanding these complex mechanisms will help cli-
nicians to establish new starting points for designing ac-
curate therapeutic approaches in burns. Till then,
autophagy with its Yin–Yang features remains the shadow
player, able to decide quietly whether the cell survives or
dies.

Once Edgar Allan Poe said “The boundaries which
divide Life from Death are at best shadowy and vague.
Who shall say where the one ends, and the other begins?”.
Returning to the molecular landscapes, the answer is much
less poetical and may be: it depends on the delicate
equilibrium between the Yin and Yang features of
AUTOPHAGY.
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