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Abstract

Metabolomics-based approaches were applied to understand interactions of trimethoprim

with Escherichia coli K-12 at sub-minimum inhibitory concentrations (MIC�0.2, 0.03 and

0.003 mg L-1). Trimethoprim inhibits dihydrofolate reductase and thereby is an indirect inhib-

itor of nucleic acid synthesis. Due to the basicity of trimethoprim, two pH levels (5 and 7)

were selected which mimicked healthy urine pH. This also allowed investigation of the effect

on bacterial metabolism when trimethoprim exists in different ionization states. UHPLC-MS

was employed to detect trimethoprim molecules inside the bacterial cell and this showed

that at pH 7 more of the drug was recovered compared to pH 5; this correlated with classical

growth curve measurements. FT-IR spectroscopy was used to establish recovery of repro-

ducible phenotypes under all 8 conditions (3 drug levels and control in 2 pH levels) and GC-

MS was used to generate global metabolic profiles. In addition to finding direct mode-of-

action effects where nucleotides were decreased at pH 7 with increasing trimethoprim lev-

els, off-target pH-related effects were observed for many amino acids. Additionally, stress-

related effects were observed where the osmoprotectant trehalose was higher at increased

antibiotic levels at pH 7. This correlated with glucose and fructose consumption and

increase in pyruvate-related products as well as lactate and alanine. Alanine is a known reg-

ulator of sugar metabolism and this increase may be to enhance sugar consumption and

thus trehalose production. These results provide a wider view of the action of trimethoprim.

Metabolomics indicated alternative metabolism areas to be investigated to further under-

stand the off-target effects of trimethoprim.

Introduction

One of the most effective mechanisms of drug action is enzyme inhibition, although often the

mechanisms underlying the specific modes of action are not always fully understood [1,2].

This is typically because there is often an assumption that an antibiotic is an inhibitor of a spe-

cific enzyme (or indeed another target), not realizing that this chemical can have other ‘off-tar-

get’ effects, such as binding to unidentified enzymes or indirect interactions with other
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metabolic pathways that may affect the performance of the drug [3]. The range and complexity

of cellular chemical reactions (the metabolic network) increase the challenge of understanding

the mode of action of antibiotics as multiple changes in the metabolic network occur during

antibiotic-induced abiotic perturbation [3]. It is believed that metabolomics is a powerful

approach that can be used to measure phenotypic response following antibiotic challenge [4].

Analysis of metabolomes has increased dramatically in recent years due to the introduction of

ultra-high resolution mass spectrometers [5] which allow accurate identification of small mol-

ecules in complex extracts [6,7]. Indeed, this approach has already been used for analyzing var-

ious pathogen phenotypes [4].

The biosynthesis of essential metabolites, such as purines, thymine, glycine and methionine,

generally uses folates as cofactors that either add or subtract one-carbon units. Several thera-

peutics including anticancer agents, like pemetrexed, and antibiotics, such as trimethoprim,

target folate metabolism [8,9]. Folates can be found in three different oxidation/reduction

states (viz., dihydrofolate (DHF), folate or pteroylglutamate and tetrahydrofolate (THF)) and

are synthesized from guanosine 5’-triphosphate (GTP), p-aminobenzoic acid (pABA) and glu-

tamates. The dihydrofolate reductase (DHFR) enzyme reduces DHF to THF using NADPH as

the electron donor. Downstream to this various folates such as 5-methyl-THF, 5-formyl-THF,

5-formimino-THF, 10-formyl-THF, 5,10-methenyl-THF and 5,10-methylene-THF can be

formed by substituting tetrahydrofolate species with one-carbon units to produce active

donors involved in various biosynthetic reactions [3].

Urinary tract infections (UTIs) are very common; it is estimated that during the female

lifespan 50% are likely to acquire a UTI [10,11]. A study of midstream urine samples span-

ning 252 centres in 17 countries revealed that Escherichia coli accounted for 77% of all iso-

lates, 80% of general infections and 40% of nosocomial infections [12,13]. The weak base

antifolate drug trimethoprim resulted from the work of Hitchings and his group across

the 1940-60s at Burroughs Wellcome, USA. Hitchings and colleagues studied the cellular

actions of biologically important heterocyclic purines and pyrimidines on the basis that

interference in associated processes might lead to the discovery of therapeutic effects [14].

The Hitchings group successfully developed several therapeutic active agents and Hitch-

ings and Elion were part awarded the Nobel Prize for Physiology and Medicine in 1988

for the discovery of important principles in drug treatment [15]. Trimethoprim is still

used therapeutically today and is particularly effective in treating both community and

nosocomial UTIs [16]. Trimethoprim is mainly used to treat uncomplicated UTIs and

acts by inhibiting bacterial DHFR, reducing active tetrahydrofolates which are needed for

synthesis of various essential metabolites and these are important precursors for nucleic

acid biosynthesis [17].

In this study, E. coli K-12 was challenged with different concentrations of trimethoprim at

different pH levels (pH 5 and 7) and analyzed by Fourier transform infrared (FT-IR) spectros-

copy and gas chromatography-mass spectrometry (GC-MS) to produce global snapshots of the

bacterial phenotypic and untargeted metabolic profiles, respectively. We believe this metabolo-

mics-based approach provides a greater level of insight and understanding of trimethoprim’s

mode(s) of action. The reason for including varying pH in this investigation is because tri-

methoprim is largely excreted unchanged in human urine and in a healthy person the normal

pH range of urine is between 4.6 and 7.5 [14,18]. The bacterial intracellular trimethoprim lev-

els were estimated using liquid chromatography-mass spectrometry (LC-MS) as this antibiotic

is ionized within this pH range and this may affect its ability to be transported across the cell

membrane [19].
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Results

For the experiments conducted in this study we chose to use E. coli K-12 strain MG1655 as the

full genome sequence of this microorganism is available which has allowed construction of the

metabolic pathways in this bacterium. The latter is useful as this allows one to use KEGG for

metabolite pathway analysis (vide infra). A potential limitation of our study is that we have not

used wild-type pathogenic E. coli strains. As reported in [20] E. coli K-12 is a laboratory strain

that has become adapted to life outside of the host and such adaptation may mean that this

strain has lost its ability to survive in a human environment.

Determination of optimum growth conditions

E. coli K-12 was exposed to different concentrations of trimethoprim at different pH levels,

and preliminary experiments established that the optimum medium to use was LB (Fig 1A),

which was therefore used throughout this work. E. coli was cultured in different pH environ-

ments: 3, 5, 7 or 9. No growth occurred in extreme acidic conditions (Fig 1B), perhaps because

when pH<4, this environment typically has a bactericidal effect on E. coli [21–23]. The reason

we consider the effect of pH on bacterial growth, and subsequently investigate the effect of tri-

methoprim challenge on E. coli at carrying pH, was to have the bacteria and antibiotic in an

environment that mimics the pH of natural urine environment which affects drug ionization;

pKa of trimethoprim�7.4 [24] and the ionization of the NH2 groups is discussed later.

The pH of the cytoplasm (pHi) of E. coli is regulated between 7.2 and 7.8 [25]. If changes

occur in the environmental pH (pHo), the bacterium tries to preserve nucleic acid and protein

stability, as well as enzymatic activity, by maintaining this range [25]. E. coli uses several mech-

anisms to maintain pH homeostasis and one of the most common appears to be cation-depen-

dant proton flux [26]. From Fig 1B, when pH = 7, which results in ΔpH (pHi ─ pHo) of

approximately zero, the highest growth occurs. Therefore, pH 7 is the optimum of the three

pH levels.

Although E. coli can preserve the activity of its nucleic acids, proteins and enzymes in a pH

range from 4.5 to 9 [25], a comparison between pH 5 and pH 9 showed that at pH 5 the growth

curve was higher (Fig 1B) indicating that E. coli K-12 can adapt to mildly acidic conditions bet-

ter than basic conditions maybe because under alkaline conditions of pH 9, homeostasis

makes high energy demands on the cell and protons are lost [27]. In addition, when E. coli is

cultured in a medium that contains amino acids, e.g. LB, it has a greater possibility of surviving

in acidic conditions [28].

A microscopic view of E. coli at different pH (S1 Fig) reveals subtle variations in cell size. At

pH 5 and 7, the cells are typical of E. coli, whilst at pH 9, cells are slightly shorter and are

affected by this mildly alkaline environment; these are estimated by EM (S1 Fig) to be ca.

2.0 μm in length compared to ca. 2.5 μm.

The MIC of trimethoprim in E. coli K-12

In order to measure subtle antibiotic effects on E. coli, it is important to use levels that are

below the MIC of trimethoprim, else all that will be measured is cell death and hence biomass

level differences rather than metabolic shifts. Therefore, E. coli was challenged with different

concentrations of trimethoprim. From S2 Fig, it can be seen that the MIC of trimethoprim in

E. coli K-12 under optimum conditions (LB medium at pH 7) is approximately 0.2 mg L-1,

therefore this and lower concentrations (0.03 and 0.003 mg L-1) were chosen to challenge E.

coli K-12 in order to determine the effect of the antibiotic at a range of concentrations from

the MIC to levels that have little or no effect on growth.

pH plays a role in the mode of action of trimethoprim on Escherichia coli
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Challenge of E. coli K-12 under different pH and antibiotic conditions

Trimethoprim is a heterocyclic weak base with pKa 7.4 [24] (S3A Fig). It acts on dihydrofolate

reductase thus inhibiting nucleic acid synthesis. The effect of different pH levels on the drug

molecules can be characterized according to the Henderson-Hasselbalch equation for weak

bases which can be rewritten in a simple way (Eq 1) to calculate the percentage of ionization

[29]:

% ionization ¼
10pKa� pH

1þ 10pKa� pH � 100 ð1Þ

Fig 1. Growth curves of E. coli K-12. (a) Growth curves of E. coli K-12 in three different media. Media: the blue plot

indicates LB; red, NB and green, C. (b) Growth curves of E. coli K-12 at four different pH values in the same LB

medium. The blue plot indicates pH 3; red pH5; green pH 7 and purple pH 9. Six replicate growth curves were

conducted and a typical growth curve for each condition is shown; the other five growth curves showed similar

dynamics.

https://doi.org/10.1371/journal.pone.0200272.g001
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S3 Fig a shows that at pH 9 there was no growth when bacteria were exposed to 0.2 mg L-1

of the antibiotic. Ionization calculations indicate that at this pH, trimethoprim remained

largely non-ionized (only 2.5% ionized), which facilitated its penetration through the cell

membrane of the microbial cell [30], thus inhibiting growth. At pH 7, which is the optimum

pH for growth of the bacterium, it was found that 71.5% of the drug was ionized; the non-ion-

ized remainder was able to penetrate and had a measurable effect (S3C Fig).

By contrast, at pH 5, 99.6% of trimethoprim was ionized, which reduced its ability to pene-

trate the cell membrane. Although at 0.2 mg L-1 there was a slight effect on bacterial growth

(S3D Fig), indicating that trimethoprim passed into the cell, at lower dose levels there was no

clear effect on growth. This may be due to the ability of trimethoprim (molecular weight

290.3) to pass through porins, which are transmembrane proteins in the outer membrane that

hydrophilic molecules (molecular weight up to 600 in the case of E. coli) can penetrate by pas-

sive diffusion [31].

In order to establish whether trimethoprim penetrates the bacterial cell wall, targeted

LC-MS was conducted to quantify the drug within E. coli. This work focused on pH 5 for the

arguments made above and this was compared with pH 7 as a control, and of course both of

these pH levels are relevant as they are within the normal pH range of human urine.

Generation of a standard curve for trimethoprim (Fig 2) established that at a level of 0.2 mg

L-1 the detectable signal with LC-MS was poor. Therefore, 0.8 mg L-1 of trimethoprim was

used to ensure that the drug could be detected by LC-MS. The effect on growth of E. coli is

shown in Fig 3A and this shows that the drug had the strongest effect when added at the begin-

ning of the culture (lag phase) at pH 7 (light blue curve) than at pH 5 (red curve). These curves

agree with the data presented in S3C and S3D Fig (i.e. in terms of the drug effect at 0.2 mg L-1)

and the literature which shows that trimethoprim has a profound effect during bacterial lag

phase [32]. By contrast, when the drug was added after 5 h (during the exponential phase)

there was no effect at pH 7 (orange curve) and only a slight effect on the growth curve at pH 5

(green curve) compared with control. This means that the integrity of bacteria is not compro-

mised and biomass yield is high enough to allow accurate estimations of drug uptake, or other-

wise, from these bacteria.

As detailed in Supporting Information (S1 Text), LC-MS was used to estimate the relative

quantification of trimethoprim inside the cell (Fig 3B). As expected, the highest level of the

drug was recovered from cells at pH 7 when trimethoprim was added at the beginning of the

lag phase (t = 0 h), while the second highest was when the bacterium was challenged at t = 0 h

with the drug at pH 5. This relative difference is due to the ionization of trimethoprim where

the NH2 groups are ionized to NH3
+ and thus the nearly fully ionized drug is presumed to not

be able to enter the cell via porins.

It was interesting to observe that when the bacterium was challenged at mid-exponential

phase (t = 5 h) at both pH 5 and 7, regardless of the ionized state of the drug, the intracellular

levels of the antibiotic (Fig 3B) were at their lowest, and this is presumably why these cultures

exhibited little reduction in growth rate (Fig 3A).

Metabolic fingerprinting of E. coli K-12 with FT-IR

E. coli K-12 cells were cultured in LB medium at pH 5, 7 and 9, and three concentrations of tri-

methoprim (0.003, 0.03 and 0.2 mg L-1), giving 12 different conditions including three con-

trols. All cultures were repeated six times (six biological replicate) and each of these were

analyse in triplicate (technical replicates). FT-IR spectra were recorded from the dried cell bio-

mass in transmission mode at all three pH levels. From S4 Fig at pH 9 some spectra gave the

response of empty wells (flat baselines), resulting from the complete inhibition of E. coli

pH plays a role in the mode of action of trimethoprim on Escherichia coli
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growth at this pH; these corresponded to exposure to MIC levels (0.2 mg L-1) of trimethoprim.

Due to the very low (or in some case no) signal, all FT-IR data from cultures at pH 9 were

excluded from the remaining experiments. Prior to multivariate analysis, appropriate scaling

and normalization was conducted for all 8 conditions at pH 5 and 7; the effects of these mathe-

matical operations are shown in S5 Fig. Subsequently, principal components analysis (PCA)

and supervised principal components analysis-discriminant function analysis (PC-DFA) were

applied to these spectra.

Fig 4A shows the PCA scores plot of PC1 versus PC2; the variance explained by PC1 is

78.9% and by PC2 12.8%. It can be seen that the largest difference in these samples is the domi-

nant phenotypic shift in E. coli due to exposure to 0.2 mg L-1 of trimethoprim at pH 7 which

are clearly separated from all other samples in PC1. Next, PC-DFA was applied and this was

based upon the first 20 PCs (accounting for a total explained variance (TEV) of 99.99%) and

the a priori knowledge of the different conditions (8 classes in total), and was validated as

detailed above (the 95% confidence ranges are provided in parentheses for the 8 groups in Fig

4B). It is clear from this PC-DFA score plot that cells exposed to 0.2 mg L-1 at pH 5 could now

also be clearly differentiated. Moreover, PC-DF1 which accounts for the most group variance

allows separation from all the cells exposed to pH 7, which are located on the right hand side

for this plot, while pH 5 are found on the left hand side. In addition, PC-DF2 generally

explains the exposure of cells in both pH environments to increasing levels of trimethoprim.

As there were multiple interactions, pH versus antibiotic level, MB-PCA was used to remove

these potentially interacting factors. Fig 5 shows the results of MB-PCA and two block scores

were derived for the two pH sub-groups. The distribution of samples exposed to different con-

centrations of trimethoprim at each pH are now clearly revealed in the 1st PC and both pH 7

and 5 plots are congruent. The same process was repeated for the antibiotic dose effect (S6

Fig); the four block-scores were derived for drug dose based sub-groups, focusing upon this

effect at two pH levels. The distribution of samples at pH 5 and 7 revealed a clear separation at

0.2 mg L-1, and partial separation at 0.03 and 0.003 mg L-1. Additionally, some separation can

Fig 2. Calibration curve for LC-MS. The curve was built from 20 different gradient concentrations of trimethoprim;

see Supporting S1 Text for information on the concentrations of trimethoprim used to construct the standard curve.

https://doi.org/10.1371/journal.pone.0200272.g002
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be seen in control samples, which is consistent with growth curves (S3 Fig), highlighting the

varying phenotypic response to the different pH environments.

Fig 3. Growth characteristics of E. coli. (a) Growth curves of E. coli K-12 at pH 5 (dashed line) and pH 7 (solid line). For

pH 5, the dashed blue line represents control samples, dashed red indicates samples challenged with 0.8 mg L-1 of

trimethoprim added at the beginning of the lag phase (t = 0 h) and dashed green denotes samples challenged with 0.8 mg

L-1 of trimethoprim and added at mid-exponential phase (t = 5 h). For pH 7, the solid purple line represents control

samples, solid light blue indicates samples challenged with 0.8 mg L-1 of trimethoprim added at the beginning of the lag

phase (t = 0 h) and solid orange denotes samples challenged with 0.8 mg L-1 of trimethoprim and added at the

exponential phase (t = 5 h). (b) Column chart representing relative E. coli intracellular levels of trimethoprim after

challenging with 0.8 mg L-1 of the drug at pH 5 (red columns) and pH 7 (blue columns) at different growth stages

(time = 0 and 5 h) as detected by LC-MS analysis after cells were grown for a total of 18 h. Six replicate growth curves

were conducted and a typical growth curve for each condition is shown; the other five growth curves showed similar

dynamics.

https://doi.org/10.1371/journal.pone.0200272.g003
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The loadings plots from all three chemometric analyses were complex (data not shown)

and did not clearly reveal any obvious features. Indeed, the chemical resolution of IR spectros-

copy is at the functional group level rather than at the level of specific metabolites and thus in

order to study the subtle effects of trimethoprim on the intracellular metabolome of E. coli at

pH 5, as well as more extreme effects at pH 7, a more sensitive and advanced analytical tech-

nique such as chromatography linked to mass spectrometry is required. It was expected that

by including pH as well as sub-MIC antibiotic levels, we might be able to observe a wider

response of E. coli to the drug in conditions similar to the pH range of urine, thus helping to

elucidate the mechanism of action of the drug in vivo.

Metabolic profiling of E. coli K-12 using GC-MS

The same bacterial samples analyzed by FT-IR spectroscopy were processed for GC-MS. For

GC-MS all six biological replicates were analysed with a single technical replicate. Following

MSI reporting standards for metabolite identification [33], 43 metabolites were identified at

Level 1 (RI (+/─20 RI units) and MS matched to our in-house reference standard (80% simi-

larity)), 20 were identified at Level 2 (putative MS match to external library (80% similarity))

and 4 at Level 3 (metabolite class indicated), while 92 were unknown (level 4) (see S1 Table for

details of these metabolites and their relative abundance). GC-MS data were subjected to a

multivariate analysis after data pre-processing. Initially, PCA was applied (data not shown) but

unlike FT-IR spectroscopy, no separation was observed in the PCA scores plot and therefore

PC-DFA was employed (Fig 6).

In this plot, clustering was apparent which was related to both pH effect and antibiotic dose

effect, very similar to the class separation observed in the PC-DFA from the FT-IR data. Expo-

sure to trimethoprim at pH 7 had more marked effect on intracellular metabolome compared

to equivalent cells at pH 5 and antibiotic-related trajectories can be seen for both pH environ-

ments moving from 0 (control) through 0.003 and 0.03 to MIC levels at 0.2 mg L-1. The next

stage was to relate the changes observed from GC-MS to the mechanisms of microbial

response to pH and trimethoprim.

Discussion

Different phenotypic responses to pH and trimethoprim exposure are expected to be observed.

A summary of overall effects at both pH levels and changes in intracellular metabolites with

respect to trimethoprim dose is shown in Fig 7. For full details of the relative metabolite levels,

the reader is referred to S1 Table. S7 Fig provides an overlay of metabolite changes for all 8

conditions on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (Metabolic

pathways- Escherichia coli K-12 MG1655) for the central metabolism of E. coli K-12 MG1655.

At pH 7, the permeability of the drug molecules is higher; metabolites linked with dihydro-

folate reductase generally show a stronger response than metabolites extracted from samples

incubated at pH 5 (see Fig 7). DHFR plays a key role in folate biosynthesis pathway. Therefore,

a direct outcome of blocking DHFR is to deprive the cell of tetrahydrofolate (THF) and thus

dihydrofolate accumulates. This in turn inhibits folylpoly-γ-glutamate synthetase (FP-γ-GS)

[3]. This may indirectly result in the accumulation of glutamate, which would explain the

Fig 4. PCA and DFA on FT-IR spectra reveal pH and trimethoprim effects. (a) PCA scores plot of PC1 vs. PC2 after

CO2 removal around 2350 cm-1 and EMSC scaling. The total explained variance (TEV) of PC1 is 78.9% and for PC2 is

12.8%. (b) PC-DFA score plots of pH 5 and 7 samples. 20 PCs were extracted from PCA and used as inputs to DFA.

These 20 PCs explain 99% of TEV; the legend in the plot shows the 95% confidence interval (CI) for the correct

classification of the eight conditions. C, control.

https://doi.org/10.1371/journal.pone.0200272.g004
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Fig 5. Multi-block PCA score plots from FT-IR spectra. The plot shows the relationship between the effect of

different concentrations of trimethoprim (0, 0.003, 0.03, 0.2 mg L-1) and that of different pH levels. Block scores plots

showing the distribution of samples with different concentrations at (a) pH 5 and (b) pH 7.

https://doi.org/10.1371/journal.pone.0200272.g005
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rapid rise in the level of glutamate observed when the drug has its strongest activity (pH 7, 0.2

mg L-1) (S7 Fig). As detailed in EcoCyc, this non-essential amino acid is involved in numerous

reactions including the biosynthesis of ornithine and proline. This explains the similarity in

the levels of glutamate, ornithine and proline under all conditions which are at their highest

levels under the same conditions; i.e. when the drug is very active (Fig 7). In ornithine biosyn-

thesis, glutamate condenses with acetyl CoA to produce N-acetyl-glutamate, a precursor in

ornithine synthesis [34]. Glutamate is involved in the biosynthesis of proline by being first

phosphorylated to L-glutamate-5-phosphate and subsequent reduction to glutamate-5-semial-

dehyde, which is converted to pyrroline-5-carboxylate, which is then reduced to proline [35].

Proline acts as an osmoprotectant in bacteria [36], and it has been reported that glutamate also

acts as an osmolyte in E. coli under specific growth conditions [37].

Trehalose, a disaccharide compound that consists of two glucose moieties, was first known

as energy ‘storage’ metabolite, and later it was reported that trehalose also acts as protectant

during adverse growth conditions in prokaryotic and eukaryotic cells [37]. Here, we find that

under pH 7 and 0.2 mg L-1 trimethoprim conditions, the drug has its strongest effect on the

cellular phenotype (S3 Fig) and this stress effect is reflected in the elevated trehalose levels

observed (Fig 7 and S7 Fig). Under osmotic stress, it was reported that an osmotically regulated

enzyme, trehalose phosphate synthase, is stimulated mainly by K+ and consumes glucose

6-phosphate and UDP-glucose to produce trehalose [38]. This could explain the concomitant

reduction in the level of glucose and other sugars in general (Fig 7) when trehalose is elevated

Fig 6. PC-DFA score plots of GC-MS profiles. 25 PCs were extracted from PCA and used as inputs to DFA,

explaining 99% of the TEV. The legend in the figure shows the 95% CI for the correct classification of the 8 conditions.

Significantly altered metabolites were mined through a combination of PC-DFA loadings and univariate significance

testing (Student t-test). C, control.

https://doi.org/10.1371/journal.pone.0200272.g006

pH plays a role in the mode of action of trimethoprim on Escherichia coli

PLOS ONE | https://doi.org/10.1371/journal.pone.0200272 July 13, 2018 11 / 20

https://doi.org/10.1371/journal.pone.0200272.g006
https://doi.org/10.1371/journal.pone.0200272


(S7 Fig). Alternatively, one or both of the trehalase anabolic enzymes (which are periplasmi-

cally and cytoplasmically located) that split trehalose into two glucose molecules are blocked

or inhibited, and this would lead to an increase in the level of trehalose and reduce the pool of

glucose available in the cell, thus obstructing glycolysis [39]. For sugars in general, the deple-

tion of their levels after drug challenge may therefore be due to the stress of the drug, which

increases catabolism and the consumption of sugars to generate a range of compatible solutes

which act as osmoprotectants. A consequence of this reduction in sugars may in turn lead to

an increase in the level of alanine, an amino acid that in higher organisms acts as a regulator in

sugar metabolism and glycolysis [40] (Fig 7 and S7 Fig). In addition, this may simply be that

carbon has been mobilized for (osmo)protection rather than being channelled directly into

protein synthesis per se.

The direct effect of blocking dihydrofolate reductase, which is expected when the drug is

near its MIC, is a reduction in THF. Consequently, there will be a depletion of THF-polygluta-

mate (THF (glu)n), a key metabolite in the biosynthesis of 10-formyl THF and 5,10-methylene

THF, resulting in a reduction in these compounds (Fig 7); unfortunately, none of these metab-

olites were directly observed in our experiment as we conducted untargeted GC-MS rather

than targeted LC-MS. The first of these compounds, 10-formyl THF, is a substrate of an

Fig 7. Metabolic effects of trimethoprim challenge on E. coli K-12 at pH 5 and pH 7. When partially ionized at pH 7, trimethoprim is seen

to impact on metabolism directly associated with the dihydrofolate pathway, as well as off-target effects upon nucleotide, sugar and amino

acid metabolism, glycolysis, the TCA cycle, and up-regulation of osmoprotectants. When trimethoprim is in a poorly ionized state (pH 5), it

appears to have a profound effect upon the up-regulation of amino acid metabolism.

https://doi.org/10.1371/journal.pone.0200272.g007
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enzyme called phosphoribosylglycinamide formyltransferase, which takes part in inosine

monophosphate biosynthesis [41]. Reduction in this substrate results in a reduction in inosine

monophosphate, which acts as a precursor of purine nucleotides, and thus results in a deple-

tion of adenine and guanine [42] which we observe with untargeted GC-MS (Fig 7 and S7

Fig). Similarly, 5,10-methylene-THF is reduced to 5-methyl-THF which then methylates

homocysteine to produce low levels of methionine, an essential amino acid that is converted to

N-formyl-L-methionine, a starting amino acid in protein biosynthesis [42,43]. Methionine lev-

els are also seen to decrease in our experiment (Fig 7). Methionine acts as a regulator of the

first enzyme in its de novo biosynthesis (homoserine O-succinyltransferase), which produces

O-succinyl-homoserine by transferring the succinyl group to homoserine from succinyl-CoA

[43]. When methionine is at a low level (as found at high drug concentrations at pH 7), this

may additionally result from extensive consumption in the feedback inhibition, possibly

resulting in an accumulation of homoserine, which acts as a competitive inhibitor of glutamate

dehydrogenase, an enzyme that has a role in a reversible reaction to produce and consume glu-

tamate [44]. In addition, there is also a reduction of 5,10-methylene THF, which is catalyzed

by thymidylate synthase to methylate deoxyuridine 5’-monophosphate (dUMP) and produces

deoxythymidine 5’-monophosphate (dTMP). It has been reported that a reduction in dTMP

results in a reduction of thymine [42,45], the latter is seen in our metabolic profiles (Fig 7 and

S7 Fig). Unlike in higher organisms such as Candidatus Phytoplasma mali, the reaction medi-

ated here by thymidylate synthase is currently thought to be irreversible and cannot therefore

directly explain the reduction of dUMP [46]. Rather, a possible explanation is that in E. coli the

deamination of deoxycytidine 5’-triphosphate (dCTP) to deoxyuridine 5’-triphosphate

(dUTP) using deoxythymidine 5’-triphosphate (dTTP), which is reduced by the reduction in

dTMP. This reduction results in the depletion of dUTP, which causes depletion in dUMP and

thus in uracil [42] which we observe (Fig 7).

In general, all nucleotides were down-regulated with increasing antibiotic concentration,

and this response was greater at pH 7 than at pH 5, and this is likely due to the high level of tri-

methoprim entering cells (Fig 3). Although guanine shows the same response, it has a unique

response at pH 5 under high antibiotic dose, where its level increased considerably (Fig 7 and

S7 Fig). We can find no explanation for this increase in guanine level under this condition. We

also observe that many amino acids, including histidine, tyrosine, leucine, valine and phenylal-

anine (Fig 7, surrounded by a dotted rectangle), have the same response as guanine under this

condition, including different levels and ratios compared with other conditions (S7 Fig). This

may reflect a common feature among these metabolites which results in having almost the

same response. For example, it was found that guanosine 5’-diphosphate 3’-diphosphate

(ppGpp) is a histidine regulator in Salmonella typhimurium. This may explain why histidine

and guanine gave similar responses under the eight conditions [47]. As for tyrosine, phenylala-

nine and tryptophan, it was found that these aromatic amino acids, which are the downstream

products of a folate precursor called chorismate, gave the same response after 2 h of treatment

[48]. However, in this experiment, when samples were collected after 18 h of drug exposure,

only phenylalanine and tyrosine had the same response in that both accumulated most at the

highest dose of the drug at pH 5, similar to histidine and guanine. By contrast, tryptophan

accumulated at the same high dose at pH 7, where the drug is highly active and affects the

growth of these bacteria. This shows that tyrosine and phenylalanine, the downstream prod-

ucts of prephenate, gave similar responses to guanine, unlike tryptophan (Fig 7), which had

similar levels to alanine under all conditions (S7 Fig); this may be due to a common function

or pathway between them [49]. Fig 7 (and S7 Fig) also shows that there is a correlation between

tryptophan and glutamate, which is one of the products of tryptophan biosynthesis [50].
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The branched chain amino acids valine, leucine and isoleucine have strongly interrelated

biosynthetic pathways. Leucine and valine originate from 2-oxoisovalerate, while isoleucine

originates from threonine (Fig 7) [42,51]. This explains their similar responses when chal-

lenged with trimethoprim at both pH levels (S7 Fig).

Turning to the detection of aspartic acid, its level decreased with increasing drug dose,

regardless of pH. Phosphorylation of this amino acid is the starting point of synthesis of many

amino acids including lysine, a basic amino acid that showed contrasting levels to those of its

precursor aspartate at pH 7 [42]. Aspartate also acts as a precursor of nicotinamide, which

showed strong depletion when the drug was highly active, perhaps because of an extensive use

of its products, nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucle-

otide phosphate (NADP) which act as coenzymes [42]. Tryptophan was at high levels under

the most extreme condition (0.2 mg L-1 trimethoprim, pH 7). Although there is evidence that

tryptophan acts as a precursor in nicotinamide synthesis, the direct relationship between these

two metabolites in E. coli is yet to be reported [42]. Nevertheless, quinolinate is one of the end

products of tryptophan metabolism and is involved in nicotinamide metabolism, which may

be taken as evidence of a correlation between these two metabolites in E. coli [52,53].

Alanine levels were observed to be high when the drug is highly active and the bacterium is

under stress from exposure to trimethoprim. This may be correlated to extensive consumption

of sugars, resulting in an increase in the level of pyruvate, an end-product of glycolysis. Pyru-

vate acts as a substrate of valine-pyruvate aminotransferase [54] and high levels of pyruvate

result in an increase in alanine, an amino acid that acts as a regulator of sugar metabolism in

higher organisms [40]. A potential consequence of the overflow of metabolism from the con-

sumption of monosaccharides (Fig 7) is the excessive production of pyruvate generated via gly-

colysis. The cell would need to deal with this overproduction of pyruvate and this would in

turn result in an increase in the level of lactic acid and tricarboxylic acid (TCA) cycle interme-

diates. We certainly observe a direct correlation of lactate to pyruvate (Fig 7 and S7 Fig) and

the only two metabolites that we detected by GC-MS from the TCA cycle were citrate and

malate, and both had their highest levels at pH 7 and 0.2 mg L-1 trimethoprim.

In conclusion, as well as measuring the direct effects on nucleotide metabolism that tri-

methoprim is known to cause we also observe pH dependent antibiotic effects on amino acid

profiles and most significantly increased trehalose levels, an osmoprotectant that is produced

when bacteria are under stress. These results provide a wider view of the action of trimetho-

prim, and metabolomics has also indicated several alternative areas of metabolism to be inves-

tigated further by time-course metabolic profiling, targeted metabolite quantification, and

fluxomic-based investigation.

Materials and methods

General maintenance and growth of E. coli K-12 MG1655 is provided in Supporting Informa-

tion (S1 Text). This also includes preliminary investigations of growth optimization, different

media and different pH levels. Details of the minimum inhibitory concentrations (MICs) cal-

culation for trimethoprim at pH 5, 7 and 9 are also included.

Antibiotic perturbation of E. coli
18 mL of LB medium at different pH: 5, 7 and 9, adjusted using NaOH or HCl, was inoculated

with 1 mL of bacteria (Supporting Information) and 1 mL of 0.2, 0.03 and 0.003 mg L-1 of tri-

methoprim in 100 mL conical flasks. Control samples were identical except the 1 mL of tri-

methoprim was substituted with 1 mL of distilled water (dilution solvent). Each condition was

replicated six times and each incubated for 18 h at 37˚C and 200 rpm.
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The overnight culture of each replicate was split for FT-IR and GC-MS to make sure that

results were obtained from the same biological cultures. For FT-IR, 450 μL from each culture

was collected and the biomass was washed three times with physiological saline and re-sus-

pended in 400 μL of saline. For GC-MS, 15 mL was processed as described in Supporting

Information.

In order to estimate the amount of trimethoprim inside the E. coli cells, cellular extracts

were prepared, analyzed and quantified against a 20 point calibration curve constructed using

a trimethoprim reference standard via LC-MS. For UHPLC-MS, a Thermo Accela UHPLC

system (Thermo-Fisher Ltd.) coupled to a Thermo LTQ-Orbitrap XL MS system was

employed (Thermo-Fisher). The methods used are described by Kim et al. [55]. Full details of

methods are provided in S8 Fig for FT-IR and GC-MS and S9 Fig for LC-MS. In addition, the

calibration curve for LC-MS is shown in Fig 2.

FT-IR spectroscopy

Clean 96-well zinc selenide (ZnSe) plates (Bruker Ltd.) were used as sample carrier. 20 μL of

the above bacterial preparations were spotted onto these plates and oven dried at 40˚C for 45

min (as detailed by AlRabiah et al. [56]). High-throughput screening (HTS) FT-IR spectro-

scopic analysis was carried out on Bruker Equinox 55 infrared spectrometer (Bruker Ltd.)

equipped with a HTX™ module according to the method of Winder et al. [57]. All spectra were

obtained in the 4000–600 cm-1 range, 64 scans were acquired at 4 cm-1 resolution. These

experimental conditions were maintained during all measurements.

After analysis, the FT-IR data were converted to ASCII format tab delimited files prior to

data analysis in MATLAB 2010a (The Mathworks Inc.) and R version 2.13.1 (R Foundation

for Statistical Computing). Prior to multivariate analysis (vide infra), CO2 signals were

removed as detailed by AlRabiah et al. [56] and FT-IR data were baseline corrected using an

extended multiplicative signal correction (EMSC) algorithm [58]. All data were subsequently

autoscaled prior to analysis [59].

GC-MS

For GC-MS, samples inoculated at pH 9 were excluded from the analysis due to the extreme

effect of the drug at this pH that prevents the collection of adequate biomass for analysis. For

the remaining conditions, 15 mL from each flask was collected and applied for further experi-

ments (S8 Fig).

GC-TOF/MS was conducted using a LECO Pegasus III TOF/MS operated in GC-MS mode

(Leco Corp.), with a Gerstel MPS-2 autosampler (Gerstel) and an Agilent 6890N GC × GC

with a split/splitless injector and Agilent LPD split-mode inlet liner (Agilent Technologies).

Full details of the GC-MS protocol used are provided in the Supporting Information and these

follow the accepted Metabolomics Standards Initiative (MSI) guidelines [33] and follow our

published protocols, and included pooled samples to act as quality controls (QC) [60,61]. The

only difference in this study is that for metabolite extraction, 80% methanol was used rather

than 100% methanol to enhance recovery of polar small molecules.

Following GC-MS, these data were processed using the deconvolution method reported by

Begley et al. [61]. In addition, prior to statistical analysis, QC samples were used as in the work

of Wedge et al. [62] to provide data quality assurance by evaluating and eliminating mass fea-

tures that showed high deviation within QC samples.
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Metabolomics data analysis

For FT-IR and GC-MS, multivariate data analysis included unsupervised principal compo-

nents analysis (PCA) and supervised principal components-discriminant function analysis

(PC-DFA). PC-DFA depends on the prior knowledge of experimental structure (i.e. the exper-

imental class structure) and a number of retained PCs to discriminate between groups (differ-

ent classes). The PC-DFA models were validated via 1000 bootstrap cross-validations [63] and

validation results are reported (as percentage of correct classification) inside the legends of the

respective PC-DFA scores plot figures.

Additionally, for FT-IR spectroscopy, a multi-block (MB)-PCA model known as consensus

PCA (CPCA) [64] was subsequently constructed to aid in spectral interpretation. The first

CPCA model related the antibiotic dosing concentration trend for each pH condition as an

individual block, and a second model was constructed to illustrate the distribution of samples

at different pH levels between control samples and three different drug concentrations as indi-

vidual blocks.

All multivariate data analyses were performed in R, and all scripts are available from the

authors on request.

Supporting information

S1 Text. Supporting methods and results. Further description of methods and results.

(PDF)

S1 Table. List of metabolites detected by GC-MS. Metabolites after extraction from control

and stressed E. coli K-12 with trimethoprim at two different pH levels (5 and 7) are shown.

(XLSX)

S1 Fig. Optical microscopic image of E. coli grown under different conditions. Magnifica-

tion: ×100. E. coli K-12 inoculated in LB medium at different pH levels: (a) pH 5; (b) pH 7; (c)

pH 9.

(PNG)

S2 Fig. Growth curves of E. coli K-12 (at pH 7 in LB) exposed to different concentrations

of trimethoprim. Blue indicates control samples (0 mg L-1); red 8 mg L-1; green 2 mg L-1;

purple 0.3 mg L-1; turquoise 0.2 mg L-1; orange 0.03 mg L-1 and light blue 0.003 mg L-1.

(PNG)

S3 Fig. Growth curves of E. coli K-12 exposed to different concentrations of trimethoprim.

(a) Chemical structure of trimethoprim (blue circles show the main ionization points on the

structure in acidic media). Blue indicates growth curves of control samples (0 mg L-1); red

0.003 mg L-1; green 0.03 mg L-1and purple 0.2 mg L-1 at (b) pH 9, (c) pH 7 and (d) at pH 5.

(PNG)

S4 Fig. FT-IR spectra obtained from E. coli K-12. (a) After exposure to four concentrations

of trimethoprim (0.2, 0.03, 0.003 and 0 mg L-1) at three different pH values (pH 5, 7 and 9).

There were six biological replicates for each condition; each replicate was analysed three times,

totalling 18 spectra for each condition (total number of spectra = 216). (b) After exposure to

different concentrations of trimethoprim (0, 0.003, 0.03, 0.2 mg L-1) at pH 9 (total number of

spectra = 72). (c) After exposure to different concentrations of trimethoprim (0, 0.003, 0.03,

0.2 mg L-1) at pH 7 (total number of spectra = 72). (d) After exposure to different concentra-

tions of trimethoprim (0, 0.003, 0.03, 0.2 mg L-1) at pH 5 (total number of spectra = 72).

(PNG)
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S5 Fig. FT-IR spectra before and after CO2 removal and EMSC scaling. (a) FT-IR spectra

obtained from E. coli K-12 after exposure to four concentrations of trimethoprim (0.2, 0.03,

0.003 and 0 mg L-1) at two different pH values (5 and 7). (b) FT-IR spectra post CO2 removed

at� 2350 cm-1 and EMSC scaling.

(PNG)

S6 Fig. FT-IR multi-block PCA scores plot. The plot shows the distribution of samples with

different pH levels at different drug concentrations: (a) 0 mg L-1, (b) 0.003 mg L-1, (c) 0.03 mg

L-1 and (d) 0.2 mg L-1.

(PNG)

S7 Fig. KEGG metabolic pathway of E. coli K-12 MG1655. The map highlights significant

metabolites with their relative levels subjected to different concentrations of trimethoprim at

different pH levels.

(PNG)

S8 Fig. General scheme of sample preparation for FT-IR and GC-MS. Sample preparation

includes: (1) analysis by Bioscreen to determine the MIC of trimethoprim and produce the

growth curves of E. coli K-12 at pH 5 and 7 with and without drug challenge. (2) FT-IR analysis

of samples after washing with normal saline. (3) GC-MS analysis of samples after quenching

and extraction using 60% and 80% cold (-48˚C) methanol respectively.

(PNG)

S9 Fig. General scheme of sample preparation for LC-MS. Sample preparation includes: (1)

analysis by Bioscreen to produce the growth curves of E. coli K-12 at pH 5 and 7 after challenge

with 0.8 mg L-1 of trimethoprim added at two time points: (I) at the beginning of the lag phase

(time = 0 h) and (II) at the mid-exponential phase (time = 5 h). (2) LC-MS analysis of sample

extracts, for relative quantification of the intracellular drug levels after quenching and extrac-

tion using 60% and 80% cold (-48˚C) methanol respectively.

(PNG)
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