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Background: Surface rupture of carotid plaque can cause severe cerebrovascular
disease, including transient ischemic attack and stroke. The aim of this study was to
elucidate the molecular mechanism governing carotid plaque progression and to provide
candidate treatment targets for carotid atherosclerosis.

Methods: The microarray dataset GSE28829 and the RNA-seq dataset GSE104140,
which contain advanced plaque and early plaque samples, were utilized in our analysis.
Differentially expressed genes (DEGs) were screened using the “limma” R package.
Gene modules for both early and advanced plaques were identified based on co-
expression networks constructed by weighted gene co-expression network analysis
(WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG)
analyses were employed in each module. In addition, hub genes for each module were
identified. Crucial genes were identified by molecular complex detection (MCODE) based
on the DEG co-expression network and were validated by the GSE43292 dataset. Gene
set enrichment analysis (GSEA) for crucial genes was performed. Sensitivity analysis was
performed to evaluate the robustness of the networks that we constructed.

Results: A total of 436 DEGs were screened, of which 335 were up-regulated
and 81 were down-regulated. The pathways related to inflammation and immune
response were determined to be concentrated in the black module of the advanced
plaques. The hub gene of the black module was ARHGAP18 (Rho GTPase activating
protein 18). NCF2 (neutrophil cytosolic factor 2), IQGAP2 (IQ motif containing GTPase
activating protein 2) and CD86 (CD86 molecule) had the highest connectivity among
the crucial genes. All crucial genes were validated successfully, and sensitivity analysis
demonstrated that our results were reliable.

Conclusion: To the best of our knowledge, this study is the first to combine DEGs and
WGCNA to establish a DEG co-expression network in carotid plaques, and it proposes
potential therapeutic targets for carotid atherosclerosis.

Keywords: carotid plaque, weighted gene co-expression network analysis, gene expression omnibus, crucial
genes, RNA sequencing
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INTRODUCTION

Carotid atherosclerosis is characterized by lipid accumulation
and inflammation, which underlie the thickening of the carotid
intima where the plaque is formed (Libby et al., 2011).
Compared with early plaques, advanced plaques are more
vulnerable and prone to rupture. Surface rupture of the plaque
leads to abrupt thrombus formation which, in turn, triggers
cerebrovascular disease, including transient ischemic attack and
stroke (Golledge et al., 2000).

In recent years, the rapid progress of microarray and RNA-seq
technologies has facilitated gene expression profiling. It has been
determined that hemoglobin metabolism and bone resorption are
crucial pathways in plaque vulnerability, and dysregulated genes,
including SYNPO2, LMOD1 and PPBP, have been identified
in carotid plaques (Perisic et al., 2016). In addition, Alloza
et al. (2017) reported from an RNA-seq-based transcriptomic
study that smooth muscle cells (SMCs) from unstable plaques
showed a senescence-like phenotype, while stable plaques were
suggestive of an osteogenic phenotype. A large meta-analysis of
GWAS implicated one novel locus (PIK3CG) involved in carotid
plaque and eight novel susceptibility loci linked with carotid
artery intima thickness (Franceschini et al., 2018). Despite this
progress, the molecular mechanisms involved in the formation
and progression of carotid plaques have not been fully elucidated.

Weighted gene co-expression network analysis (WGCNA) is
a powerful tool to identify gene co-expression modules, explore
the correlation of the modules and phenotypes and discover
hub genes that regulate critical biological processes (Zhang and
Horvath, 2005). WGCNA has been widely employed in the
cardiovascular field to investigate such topics as abdominal aortic
aneurysms, obstructive coronary artery disease and varicose veins
(Liu et al., 2016; Chen et al., 2019; Mo et al., 2019; Wang Y. et al.,
2019; Zhang et al., 2019).

To clarify the potential molecular mechanisms underlying
carotid atherosclerosis, we analyzed 2 datasets of transcriptomes
downloaded from the Gene Expression Omnibus (GEO)1 and
Sequence Read Archive (SRA) databases. Differentially expressed
gene screening was conducted, and co-expression networks
were constructed by WGCNA. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes Genomes (KEGG) pathway analyses were
conducted in each module, and hub genes in each functional
module were identified. Next, the DEG co-expression network
was created, and crucial genes were mined based on this
network using Molecular Complex Detection (MCODE). These
crucial genes were validated using another independent dataset,
GSE43292, through the WGCNA pipeline. Gene set enrichment
analysis for 3 crucial genes was performed, and the fraction of 22
immune cells was determined and compared between early and
advanced plaques by CIBRTSORT (Newman et al., 2015). Least
absolute shrinkage and selection operator (LASSO) regression
and linear discriminant analysis (LDA) were also performed to
build a classifier to discriminate between advanced plaque and
early plaque. Finally, a sensitivity analysis was performed to
evaluate the robustness of the network we constructed.

1https://www.ncbi.nlm.nih.gov/geo/

MATERIALS AND METHODS

Datasets
Three datasets, GSE28829, GSE104140, and GSE43292, were
selected from the GEO database. GSE28829 and GSE104140
were used for WGCNA, while GSE43292 was used as the
validation dataset. GSE28829 and GSE43292 were mRNA
microarray datasets. GSE28829 involved 16 advanced plaque
samples and 13 early plaque samples, while GSE43292
involved 32 atheroma plaques and paired macroscopically
intact tissue. The series matrix file and data table of the
microarray platforms GPL570 and GPL6244 were downloaded.
GSE104140 was an RNA sequencing dataset that involved
19 advanced plaque samples and 13 early plaque samples.
The fastq RNA sequencing data were downloaded from the
SRA database (SRP118628). This study involved no human or
animal subjects.

Data Preprocessing and DEG Screening
Data tables of GPL570 and GPL6244 were used to annotate the
series matrix files of GSE28829 and GSE43292, respectively, with
official gene symbols (i.e., replace the probe name with the official
gene symbol), and the gene expression matrices were obtained.
Spliced Transcripts Alignment to a Reference (STAR) software
(Dobin et al., 2013) was used to conduct RNA quantification to
obtain the expression matrices of GSE104140. Next, we merged
the gene expression matrix of GSE28829 and the TPM matrix
of GSE104140. The “sva” R package was employed to remove
batch effects (Supplementary Figure S1). Finally, the “limma”
R package was utilized to conduct differentially expressed gene
(DEG) screening. | log2 (fold-change)| >1 and adjusted p < 0.05
were set as thresholds of DEG screening. DEG analysis was also
conducted for the validation set GSE43292, and we compared all
the DEGs (adjusted p< 0.05) between the training set (GSE28829
and GSE104140) and this validation set.

Co-expression Network Construction by
WGCNA
The “WGCNA” R package was employed to construct co-
expression network for both advanced plaque samples and
early plaque samples. All the genes were involved in further
analysis. Pearson’s correlation matrix was calculated. Next, using
the formula amn = | cmn| β (where amn represents adjacency
between gene m and gene n, cmn represents Pearson’s correlation
coefficient between gene m and gene n, and β represents soft-
power threshold), the weighted adjacency matrix was created.
A topological overlap measure (TOM) was created based on an
adjacency matrix for gene module detection. In the detection
of gene modules, average linkage hierarchical clustering was
employed to build a clustering dendrogram, and the minimal
gene module size was 100. After gene module detection, similar
modules were merged with the threshold of 0.25. The atheroma
samples in the validation set (GSE43292) were also included
in another WGCNA.

Frontiers in Physiology | www.frontiersin.org 2 February 2021 | Volume 12 | Article 601952

https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-601952 February 1, 2021 Time: 18:9 # 3

Chen et al. Crucial Genes in Carotid Plaque

FIGURE 1 | Workflow of the whole study.

FIGURE 2 | DEG screening. (A) Heatmap. The heatmap showed the expression pattern of genes. (B) Volcano plot. The x-axis represents the -log10(adj.P.Val) while
the y-axis represents log2(fold-change). The red dots represent up-regulated DEGs while the green dots represent the down-regulated DEGs.
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Functional and Pathway Enrichment
Analysis
The “clusterProfiler” R package was employed for gene ontology
(GO) and Kyoto Encyclopedia of Genes Genomes (KEGG)
pathway analysis for genes in each module. The threshold for the
analysis was set as count >2 and adjusted p < 0.05. Next, we
compared the count number of the top 10 significant terms of
modules of interest to determine the difference in co-expression
patterns between advanced plaque samples and early plaque
samples using Wilcoxon’s rank sum test.

Hub Gene Identification and Crucial
Gene Mining
Genes with the highest intramodular connectivity and module
membership (MM) >0.8 calculated by the “WGCNA” R package
were identified as hub genes for each functional module. Next,
the DEG co-expression networks were obtained by mapping

TABLE 1 | DEGs with top-10 | log2(fold-change)| (advance plaque/early plaque).

Gene symbol Official full name log2(fold-change) Adjusted
P-value

Up-regulated

MMP9 Matrix metallopeptidase
9

3.24 1.41E-09

MMP12 Matrix metallopeptidase
12

3.10 2.40E-07

IGJ Joining chain of
multimeric IgA and IgM

2.77 5.01E-09

SPP1 Secreted
phosphoprotein 1

2.70 6.52E-11

CHI3L1 Chitinase 3 like 1 2.62 2.48E-10

CCL18 C-C motif chemokine
ligand 18

2.46 5.40E-07

APOE Apolipoprotein E 2.41 5.94E-11

APOC1 Apolipoprotein C1 2.32 7.40E-09

ACP5 Acid phosphatase 5,
tartrate resistant

2.28 1.81E-09

MMP7 Matrix metallopeptidase
7

2.21 1.11E-07

Down-regulated

ATP1A2 ATPase Na+/K+

transporting subunit
alpha 2

−1.80 2.87E-09

CNTN1 Contactin 1 −1.70 1.27E-07

MYOCD Myocardin −1.59 2.53E-07

ITLN1 Intelectin 1 −1.55 0.001283

CNTN4 Contactin 4 −1.54 5.20E-09

CASQ2 Calsequestrin 2 −1.50 4.28E-07

CARTPT CART prepropeptide −1.50 0.00054

BAMBI BMP and activin
membrane bound
inhibitor

−1.41 4.57E-10

ACADL Acyl-CoA
dehydrogenase, long
chain

−1.41 1.23E-09

PLD5 Phospholipase D family
member 5

−1.41 1.15E-08

DEGs into the whole co-expression network of advanced plaque
samples and early plaque samples using Cytoscape v3.7.0.
MCODE, a plugin of Cytoscape, was employed to detect
the densely connected subnetwork of the DEG co-expression
network of advanced plaque samples. The DEG co-expression
network of advanced plaque samples and the most significant
subnetwork was visualized, and genes with the top 10 degrees in
this subnetwork were selected as crucial genes. The MM of the
hub genes in the functionally important module was compared
between advanced plaque samples and early plaque samples.
A DEG co-expression network of the validation set (GSE43292)
was also constructed to validate crucial genes. Furthermore,
receiver operating characteristic (ROC) analysis was conducted
by SPSS 25.0 to demonstrate the potential diagnostic value
of these crucial genes to discriminate advanced plaque and
early plaque samples.

LASSO Regression Model and LDA
The lasso algorithm was performed using the R package “glmnet”
to prioritize candidate genes in the MCODE subnetwork for
building a classifier. The optimal lambda for the coefficient was
computed with a minimum value of 10-fold cross-validation in
the training set. The dataset was randomly split into training and
validation groups at a proportion of 3:1. The LDA model was
established and verified using the R package “MASS.”

Gene Set Enrichment Analysis
GSEA for the 3 crucial genes with the highest degree
was conducted using GSEA 4.0.3 software. The
c5.bp.v7.0.symbols.gmt and c2.cp.kegg.v7.0.symbols.gmt
reference gene sets were downloaded from the official GSEA
website2. To perform GSEA, the plaque samples were divided
into two groups (i.e., samples with high expression levels of
crucial genes vs. samples with low expression levels of crucial
genes) according to the median value of each gene. Compared
with conventional GSEA analysis, the grouping of samples is
based on the expression level of each gene in single-gene analysis.

Sensitivity Analysis of Networks We
Constructed
To ensure the robustness of the networks we constructed, we
performed a sensitivity analysis. One sample was randomly
deleted based on the random number generated by the runif()
function in R software. After this sample was deleted, the whole
WGCNA pipeline analysis was performed, and crucial genes
were identified.

Statistical Analysis
Data preprocessing, DEG screening, WGCNA and functional
and pathway enrichment analysis were performed in R v3.6.2.
Crucial genes were mined using MCODE in Cytoscape v3.7.0.
GSEA was conducted by GSEA v4.0.3. We described the details
of these bioinformatic analyses in the corresponding subsections.
The count numbers of the top 10 significant functional terms of

2https://www.gsea-msigdb.org/gsea/downloads.jsp
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modules of interest between advanced plaque and early plaque
samples were compared by Wilcoxon’s rank sum test, and the
potential diagnostic value of key genes was demonstrated by
ROC analysis using IBM SPSS 25.0. The grouping variable of
advanced plaque and early plaque (State Variable in SPSS) and
the expression value of crucial genes (Test Variable in SPSS)
were entered as input, and non-parametric assumptions were
chosen as default in ROC analysis. A p < 0.05 was considered
to be significant.

Code Availability
The code used in this study (from the GEO datasets to the
WGCNA analysis to the crucial gene mining) is available
at: https://github.com/cmy2013/classify-early-and-advanced-
carotid-plaque.

RESULTS

Workflow
The workflow of the present study is shown in Figure 1.
DEGs were screened, and the co-expression networks were

constructed. A DEG co-expression network was constructed by
mapping DEGs into the co-expression network of advanced
plaque samples. Crucial genes were obtained based on this DEG
co-expression network. These crucial genes were validated based
on another independent GEO dataset through the WGCNA
pipeline. Next, the genes in the MCODE cluster were used
to build a classifier to discriminate advanced plaque and early
plaque by lasso regression and LDA analysis. After that step,
single-gene GSEA was performed for crucial genes, and their
potential clinical significance was determined by ROC analysis.
In addition, gene modules were detected for both early plaque
and advanced plaque samples. Functional enrichment analysis
was conducted using genes in each module. The co-expression
patterns were compared between early plaque samples and
advanced plaque samples based on the results of functional
enrichment analysis. Finally, a sensitivity analysis was performed
to evaluate the robustness of the network that we constructed.

Screening of DEGs
The expression patterns of DEGs are shown in Figure 2. With the
threshold of adjusted p < 0.05 and | log2(fold-change)| >1, we
screened 436 DEGs, among which 335 were up-regulated and 81

FIGURE 3 | Construction of the co-expression network for advanced plaque. (A) No outliers were detected in the sample clustering and all samples were included in
further study. (B,C) The cut-off for soft-threshold β was set to be 0.85 and β = 14 was selected. (D,E) The co-expression network we constructed met the
requirements of scale-free topology. (F) In advanced plaque sample, 7 gene modules were detected.
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were down-regulated. DEGs with top-10 | log2(fold-change)| are
shown in Table 1. All DEGs for the training set and validation set
are listed in Supplementary Tables S1, S2, respectively. A total
of 4,057 overlapping DEGs were identified between the training
set and validation set only with the threshold of adjusted p< 0.05
(Supplementary Figure S2).

Constructed of Weighted Gene
Co-expression Network
No outliers were excluded by sample clustering (Figure 3A
and Supplementary Figure S3A). The cut-off of R2 3 was set
to be 0.85 and soft-threshold power β = 14 and β = 18
were selected for advanced plaque and early plaque samples,
respectively (Figures 3B,C and Supplementary Figures S3B,C).
The adjacency matrices that store the information of whole
co-expression networks were constructed. The histogram and
the linear plot showed that both networks that we constructed
met the requirements of scale-free topology (Figures 3D,E
and Supplementary Figures S3D,E). Next, TOM matrices were
created, and gene modules were detected based on TOM
matrices. After merging similar modules, seven gene modules
were detected for both advanced and early plaque samples
(Figure 3F and Supplementary Figure S3F).

3https://www.ncbi.nlm.nih.gov/sra/

Functional Enrichment of Gene Modules
The biological functions of the genes in each module were shown
by GO-BP and KEGG pathway analysis (Supplementary Tables
S3, S4). The co-expression patterns between advanced plaque
samples and early plaque samples were compared based on
these results. We observed that the black module of advanced
plaque samples was associated with inflammation and immune
response. GO-BP and KEGG pathways with top-10 significant
adjusted p value of this module was shown in Figure 4 and
Table 2. The Wilcoxon’s rank sum test (p = 0.0003) showed that
the count number of black module of advanced plaque samples
of these GO-BP and KEGG pathways was significantly larger
that of magenta module of early plaque samples, which is the
corresponding immune and inflammation associated module in
early plaque samples (Supplementary Figure S4). This suggested
that genes associated with inflammation and immune response
were scattered in the modules of early plaque samples. These
results suggested that inflammation and the immune response
might play roles in the progression of carotid plaques.

Identification of Hub Genes and Mining
of Crucial Genes
The intramodular connectivity for genes in each module was
calculated by the WGCNA algorithm. Genes with the highest

FIGURE 4 | Functional enrichment analysis for GO anal and KEGG pathways for black module of advanced plaque. (A,B) Bar plot and dot plot for GO terms of
genes in black module. Terms in bar plot and dot plot were ordered by adjusted p value and count number respectively. (C,D) Bar plot and dot plot for KEGG
pathways of genes in black module. Terms in bar plot and dot plot were ordered by adjusted p value and count number respectively.
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TABLE 2 | GO-BP and KEGG pathway terms with top-10 significant adjusted
P-value for black module of advanced plaque samples.

Terms Count Adjusted p-value

GO-BP

Neutrophil activation 165 4.36E-47

Neutrophil activation involved in immune response 162 1.38E-46

Neutrophil degranulation 160 9.85E-46

Neutrophil mediated immunity 162 2.03E-45

T cell activation 118 1.10E-21

Regulation of innate immune response 114 1.24E-20

Leukocyte proliferation 88 1.55E-20

Positive regulation of cytokine production 115 2.82E-20

Mononuclear cell proliferation 83 3.50E-20

Lymphocyte proliferation 81 3.55E-19

KEGG pathways

Lysosome 64 4.38E-24

Phagosome 58 6.53E-15

Osteoclast differentiation 47 2.43E-11

Tuberculosis 57 7.38E-11

B cell receptor signaling pathway 31 8.04E-08

Rheumatoid arthritis 33 1.21E-07

Toxoplasmosis 37 1.21E-07

Viral myocarditis 25 1.94E-07

Antigen processing and presentation 29 2.40E-07

Yersinia infection 41 3.18E-07

intramodular connectivity and MM >0.8 were selected as the hub
genes of each module (Supplementary Table S5). ARHGAP18
(Rho GTPase activating protein 18) was the hub gene of the
black module in advanced plaque samples. The MM (0.92) of
ARHGAP18 in black module of advanced plaque was larger than
MM (0.79) of ARHGAP18 in corresponding module (purple)
of early plaque.

Next, a DEG co-expression network was generated by
mapping DEGs into the whole co-expression network of

advanced plaques. After removing isolated nodes and node pairs,
the network had 393 edges and 344 nodes (Supplementary
Figure S5). The MCODE subnetwork and 10 crucial genes
were visualized (Figure 5). NCF2 (neutrophil cytosolic factor 2),
IQGAP2 (IQ motif containing GTPase activating protein 2) and
CD86 (CD86 molecule) were the genes with the highest degree
in the crucial gene cluster. ROC analysis was performed, and all
these crucial genes showed potential diagnostic significance. The
areas under the curve (AUCs) of most crucial genes were above
0.90 (Table 3). The ROC curves of NCF2, IQGAP2, and CD86 are
visualized in Figure 6. All these crucial genes were found in the
DEG co-expression network of GSE43292 and were successfully
validated (Figure 7 and Supplementary Table S6).

LASSO Regression Analysis and LDA
To identify prognostic markers in the progression of
atherosclerosis, the top 100 genes in the MCODE subnetwork
were input into the LASSO regression model. The lambda value
was 0.0125, and 15 genes were selected to calculate the risk score
(Figures 8A,B and Supplementary Table S7. The risk model was
constructed with the coefficients of 15 genes: IQGAP2, FPR3,
FCER1G, SLC1A3, C5AR1, PLA2G7, ALOX5, CCR1, RASGRP3,
SLAMF8, C3AR1, AIF1, AMPD3, BTK, and CTSB. There was a
clear shift in LDA function, with a left shift being observed for
early plaques and a right shift for advanced plaques. The accuracy
of the LDA model using the confusion matrix algorithm was
100% (Figure 8C). These results indicated that the classifier can
clearly discriminate advanced plaque and early plaque.

Gene Set Enrichment Analysis
Single-gene GSEA for each crucial gene was performed. Gene
sets associated with the immune response and inflammation were
highly up-regulated in the group with high expression levels of
crucial genes (e.g., the NCF2-high group), which also suggested
that the immune response and inflammation play important roles
in the progression of carotid atherosclerosis (Figure 9).

FIGURE 5 | MCODE cluster and crucial genes. (A) Subnetwork of the most significant MCODE cluster. The red boxes represent the up-regulated genes while the
green boxes represent down-regulated genes. (B) Genes with top-10 degree were considered as crucial genes. NCF2, IQGAP2, and CD86 were the genes with the
highest degree among these crucial genes.
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TABLE 3 | AUC for crucial genes.

Gene symbol Official full name AUC p-value

NCF2 Neutrophil cytosolic factor 2 0.918 <0.001

IQGAP2 IQ motif containing GTPase
activating protein 2

0.853 <0.001

CD86 CD86 molecule 0.903 <0.001

LIPA Lipase A, lysosomal acid type 0.923 <0.001

PILRA Paired immunoglobin like type 2
receptor alpha

0.948 <0.001

LCP1 Lymphocyte cytosolic protein 1 0.948 <0.001

HAVCR2 Hepatitis A virus cellular receptor 2 0.937 <0.001

SYK Spleen associated tyrosine kinase 0.957 <0.001

HLA-DMB Major histocompatibility complex,
class II, DM beta

0.927 <0.001

ARRB2 Arrestin beta 2 0.91 <0.001

Sensitivity Analysis of Constructed
Network
We ranked the sample ID in ascending order. Next, the runif()
function generated 18 and 13 as random numbers for advanced
plaque samples and early plaque samples. The corresponding
samples (SRR6059638 for advanced plaque and GSM714098
for early plaque samples) were deleted. The results of sample
clustering (Supplementary Figures S6A, S7A) were nearly the
same as those of the original network construction (Figure 3A
and Supplementary Figure S3A), except the deleted samples
were not in the results. Then, with the same cutoff, the same
soft-threshold βs (β = 14 for advanced plaque samples and
β = 18 for early plaque samples) were selected to construct co-
expression network (Supplementary Figures S3B–E, S6B–E). In
the module detection, the same numbers of modules (7 gene
modules) were detected for both groups (Supplementary Figures
S6F, S7F). Finally, most of the crucial genes overlapped with
the original analysis, except that ARRB2 was replaced by ACP5
(Supplementary Figure S8), which was also in the MCODE
cluster. The results of the sensitivity analysis showed that our
results were reliable.

DISCUSSION

In the present study, 436 DEGs were identified in plaque samples.
Based on weighted gene co-expression networks and modules
were constructed using the WGCNA algorithm. Functional
enrichment analyses of GO and KEGG were performed for
each module. In the GO-BP and KEGG pathway analyses,
pathways associated with inflammation and immune response
were clustered in the black module of advanced plaque samples.
These pathways were dispersed in early plaque samples. NCF2,
IQPAG2, and CD86 had the highest connectivity among the
crucial genes identified by MCODE. Based on single gene GSEA,
gene sets correlated with inflammation and immune response
were highly up-regulated in the group of high expression level
of crucial genes. Finally, the sensitivity analysis showed that our
results were reliable.

Several previous studies have used the microarray dataset
GSE28829 to screen DEGs (Lin et al., 2014; Wang et al.,
2014; Tan et al., 2017; Liu et al., 2018). Different methods and
different criteria lead to differences in DEG results. Wang et al.
screened 267 up-regulated genes and 52 down-regulated genes.
The hub gene was TYRO protein tyrosine kinase binding protein
(TYROBP). CD14, which is one of the crucial genes in the
present study, was one of up-regulated the up-regulated genes
revealed by COXPRESdb (Wang et al., 2014). Liu et al. obtained
758 differentially expressed genes with thresholds of FDR <0.05
and | log2FC| >0.58. ITGAM and ACTN2 have the highest
degree in the PPI network (Liu et al., 2018). Lin et al. detected
DEGs by robust multiarray average (RMA). In the study by these
researchers, 322 up-regulated genes and 385 down-regulated
genes were identified in advanced plaque samples. CFL2 and
MMP9 were identified as important genes in the transcriptional
regulatory network (Lin et al., 2014). Tan et al. used the signal-
to-noise method and listed the top 100 up-regulated genes and
top 100 down-regulated genes. IGK, MMP9, and IGLC2 are hub
genes for up-regulated genes. AW451999, CFL2, and PDZRN3
are hub genes for down-regulated genes (Tan et al., 2017). Other
datasets were also employed to identify the DEGs. Liu et al.
(2020) analyzed GSE41571, GSE118481, and E-MTAB-2055 and
discovered that JCHAIN, CXCL10, and HMOX1 were the crucial

FIGURE 6 | ROC curves for NCF2, IQGAP2, and CD86. (A) The AUC for NCF2 was 0.918. (B) The AUC for IQGAP2 was 0.853. (C) The AUC for CD86 was 0.903.
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FIGURE 7 | Validation of crucial genes by GSE43292. All crucial genes were found in the DEG co-expression network of the validation set (***p < 0.001).

genes for up-regulated genes, and the most down-regulated
genes were COL21A1, DACT3, and ACTC1 in unstable plaques.
However, these studies did not use a weighted and scale-free
network approach, which identifies genes with critical positions
in the whole network, to elucidate the molecular mechanism
governing plaque progression.

Some studies have identified key genes in atherosclerosis
progression using WGCNA. By applying lncRNA classification
to the GSE28829 dataset and confirming correlated genes by
conducting WGCNA to analyze GSE40231, Wang et al. identified
6 lncRNAs, including ZFAS1 and LOC100506730, that play
crucial roles in atherosclerosis. These lncRNAs are involved in the
interferon-gamma-mediated signaling pathway and leukotriene
biosynthetic process (Wang C.H. et al., 2019). Albright et al.
(2014) discovered that pathways that regulate inflammatory and

macrophage gene function were correlated with atherosclerosis,
and CD44 was a critical gene.

The present study compared the co-expression patterns
between early and advanced plaques using the WGCNA method
and generated a DEG co-expression network by mapping DEGs
into the whole co-expression network of advanced plaque
samples for the first time.

The functional enrichment of WGCNA modules indicated
that inflammation and immune response are related to
the progression of atherosclerosis. Atherosclerosis is
overwhelmingly proven to be a chronic inflammatory disease
(Hansson et al., 2006; Wolf and Ley, 2019). Bioinformatic,
experimental, clinical and epidemiological studies demonstrated
a relationship between inflammation and lipid metabolism. After
low-density lipoproteins deposit in the intima, monocytes are
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FIGURE 8 | Lasso regression and LDA analysis. (A) Lasso coefficient profiles of 100 genes. (B) 10-fold cross-validation for selecting minimal λ based on 1-SE
criteria for recurrence. A total of 15 genes were selected. (C) There was a clear shift in LDA function, with a left shift being observed for early plaques and a right shift
for advanced plaques.

recruited by leukocyte adhesion molecules and differentiate into
macrophages. By upregulating scavenger receptors and Toll-like
receptors, macrophages mediate lipoprotein internalization
and transmit activating signals. Severe inflammation may lead
to plaque rupture and thrombosis. Inflammatory markers,
including CRP, IL-6, and Pentraxin-3, are used to monitor the
atherosclerosis process in coronary artery disease (Hansson et al.,
2006). The immune response is initiated by specific antigens,
including the ApoB100 protein of LDL. Regulatory T cells secrete
atheroprotective IL-10 and TGF-β to attenuate atherosclerosis,
while Th1 cells promote atherosclerosis. As atherosclerosis
progresses, T cells express proatherogenic Treg transcription
factors, including RORγ-T (Th17), Bcl-6 (TFH), or T-bet (Th1),
instead of the atheroprotective Th transcription factor FoxP3
(Gistera and Hansson, 2017). This finding is consistent with the
fraction of regulatory T cells in plaque samples that we calculated
by the CIBERSORT algorithm.

The hub gene of the black module was ARHGAP18.
ARHGAP18 (SENEX) is a negative regulator of YAP and RhoC
(Coleman et al., 2020). Overexpression of RhoC destroys the
actin cytoskeleton and cell junctions. ARHGAP18 regulates the
alignment of endothelial cells and transmigration of neutrophils
by stabilizing microtubes (Lovelace et al., 2017). Lay et al.
(2019) reported that the expression of ARHGAP18 increased
in areas where plaques formed and progressed. This finding
is in keeping with our conclusion. Areas with turbulence and
low shear force, such as carotid artery bifurcation, are high-
risk areas for arterial plaque formation. In in vitro experiments,
the expression of ARHGAP18 increased in areas with low
wall shear stress and turbulence, which are risk factors for
atherosclerosis.

Among these crucial genes detected by MCODE based on the
DEG co-expression network, NCF2, IQGAP2, and CD86 had the
highest connectivity. ROC curve analysis of these three genes was
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FIGURE 9 | Single gene GSEA for 3 crucial genes with highest degree.

performed. The AUC was 0.918 for NCF2, 0.853 for IQGAP2, and
0.923 for CD86.

NCF2 encoded a 526-amino acid protein P67phox (de
Albuquerque et al., 2019). Recent reports demonstrated
that NCF2 was significantly associated with hypertension by
increasing the expression and activity of NOXs and reactive
oxygen species (ROS) generation (Risley et al., 2003; Li et al.,
2018). Bioinformatic analyses indicated that up-regulated
expression of NCF2 increased susceptibility to unstable
atherosclerotic plaque-related stroke (Zhou et al., 2020). Few
studies, however, have evaluated the potential mechanism of
the correlation between the NCF2 variant and the progression
of atherosclerosis. P67phox is a subunit of NADPH oxidase
2 (NOX2). NOX2 is up-regulated in unstable atherosclerotic
plaques (Singel and Segal, 2016). NOX2 activity contributes
to the formation and accumulation of oxidized low-density
lipoproteins (ox-LDL) via ROS products (Violi et al., 2017). The
association between NOX2 and atherosclerosis was substantiated
by mouse knockouts lacking subunits of Nox2. Inhibition

of NOX2 by pharmacological intervention also delayed the
atherosclerotic process. These results indicated that NCF2 might
mediate the progression of atherosclerosis through NOX2.

IQGAP2 expresses IQ motif-containing GTPase-activating
protein 2, which is a 180-kDa multidomain scaffolding protein
(Ghaleb et al., 2015). IQGAP2 was first classified as a tumor
suppressor expressed in the liver and was reported to regulate
the PI3K/Akt and Wnt/β-catenin signaling pathways (Gnatenko
et al., 2013). The PI3K/Akt pathway was demonstrated to be
associated with polarization and apoptosis of macrophages by
controlling mTOR assembly (Linton et al., 2016). Seimon and
Tabas (2009) reported that stimulating macrophage apoptosis
decreased atherosclerotic lesions in early plaques and that
suppressing apoptosis increased atherosclerosis. In addition, the
role of IQGAP2 in diminishing the production and recruitment
of macrophages was evidenced in animal experiments. IQGAP2
has been shown to bind Rho GTPase rac1/cdc42 by the GTPase-
binding domain in platelets and thus regulate NF-κB signaling
(Schmidt et al., 2003). The signaling of Toll-like receptor 4
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(TLR4)/NF-κB was impaired in Iqgap2−/− mice. Interleukin-
6 (IL-6), a pro-inflammatory cytokine driven by NF-κB, was
subsequently suppressed. Various studies have demonstrated
that IL-6 is essential in the downstream inflammatory response
that mediates the initiation and progression of atherosclerosis
(Wang et al., 2017).

CD86 expression and the M1/M2 marker ratio (CD86/CD163)
were significantly higher in vulnerable plaques than in stable
plaques (Williams et al., 2017). Deposited oxidized lipoproteins
activate scavenger receptors, such as CD36 and TLR4, to
polarize macrophages to the M1 subtype and eventually form
foam cells (Momtazi-Borojeni et al., 2019). M1 phenotype
macrophages release ROS and proinflammatory cytokines,
such as TNF-α, IL-1β, IL-6, and IL-12, that damage endothelial
cells and vessels (Shapouri-Moghaddam et al., 2018). In
addition to M1 macrophages, CD86 was also found to be
expressed on mature dendritic cells and partial T cells (Ewing
et al., 2013). The expression of CD86 on dendritic cells was
shown to be up-regulated in patients with coronary artery
disease (Dopheide et al., 2007). In CD80−/−CD86−/−mice,
the progression of atherosclerosis was delayed. Vignali et al.
(2008) reported that CD80/86 dendritic cells play roles in
the co-stimulation of Th1 cells. The proatherogenic role
of Th1 cells has been clearly evidenced in a large body of
animal experimental studies (Saigusa et al., 2020). T-cell
and CD28-CD80/86 co-stimulation plays a vital role in
both plaque formation and atherosclerosis development
(Zirlik and Lutgens, 2015).

In addition to the top 3 crucial genes, other genes, such as
the LIPA gene, also play important roles in atherosclerosis
by encoding lysosomal acid lipase (LAL). Depletion of
LIPA causes lipid metabolism disorders in mice (Li and
Zhang, 2019). Bioinformatic studies identified that LIPA is
correlated with coronary heart disease (Mehta, 2011; Nelson
et al., 2017). Lysosomal acid lipase increased the release
and degradation of triglycerides and cholesteryl esters in
macrophages and hepatocytes (Du and Grabowski, 2004).
The fatty acid liberated by hydrolysis elevated the expression
of peroxisome proliferator-activated receptor-γ, which up-
regulated the production of CD36 and consequently enhanced
the uptake of oxLDL (Chistiakov et al., 2016). Further studies are
necessary to elucidate how lysosomal acid lipase contributes to
atherosclerosis.

Single-gene GSEA indicated that crucial genes were
significantly associated with immune and inflammatory
pathways. The most frequent pathways related to crucial genes
were B cell receptor signaling, the cell cycle, T cell receptor
signaling and the Toll-like receptor signaling pathway. NCF2
plays key roles in the TLR4/NOX2 signaling pathway by
expressing the subunit of NOX2 (Wang B. et al., 2019). IQGAP2
regulates TLR4/NF-κB signaling by binding Rho GTPase
rac1/cdc42. The activation of the Toll-like receptor upregulates
the expression of CD86 in macrophages and T cells. The results
of this study confirmed the biological significance of this method
for screening crucial genes.

In this study, we constructed a DEG co-expression network
between early carotid plaques and advanced plaques for the

first time. The hub genes and crucial genes were identified.
NCF2, IQGAP2, and CD86 might play crucial roles in the
process of carotid atherosclerosis. However, our study has
several limitations. These genes have potential value for the
diagnosis and treatment of carotid plaques. The GSE28829
and GSE104140 datasets lack clinical information. We cannot
correlate clinical traits with gene modules. The results were based
on data downloaded from GEO datasets, and further studies are
needed to explore the detailed molecular mechanism of carotid
atherosclerosis progression in vitro and in vivo.
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Supplementary Figure 4 | Functional enrichment analysis for GO anal and KEGG
pathways for magenta module of early plaque. (A,B) Bar plot and dot plot for GO
terms of genes in magenta module. Terms in bar plot and dot plot were ordered
by adjusted p value and count number respectively. (C,D) Bar plot and dot plot for
KEGG pathways of genes in magenta module. Terms in bar plot and dot plot were
ordered by adjusted p value and count number, respectively.

Supplementary Figure 5 | DEG co-expression network. The red boxes represent
the up-regulated genes while the green boxes represent down-regulated genes.

Supplementary Figure 6 | Construction of the co-expression network for
advanced plaque in sensitivity analysis. SRR6059638 was delete based on
generated random number. (A) No outliers were detected in the sample clustering
and all samples were included in further study. (B,C) The cut-off for soft-threshold
β was set to be 0.85 and β = 14 was selected. (D,E) The co-expression network
we constructed met the requirements of scale-free topology. (F) In this sensitivity
analysis of advanced plaque sample, 7 gene modules were detected, which is the
same as that of the original network construction of advanced plaque.

Supplementary Figure 7 | Construction of the co-expression network for early
plaque in sensitivity analysis. GSM714098 was delete based on generated
random number. (A) No outliers were detected in the sample clustering and all
samples were included in further study. (B,C) The cut-off for soft-threshold β was
set to be 0.85 and β = 18 was selected. (D,E) The co-expression network we

constructed met the requirements of scale-free topology. (F) In this sensitivity
analysis of early plaque sample, 7 gene modules were detected, which is the
same as that of the original network construction of early plaque.

Supplementary Figure 8 | Crucial genes identified in sensitivity analysis. Most of
the crucial genes overlapped with the original analysis, except that ARRB2 was
replaced by ACP5

Supplementary Table 1 | DEGs of training set under the threshold of adjusted
p < 0.05.

Supplementary Table 2 | DEGs of validation set under the treshold of adjusted
p < 0.05.

Supplementary Table 3 | GO terms of gene modules for advanced plaque and
early plaque.

Supplementary Table 4 | KEGG pathways of gene modules for advanced plaque
and early plaque.

Supplementary Table 5 | Hub genes for each module of early plaque and
advanced plaque.

Supplementary Table 6 | Genes in DEG co-expression network of validation set.

Supplementary Table 7 | Coefficients of lasso regression.
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