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Lymphoma is a chronic inflammatory disease in which the immune system is highly
affected. Increased oxidative stress is one of the common conditions of cancer and affects
macromolecules. Histone modifications affect the chromatin structure and functions. In
this study, histone H1 (His-H1) protein was modified by reactive oxygen species (ROS),
and structural and chemical changes were studied. Hodgkin lymphoma (HL) and non-
Hodgkin lymphoma (NHL) patients were selected, and oxidative stress markers,
inflammatory cytokines, and serum autoantibodies were analyzed using biochemical
and immunological assays. Furthermore, the formation of antigen-antibody immune
complexes was assessed by the Langmuir plot. ROS-modified His-H1 (ROS-His-H1)
showed substantial structural perturbation in protein (UV-hyperchromicity and increased
intrinsic fluorescence) compared to the native His-H1 protein. A possible explanation for
the changes is suggested by the exposure of the aromatic chromophore to the solvent. In-
depth structural analysis by circular dichroism (CD) exhibited major changes in α-helix
(−21.43%) and turns (+33%), reflecting changes in the secondary structure of histone H1
protein after ROS exposure. ELISA and competitive ELISA findings revealed high
recognitions of serum autoantibodies to ROS-His-H1 from NHL, followed by HL
subjects. Healthy controls showed negligible binding. Non-modified His-H1 did not
show any binding with serum samples from either cohort. High apparent association
constants (ACCs) were calculated for ROS-His-H1 using purified IgGs from NHL (1.46 ×
10–6 M) compared to HL (1.33 × 10–6 M) patients. Non-modified His-H1 exhibited a
hundred times less ACC for NHL (2.38 × 10–8 M) and HL (2.46 × 10–8 M) patients. Thus,
ROS modifications of histone H1 cause structural changes and expose cryptic neo-
epitopes on the protein against which autoantibodies were generated. These
perturbations might affect the histone DNA interaction dynamics and potentially be
correlated with gene dysregulation. These subtle molecular changes with an immune
imbalance might further aggravate the disease.
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INTRODUCTION

Lymphoma is a broad term for cancers that arise from the clonal
proliferation of lymphocytes. Although they are generally
categorized into Hodgkin lymphoma (HL) and non-Hodgkin
lymphoma (NHL), the term lymphoma encompasses over 50
different subtypes ranging from low-grade, slow-growing cancers
to high-grade, aggressive neoplasms (Mugnaini and Ghosh,
2016). The heterogeneous nature of lymphoma, in terms of
etiology, pathogenesis, and patient demographic, is also
reflected in patient prognosis; some types of NHL such as
mantle cell lymphoma have 5-year survival rates of 40%, while
others such as marginal zone lymphoma have 5-year survival
rates of approximately 90%. (Jamil and Mukkamalla, 2022).

An association between the degree of oxidative stress in
lymphoma patients and a poor prognosis has been reported
(Nakazato et al., 2014). In fact, so strong is this association that
markers of oxidative stress have been demonstrated to be an
independent predictive factor for survival in patients with the
NHL subtype diffuse large B-cell lymphoma (DLBCL)
(Nakazato et al., 2014). Oxidative stress refers to a state in
which there is an imbalance between the production and
degradation of ROS (Pizzino et al., 2017). ROS are
produced as by-products of cellular metabolism in all cells,
and due to the presence of a single unpaired electron, they are
highly reactive and must, therefore, be neutralized. Indeed, it
has been proven beyond doubt that ROS can damage DNA and
other biomolecules (Juan et al., 2021). Production and
degradation of ROS within normal cells are, therefore, finely
controlled by redox state-regulating enzymes. Excess levels of
ROS in normal cells result in apoptosis, yet cancer cells appear
to be able to tolerate higher excess levels and hence can
undergo further ROS-induced damage which can drive
tumorigenesis (Benassi et al., 2006).

The source of elevated ROS in cancer patients is still unclear. It
is well established that cancer cells themselves produce higher
levels of ROS mainly due to the increased metabolic activity and
mitochondrial dysfunction (Storz, 2005). However, ROS
production is also associated with chronic inflammation, and
the link between inflammation and cancer has long been
established (Vendramini-Costa and Carvalho, 2012; Greten
and Grivennikov, 2019; Wu et al., 2021). It has been
demonstrated that during inflammation, in which there are
high levels of local and systemic pro-inflammatory cytokines,
the increased activity of phagocytes results in increased ROS
generation, and this itself can promote tumorigenesis (Zhang and
An, 2007; Dupré-Crochet et al., 2013; Snezhkina et al., 2019).

Histones are cationic proteins that associate with DNA and
play an important role in stabilizing the chromatin structure.
DNA is packed into chromatin by histones to form a tightly
coiled structure in the nucleus. Histones undergo several post-
translational (epigenetic) modifications such as methylation,
acetylation, phosphorylation, ubiquitination, and ADP
ribosylation (Kim et al., 2015). The remodeling of chromatin
by histone modification plays a key role in the regulation of
cellular processes such as DNA repair, gene transcription, cell
differentiation, and cell proliferation (Grewal and Jia, 2007;

Feng et al., 2010; Kanherkar et al., 2014). Irregular patterns of
histone modifications have been reported in a wide range of
human cancers (Audia and Campbell, 2016) and are associated
with the deregulation of chromatin-based processes. It has been
proposed that ROS may be directly responsible for histone
modification and might result in oncogenic transformation
(Afanas’ev, 2013). Furthermore, ROS-induced histone
modifications could be used as potential biomarkers of
cancer progression and prognosis. Autoantibodies against
modified histones are present in a number of autoimmune
diseases such as systemic lupus erythematosus (SLE) and
rheumatoid arthritis (RA) (Xiaoyu and Yumin 2019).
Interestingly, patients with autoimmune conditions develop
neoplastic diseases, especially lymphoma, more frequently
than the general population (Swissa et al., 1992).

We sought to determine the structural modifications to
histone H1 (His-H1) that result from ROS and whether
autoantibodies present in lymphoma patients are specific for
this modified histone. His-H1 was modified in vitro by ROS
and was then used as an antigen in direct binding ELISA and
inhibition ELISA to study the specificity of the autoantibodies in
the serum from HL and NHL patients. The antigen-antibody
affinity was assessed by the Langmuir plot. Furthermore, the pro-
inflammatory cytokines interferon-γ (IFN-γ), tumor necrosis
factor-α (TNF-α), and interleukin-6 (IL-6) in HL and NHL
patients were studied and compared to those of healthy
controls to further understand the role of cytokines in the
pathogenesis of lymphoma.

MATERIALS AND METHODS

ROS Modification of Histone H1
The H1 histone protein was modified by the hydroxyl radical
(_OH). An aqueous solution of His-H1 protein (3 mg/ml) in PBS
(pH 7.4) was irradiated under ultraviolet (UV) radiation
(254 nm) for 30 min at 25°C in the presence of hydrogen
peroxide (10 mM). These conditions will generate _OH. After
the reaction, excess hydrogen peroxide and _OH were removed
by extensive dialysis against PBS.

UV Spectrophotometry
Native and ROS-His-H1 proteins were analyzed on a UV-1700
Shimadzu spectrophotometer (Kyoto, Japan) using a range of
250–500 nm wavelength. A quartz cuvette of 1 cm path length
was used at 25°C.

Fluorometry
Native and ROS-His-H1 proteins were analyzed for fluorescence
spectra. It was performed using a spectrofluorophotometer
(Shimadzu RF-5301-PC, Tokyo, Japan) at 25 ± 0.1°C in a cell
of 1-cm path length with a slit width of 3 nm. Intrinsic
fluorescence was measured when both samples were excited at
the wavelength of 275 nm, and the emission spectra were
recorded at 300–400 nm of the wavelength range. The change
in the fluorescence intensity due to modification was calculated as
follows:
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Percent change in fluorescence � NativeHis −H1 − ROS −His −H1
NativeHis −H1

× 100.

Circular Dichroism
Secondary structural perturbation was identified by CD as
published earlier (Ali Khan et al., 2007). All the protein
samples, with or without inhibitors, were run on a Jasco J-810
spectropolarimeter equipped with a temperature-controlled
sample cell holder attached to a NESLAB model RYE 110
water bath with an accuracy of ±0.10°C. The range used to
analyze CD spectra was between 200–280 nm at 5 mm/
millidegree (mdeg) sensitivity. Samples were prepared in PBS,
pH 7.4. The Chen and Yang equation was used to estimate the
relative percentage of secondary structures (Chen and Yang
1971). Each sample was run three times.

Serum Sample Collection
Serum samples from patients (HL and NHL) and healthy controls
were collected in university clinics after receiving their full written
consent. This study has been approved by the institutional ethics
committee, and the details are given at the end in the ‘Ethics
Statement’ section. Up to 3 ml of serum samples were collected
from all subjects. Patients with other comorbidities were excluded
from the study. Pregnant women and individuals less than
18 years of age were also excluded from the study. Levels of
C-reactive protein (CRP) were measured using the latex
agglutination reaction method. All lymphoma patients were
using prescribed drugs and therapies (details have not been
provided). Demographic details such as age, gender, smoking
duration, and disease duration of the subjects were included in
the study (Table 1).

Detection of Carbonyl Compounds
The carbonyl content is also considered an oxidative stress for
proteins. Both native and ROS-modified histone H1 samples
were analyzed for the detection of carbonyl contents attached
to the protein molecules using the previously published
method (Levine et al., 1990). Quenching studies using
mannitol (100 mM), catalase (500 units/ml), DETAPAC
(100 mM), and SOD (500 units/ml) were performed for
carbonyl compounds.

A similar method was employed to identify the oxidation of
protein in cancer patients’ serum samples. Serum samples from
healthy individuals were also analyzed for comparative analysis.

Serum Malondialdehyde Contents
The MDA content is a marker for lipid oxidative stress and was
estimated in all serum samples. A commercially available MDA
assay kit was used, according to the manufacturer’s instructions
(Elabscience, United States). Briefly, plasma/serum samples were
used in the assay. Results were measured at 532 nm absorbance
on an ELISA reader, and the values were given as nmol/ml. The
amount of MDA contents was estimated using the given formula:

MDA � ΔA1
ΔA2 × c.

ΔA1; OD of sample—OD of control.
ΔA2; OD of standard—OD of blank.
C; concentration of standard (10 nmol/ml).

Cytokine Estimation
Cytokines IFN-γ, TNF-α, and IL-6 were analyzed in healthy
control and patients’ serum samples based on quantitative
sandwich immunoassay (R&D System, Minneapolis, MN,
United States) with a sensitivity of less than 0.5 pg/ml for all
cytokines. All samples were assayed in triplicate.

Isolation of IgG by Protein A Agarose
IgG from patients’ serum was isolated and purified by using a
protein A agarose column (affinity chromatography) (Sigma-
Aldrich, United States). Serum samples were mixed with an equal
volume of phosphate buffer saline (pH 7.4) and then applied to
the protein A agarose column. The column was washed with the
same buffer two to three times to remove unbound IgG. The
bound immunoglobulins were eluted with NaCl (0.85%) and
acetic acid (0.58%) using methods published by Goding with
slight modifications (Goding, 1978), and the reaction mixtures
were neutralized by adding 1 ml of Tris HCl (1M, pH 8.5). Then,
3 ml fractions were collected, and the reading was observed at 251
and 278 nm to determine the concentration of IgG by taking 1.40
OD280 = 1.0 mg/ml.

Immunological Detection of Antibodies
Direct binding ELISA: Autoantibodies were detected by ELISA
with the help of polystyrene microtiter plates using a solid
support, as published earlier (Alouffi et al., 2018; Khan et al.,
2020). A measure of 100 μL of ROS-His-H1 and His-H1 protein
antigens (5 μg/ml) in Tris-buffered saline (TBS) (10 mM Tris and
150 mM NaCl; pH 7.4) were coated on microtiter plates. The
reaction mixtures were incubated at 37°C initially for 2 h and then

TABLE 1 | Clinical characterizations of lymphoma patients (HL and NHL) and healthy individuals.

Group Age (years) Gender
(men/women)

Duration
of disease

C-reactive
protein
(mg/L)

IFN-γ
(pg/ml)

TNF-α
(pg/ml)

IL-6
(pg/ml)

Smoking
duration
(years
±SD)

HC (n = 15) 36 ± 8.3 9/6 — 0.96 ± 0.74 3.2 ± 2.15 0.91 ± 0.18 2.1 ± 1.84 —

HL (n = 15) 38 ± 6.2 10/5 7.3 ± 3.1 6.88 ± 4.1*** 4.1 ± 2.4* 1.21 ± 0.22** 8.2 ± 6.2*** 9.2 ± 4.7
NHL (n = 15) 41 ± 5.7 9/6 8.1 ± 3.7 7.34 ± 4.4*** 4.4 ± 2.1* 1.43 ± 0.21** 8.7 ± 5.8*** 11.3 ± 5.4

All tests for each serum sample were run in triplicate. n represents the number of samples. All values are given as mean ± standard deviation (SD). *p < 0.05, **p < 0.01, and ***p < 0.001.
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for 24 h at 4°C. Antigen-containing wells were washed three times
with the same buffer to remove the unbound antigen. The
unoccupied site on the antigen was blocked by 1.5% bovine
serum albumin (150 µL) in TBS for 4 h. The plates were
washed again, and antibodies pre-diluted with TBS were added
to each well (100 µL/well). The plates were incubated for 2 h at
37°C and 24 h at 4°C. Then, plates were washed three times with
Tris-buffered saline Tween 20 (TBS-T) (20 mM Tris, 144 mM
NaCl, 2.68 mM KCl, pH 7.4, containing 500 µL Tween/L). After
that, a suitable IgG alkaline phosphatase conjugate was added to
each well. The plates were washed again three times with TBS-T
and two times with distilled H2O, after incubation for 2 h at 37°C.
The reaction was developed by using p-nitrophenyl phosphate as
a substrate, and the readings were recorded at 410 nm onto a
microplate reader (MR9600-415 Accuris, NJ, United States).
Control wells were given the same condition, but the wells
were devoid of any antigen. Each sample was run in triplicate,
and results were considered as a mean of Atest─Acontrol.

Inhibition ELISA: The specificity of the antibodies was
estimated by inhibition ELISA. Different amounts of
competitors from 0 to 20 μg/ml were incubated with a
constant amount of serum IgG for 2 h and later for 24 h at
4°C. The immune complex, rather than serum/IgG, was coated on
the microtiter plates. The remaining procedure followed the
same, as indicated in direct binding ELISA. Percentage
inhibitions were calculated as given previously (Alouffi et al.,
2018; Khan et al., 2020).

Quantitation of Immune Complex by the
Langmuir Plot
An increasing amount of (0–40 μg) of ROS-His-H1 protein was
incubated with a constant amount of purified IgG from patients
and healthy control subjects at 37°C for 2 h at room temperature.
Then, the complexes were transferred to the fridge (4°C) for
overnight incubation for further antigen-antibody binding.
Immune complexes thus formed, were pelleted, followed by
washing twice with PBS, and finally dissolved in 1N sodium
chloride (250 μL). Protein concentrations were estimated by
using a nanodrop and commercially available BCA protein
assay kit (Sigma-Aldrich, United States). Data from the
immunoprecipitation reactions were analyzed for the
calculations of the apparent association constant (ACC) of the

bound antigen and antibody in an equilibrium mixture by the
method of Langmuir (1918).

Statistical Analysis
Significant differences between control values were determined
with Student’s t-test (SPSS 16.0, Chicago, United States). A
p-value of <0.05 was indicative of statistical significance.

RESULTS

Clinical Characterization of Patients
Clinical characterization of HL and NHL patients was
investigated for CRP and cytokine levels (IFN-γ, TNF-α, and
IL-6) (Table 1). A significant increase (p < 0.01) in the levels of
CRP and TNF-α was observed in both categories of cancer
patients compared to the healthy individuals. A slight increase
in the level of INF-γ was reported in cancer patients compared to
the healthy controls.

Biophysical Characterization of
ROS-Modified His-H1 Protein
Histone protein H1 was modified in vitro using the highly
reactive free radical (•OH). Structural changes in the protein
due to OH radicals were investigated using biophysical studies.
UV spectral observations suggested significant hyperchromicity
(31.14%) in modified protein compared to native His-H1
(Table 2).

Furthermore, intrinsic fluorescence analysis showed similar
findings, and there was a significant increase (+22.26%) in
fluorescence in ROS-His-H1 compared to N-His-H1 (Table 2).

Secondary structural perturbations were also investigated in
ROS-His-H1 by CD analysis. Remarkable changes were observed
in all four components (α-helix, β-sheet, turns, and random coils)
of the secondary structure due to OH radical modification. There
was a significant decrease in the ‘α-helix’ structure (p < 0.01);

TABLE 2 | Biophysical characterization of ROS-His-H1 protein.

Parameter Native-His-H1 ROS-His-H1

Hyperchromicity (%) at 280 nm — +31.14%*
Intrinsic fluorescence (exc. At 275 nm) — +22.76%*
CD (secondary structures)
α-helix 28 ± 2.2 22 ± 2.2 (−21.43%)**
β-sheet 33 ± 2.7 30 ± 2.7 (−9.09%)
Turns 21 ± 1.7 28 ± 1.7 (+33.33%)**
Random coil 18 ± 1.5 20 ± 1.5 (+11.11)

Signs–ve and +ve represent the increase and decrease compared to the unmodified
protein. All test samples were run in triplicate. All values are calculated as mean ±
standard deviation (SD). *p < 0.05 and **p < 0.01.

FIGURE 1 | Detection of carbonyl compounds in native and
ROS-modified histone H1 protein. Quenching studies using mannitol
(100 mM), catalase (500 units/ml), DETAPAC (100 mM), and SOD (500 units/
ml) were performed for the generation of carbonyl contents during
protein oxidation. *p < 0.05, **p < 0.01, and ***p < 0.001.
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however, a significant increase was observed in “turns” (p < 0.01)
in ROS-His-H1 protein compared to N-His-H1 (Table 2).

In Vitro Carbonyl Content Analysis
The extent of in vitro protein oxidation can be observed using the
levels of carbonyl compounds attached to protein molecules.
ROS-modified protein was investigated for the levels of
carbonyl contents and showed that a significant amount of the
content (13.36 ± 0.9) was formed during OH radical oxidation
reaction (Figure 1). To identify the role of free radicals in His-H1
protein modification, quenching studies were conducted.
Different quenching agents (mannitol, catalase, DETAPAC,
and SOD) were added to the reaction. Significant inhibitions
in the formation of carbonyl content were recorded when
mannitol (81.51%) was added to the reaction followed by
catalase (67.59%) and SOD (25.29%) (Figure 1).

In Vivo Oxidative Stress Analysis
For a better insight on in vivo protein oxidation in different
cancers, specifically for HL and NHL conditions, serum carbonyl
compounds were detected in patients and healthy control
samples. Both HL and NHL serum samples exhibited
significant amount of carbonyl compounds (1.97 ± 0.38; p <
0.01 and 2.88 ± 0.47; p < 0.001, respectively) compared to healthy
individuals (0.71 ± 0.28) (Figure 2).

Furthermore, MDA levels are a hallmark for the estimation of
in vivo oxidative stress during the disease state. Thus, all serum
samples were analyzed to determine MDA levels. Serum samples
from HL and NHL patients showed increased levels of the MDA
content (1.45 ± 0.29; p < 0.01 and 1.94 ± 0.27; p < 0.001,
respectively) compared to the healthy volunteers (0.62 ± 0.22)
(Figure 3).

Direct Binding ELISA
There were several biomarkers, which were investigated in
lymphoma; however, no consensus was developed among any
of them. We have used a new antigen ROS-modified His-H1
protein, and all the serum samples (lymphoma patients and

healthy controls) were screened for the levels of autoantibodies
against it. Direct binding ELISA results showed significantly high
levels of serum autoantibodies in both HL (0.48 ± 0.14) and NHL
(0.57 ± 0.16) cancer patients compared to healthy subjects
(0.091 ± 0.022) (Figure 4A). However, the levels of
autoantibodies in patients vary widely, ranging from 0.27 to
0.76 OD for Hodgkin lymphoma and from 0.32 to 0.88 OD
for non-Hodgkin lymphoma subjects (Figure 4B).

Moreover, samples from all cohorts exhibited negligible
binding to the non-modified His-H1 protein (Figures 5A,B).
Serum autoantibodies from patients and healthy subjects did not
recognize the native form of the histone H1 protein.

Inhibition ELISA
Inhibition ELISA was used for the detection of serum
autoantibodies and antigen specificities from HC, HL, and
NHL subjects (Figure 6). Figures 6A–C represent competitive
ELISA for five samples from each cohort. The specificity of the
NHL serum autoantibodies exhibited mean maximum
percentage inhibition at 20 μg/ml of 56.8 ± 14.56, with the
ROS-His-H1 antigen followed by HL cancer patients of 47.7 ±
12.19. However, very low mean maximum percentage inhibition
(7.92 ± 1.59) was observed in HC subjects.

Quantitation of Immune Complex by the
Langmuir Plot
Based on affinity chromatography, IgG from serum samples of
HL (n = 5; sera number 5, 7, 9, 11, and 14) and NHL (n = 5; 1, 7, 8,
12, and 13) subjects were isolated using the protein A agarose
column. Five samples from each cohort were selected based on
the highest absorbance in direct binding ELISA. Quantitative
precipitation titration curves were used to identify antigen-
antibody affinity. In this assay, an increasing amount of
antigens (ROS-His-H1 and His-H1) were incubated with a
constant amount of isolated IgG (100 µg). The mean
maximum amount of 26.3 ± 1.3 µg of ROS-His-H1 antigen

FIGURE 2 | Detection of carbonyl contents in serum samples of HL and
NHL patients. Healthy individuals were used as controls. **p < 0.01 and ***p <
0.001.

FIGURE 3 |Detection of MDA content levels in serum samples of HL and
NHL subjects. Serum samples from healthy individuals were used as controls.
*p < 0.05 and **p < 0.01.
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was bound to 52.8 ± 1.1 µg of IgG from HL subjects (n = 5).
Similarly, the mean maximum amount of 21.1 ± 0.9 µg of ROS-
His-H1 was bound to 66.7 ± 1.2 µg of IgG fromNHL subjects (n =
5). ACCs were evaluated using the Langmuir plot. ACCs of IgG
from HL and NHL subjects were computed to be 1.33 × 10–6 M
and 1.46 × 10–6 M, respectively, against ROS-His-H1
(Figure 7A). However, comparatively fewer ACCs were
computed for non-modified His-H1 protein for HL (2.38 ×
10–8 M) and NHL (2.46 × 10–8 M) subjects (Figure 7B).

DISCUSSION

Post-translational modifications in the histone protein led to
chromatin remodeling, which in turn resulted in sustained
pro-inflammatory gene transcription (Ghizzoni et al., 2011;
Cross et al., 2019). The sustained and uncontrolled
inflammatory cytokine production causes inflammation

(Hirano, 2021). At the site of inflammation, reactive oxygen
and reactive nitrogen species are produced by these
inflammatory cytokines (Reuter et al., 2010). The production
of free radicals can cause DNA damage and promote DNA
mutations (Klaunig et al., 2010). Cancer cells mainly generate
energy through anaerobic glycolysis, leading to high levels of ROS
and reactive di-carbonyl compounds such as methylglyoxal
(MGO) (Lee and Chang, 2014; Volpe et al., 2018). Previous
publications based on the hydroxyl radical modification of
proteins, which exert extensive damage to the proteins, were
analyzed by spectroscopic and fluorescence studies (Rasheed
et al., 2006; Ali Khan et al., 2007; Ahmed et al., 2009). In
coherence to these studies, the ROS-modified histone H1
protein exhibited hyperchromicity and an increase in the
fluorescence intensity which might be due to structural
perturbations in our study. Furthermore, significant alterations
were also observed in the secondary structures after ROS damage
to the ROS-His-H1 protein.

FIGURE 4 | Detection of autoantibodies in serum samples from Hodgkin lymphoma (HL), non-Hodgkin lymphoma (NHL), and healthy control (HC) subjects against
the ROS-His-H1 protein antigen using direct binding ELISA (A). Range of absorbance for the autoantibody levels in all subjects (B).

FIGURE 5 | Detection of autoantibodies in serum samples from Hodgkin lymphoma (HL), non-Hodgkin lymphoma (NHL) and healthy control (HC) subjects against
the non-modified His-H1 protein antigen using direct binding ELISA (A). Range of absorbance for the autoantibody levels in all subjects (B).
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In several chronic diseases such as cancer, diabetes, and
atherosclerosis, the generation of ROS and its homeostasis
might get out of control, causing severe oxidative stress
concomitantly with decreased levels of antioxidant
compounds (Karihtala et al., 2006; Matés et al., 2008;
Haidari et al., 2010). Similar conditions were also observed
in lymphomas (Peroja et al., 2012). In our study, HL and NHL
patients’ serum samples exhibited an increased amount of
protein oxidative marker “carbonyl compounds” compared
to the healthy individuals. Furthermore, another well-known

oxidative marker MDA was found to be significantly higher in
both HL and NHL cancer serum samples as compared to the
healthy individuals.

Post-translational modifications in histone proteins
predispose cancer initiation and progression at the site of
inflammation (Rajendrasozhan et al., 2009). Hence, increased
serum levels of pro-inflammatory cytokines TNF-α and IL-6 were
found in both HL and NHL patients; however, another pro-
inflammatory cytokine IFN-γ did not show significant changes
compared to the healthy individuals.

FIGURE 6 | Percentage inhibition of serum autoantibodies was detected using ROS-His-H1 as an inhibitor with varying concentrations (0.01–20 μg/ml) for all
samples from healthy control (-C-) HC, HL (-■-), and NHL (-▲-) subjects. Sample numbers 1–5 (A); from 6 to 10 (B); and from 11 to 15 (C) from all the cohorts. Serum
samples of 1:100 dilutions were used in the assay. All samples were read on an ELISA reader at 410 nm. Each sample was run in triplicate.

FIGURE 7 | Apparent association constants were calculated using the Langmuir plot for antigens ROS-His-H1 (A) and His-H1 (B). A constant amount of IgG
(100 µg) was incubated with different concentrations of antigen (0–40 µg) for 2 h at room temperature and overnight at 4°C. Langmuir plot of the reciprocal of the bound
antigen concentration to antibody (1/r) versus the reciprocal of the free antigen concentration. ROS-His-H1 antigen and IgG binding for HL (-■-) and for NHL
subjects (-C-).
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It is a well-known fact that there is the presence of circulatory
autoantibodies against nuclear materials in cancer patients
known as anti-nuclear antibodies (Feist et al., 2007). Due to
these reports, we designed this study to evaluate the levels of
autoantibodies in both lymphoma patients against ROS-modified
histone H1 protein. Direct binding ELISA findings exhibited
significantly high levels of circulatory autoantibodies detected
in HL and NHL patients, which was further ascertained by the
more specific assay “inhibition ELISA”.

Oxidative stress and chronic inflammation during lymphoma
might cause immune imbalance via the generation of endogenous
antigens (Kidane et al., 2014). After a cascade of reactions, these
autoantigens might generate autoantibodies which can interact
with each other and form immune complexes (Khan and Ali
Khan, 2015; Alouffi et al., 2018). The subtle reactions are crucial
in determining the disease state. In the current study, the
formation of IgG from patients and ROS-modified protein
antigen complexes were determined using the Langmuir plot.
The highest AAC was calculated for ROS-His-H1 against NHL
patients’ IgG compared to HL subjects’ IgG, whereas the non-
modified protein His-H1 showed remarkably low ACC for IgG
from HL and NHL patients. This might correlate with the
increased levels of inflammatory cytokines and oxidative stress
markers in NHL compared to HL patients.

Thus, during HL and NHL, there is imbalance homeostasis of
oxidative stress concomitantly with inflammatory conditions as
there might be the possibilityof modifications in histone H1
protein, which induced the protein to exhibit its cryptic
epitopes. These epitopes may be identified as an antigen by
our immune system, resulting in the production of
autoantibodies. The oxidative stress-induced chromatin
structure together with autoantibody production further tilts
the balance of the immune system in lymphoma patients,
leading to the possible epigenetic dysregulations.

CONCLUSION

Hodgkin’s lymphoma and non-Hodgkin’s lymphoma are
common cancers. Cancers initiate oxidative stress, which
imbalances antioxidant redox state-regulating enzymes, leading
to DNA damage. Histone is a protein that is present with the
DNA and plays an important role in stabilizing the chromatin
structure. In this study, ROS modification of histone H1 induced
structural perturbation generating/exposing neo-epitopes against

which autoantibodies were generated in both HL and NHL
patients. Antigen-antibody binding was evaluated using ELISA,
and their specificity was ascertained by inhibition ELISA. ACC
showed higher recognition for IgG from NHL and ascertained
more immune imbalance, which was supported by increased
levels of inflammatory cytokines and oxidative markers (MDA
and carbonyl compounds). Thus, histone H1modifications might
affect the histone DNA dynamics and are correlated with gene
dysregulation. These subtle molecular changes might further
aggravate the disease.
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