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Abstract: Robust paradigms are a necessity, particularly for emerging wireless sensor 

network (WSN) applications. The lack of robust and efficient paradigms causes a reduction 

in the provision of quality of service (QoS) and additional energy consumption. In this 

paper, we introduce modular energy-efficient and robust paradigms that involve two 

archetypes: (1) the operational medium access control (O-MAC) hybrid protocol and  

(2) the pheromone termite (PT) model. The O-MAC protocol controls overhearing and 

congestion and increases the throughput, reduces the latency and extends the network 

lifetime. O-MAC uses an optimized data frame format that reduces the channel access time 

and provides faster data delivery over the medium. Furthermore, O-MAC uses a novel 

randomization function that avoids channel collisions. The PT model provides robust 

routing for single and multiple links and includes two new significant features:  

(1) determining the packet generation rate to avoid congestion and (2) pheromone 

sensitivity to determine the link capacity prior to sending the packets on each link. The 

state-of-the-art research in this work is based on improving both the QoS and energy 

efficiency. To determine the strength of O-MAC with the PT model; we have generated 

and simulated a disaster recovery scenario using a network simulator (ns-3.10) that 

monitors the activities of disaster recovery staff; hospital staff and disaster victims brought 

into the hospital. Moreover; the proposed paradigm can be used for general purpose 

applications. Finally; the QoS metrics of the O-MAC and PT paradigms are evaluated and 

compared with other known hybrid protocols involving the MAC and routing features. The 

simulation results indicate that O-MAC with PT produced better outcomes.  
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1. Introduction 

Wireless sensor networks (WSNs) are considered to be appealing event-based systems that achieve 

both densely deployed sensor nodes and the perception of a certain physical sensation. The key 

objective is to consistently sense the event features while utilizing minimal energy resources, 

processing and storage capabilities [1,2]. To achieve this objective, a substantial amount of research 

has been conducted to develop the cooperative networking protocols needed to accomplish the 

necessary communication while achieving maximum energy efficiency. Most of the communication 

protocols for WSNs are individually designed and developed for different layers, i.e., the physical, 

medium access control, network and transport layers. These communication protocols have achieved 

significant improvements in terms of the different parameters correlated with each of the individual 

layers. However, these protocols experience several challenges when combined for multiple layers; 

these challenges include additional energy consumption, QoS, mobility, scalability, uniformity, data 

redundancy, congestion, lack of robustness, reliability and insufficient coverage. Furthermore, the 

limited battery life and extreme operating conditions can cause node failure [3], which wastes 

additional energy [4]. Considering these challenges faced by WSNs, a multi-layered network design, 

i.e., a cross-layer paradigm, is considered to be the most promising substitute and has attracted 

increasing interest from the research community in recent years. There are a few cross-layer protocols 

for maintaining high standards of communication, particularly coverage, but the issues of high energy 

consumption and improving the QoS have not been properly resolved [4]. With the proper placement 

of a mobile infrastructure, a wide area can be covered compared with an infrastructure-based network 

deploying the same number of sensors [5]. However, the key services’ energy efficiency and the QoS 

provision are hurdles for robust WSNs. Detailed studies in [6–8] show that the cross-layered 

approaches could result in substantial savings in terms of energy efficiency. As a result, several  

cross-layered approaches have been designed and implemented [9–13]. A review of these approaches 

reveals that they either provide logical and analytical results without any proper communication 

protocol design or accomplish cross-layer support only within a restricted scope, e.g., MAC and 

routing layers. There is still much to be gained by reconsidering the features and functionalities of the 

protocol layers in an integrated manner to introduce communication paradigms for efficient and 

reliable communication while saving energy and improving the QoS provisioning in WSNs. To handle 

these issues, this paper introduces modular energy-efficient and robust paradigms that improve the 

energy efficiency and QoS provisioning. These paradigms involve the O-MAC protocol with the PT 

model to build a hybrid approach by incorporating the medium access control with the network. The 

O-MAC protocol involves the features of time division multiple access (TDMA) and carrier sense 

multiple access (CSMA). The O-MAC maintains the trade-off between energy efficiency and time 

management by introducing an optimized data frame format model. The optimized data frame format 

(ODFF) replaces the existing IEEE 802.15.4 data frame format model by modifying the existing 
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features and incorporating new features, e.g., a reduction in the size of the existing preamble, which 

helps to save energy and improve the QoS parameters. The new features also include the anycast 

addressing methodology and automatic buffering because the anycast methodology helps to select the 

particular nodes in the 1-hop neighborhood to avoid the overhearing problem and thus reduces the 

additional energy consumed in the 1-hop neighborhood; furthermore, automatic buffering helps to 

reduce the data storage wait time. The TDMA part of O-MAC is also improved because the nodes are 

not required to synchronize with all of the 1-hop neighborhood nodes but rather only with the 

particular nodes that must be used for forwarding the data to the next hop of the network. In addition, 

ODFF includes the security portion to avoid the attacks encountered at the transceiver of the radio. To 

handle the collisions in accessing the slots at the channel, a novel randomization algorithm is 

introduced for energy efficiency and QoS provisioning. For example, sensor node “A” wants to access 

a slot number 5, and if slot number 5 is already occupied by node “B”, then this algorithm helps to 

redirect node “A” to another available empty slot to avoid the potential collision on the network. 

Extending the network lifetime, a head node is dynamically selected in each region. Furthermore, the 

PT model introduces significant features e.g., the pheromone sensitivity, which helps in predicting the 

amount of the pheromone and packet generation rate and in determining the traffic-forwarding link 

capacity to send the packets according to the capacity of the link. As a result, the PT model provides 

the shortest path from the source to the destination without overlap. In addition, it is also capable of 

load balancing and fault tolerance in the case of route failure and possible congestion.  

Therefore, O-MAC with PT maintains the state of the art in terms of energy efficiency and also 

develops the tradeoff between energy efficiency and time management. In the simulation platform, the 

state-of-the-art hybrid and individual layered configurations have been implemented to obtain a 

complete performance evaluation. The simulation experiments and analytical performance and 

evaluation demonstrate that O-MAC with PT substantially improved the communication performance 

and outperformed other competing hybrid protocols in terms of energy efficiency and QoS parameters. 

These results highlight the benefits of the novel modular energy-efficient and robust paradigm  

(O-MAC with PT) for deploying general scenarios as well as particular scenarios in WSNs.  

The remainder of this paper is organized as follows: in Section 2, we present the system model for 

the proposed work. In Section 3, the O-MAC protocol design goals and architecture are described. In 

Section 4, the pheromone termite model is presented. In Section 5, the simulation setup and evaluation 

of the results is discussed. Finally, Section 6 concludes the paper.  

2. System Model 

The disaster recovery process facilitates an effective recovery response to disaster-congested states, 

territories, tribes, and local dominions. The robust disaster recovery process provides a flexible 

archetype that empowers the disaster response staff to function in a cohesive and collective manner. It 

also emphasizes the importance of reestablishing, regenerating and rejuvenating the social, health, 

natural, economic, and environmental aspects of the community and shaping a more vigorous 

community. Thus, this type of recovery process requires a state-of-the-art wireless sensing paradigm 

that helps eliminate the various restrictions related to traditional wireless networks. The WSNs are 

deployed to support several application areas. We introduce the flat topology network based on our 
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proposed paradigms for monitoring the disaster recovery situation. The network is divided into three 

regions, and each region is handled and controlled by a dynamic operational node (DON). The DON 

acts as a powerful cluster head node in each region and has added capabilities, e.g., high energy 

efficiency, substantial memory allocation resources and additional data-forwarding capacity.  

Each network region monitors the different events of the disaster recovery operation for the 

collection of the data depicted in Figure 1. In each region, there are three events to be monitored. 

Region “A” monitors the activities of the rescue team members and victims of the disaster. In region 

“A”, 90% of the nodes are mobile sensors with human-sensual capabilities attached to the body of 

rescue team members for collecting and processing the sensory information of victims and 

coordinating with mobile sensors attached to other staff (e.g., ambulances, fire brigades, firefighters). 

We assume that the other 10% are static sensor nodes that are already deployed for the protection of 

each region. Region B monitors the performance and activities of doctors, nurses and other staff in the 

disaster situation so that their roles and effectiveness in responding to the disaster situation can be 

analyzed. In region “B”, 50% of the nodes were assumed to be static and deployed in different parts of 

the hospital building, and the remaining 50% were mobile sensor nodes attached to the body of 

doctors, nurses and other staff. Region “C” collects updated information regarding victims who were 

brought into the hospital for treatment. In region “C”, 20% of the nodes are mobile sensor nodes that 

are attached to the body of wounded people because static sensor nodes could increase the anxiety 

level of those injured persons, which would be challenging for the staff to manage. 

 

Figure 1. Deployment of a WSN for monitoring the disaster recovery process. 

This situation could be highly annoying when the injured are shifted from one unit to another 

because static sensor nodes would need to be removed and reattached. Keeping with the vision of 
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faster and reliable communication, the mobile sensor nodes are the best replacement for the jumble of 

wires and wounded people’s concerns. Triage protocols are already available for handling such 

emergency-based situations [14]. However, all of these existing protocols lack support for mobility. In 

addition, 80% of the sensor nodes are static and deployed inside the rooms to monitor and report the 

current status of the wounded. In handling this disaster situation, the static and mobility-aware nodes 

use the semi-synchronization approach to synchronize with each other. Semi-synchronization is a 

novel approach that helps to select the particular nodes in the 1-hop neighborhood for communication, 

and this approach consumes only the energy of those nodes that are randomly selected based on their 

available resources (e.g., energy, bandwidth, and shortest distance), as explained in [15]. The  

semi-synchronization approach is deployed for the nodes in regions that are following the interior 

communication process explained in the next section. The semi-synchronization is managed by 

deploying the anycast methodology. 

The anycast methodology helps forward the sensor data to the next hop nodes. The nodes in each 

region forward the collected data of each event to the DON. Thus, efficient bandwidth utilization and 

bidirectional end-to-end reliability are the focus to maintain the smooth transfer of data from a region’s 

nodes to the DON because they are mandatory in WSNs [16–18]. End-to-end reliability is 

acknowledged when the data from each event are reported to the DON. The DON of each region 

forwards the collected data from the nodes in regions applying exterior communication to the base 

station using the IP network. The DON uses the purely scheduled based approach of time division 

multiple access (TDMA). We assume that the transmission range of the mobile and static sensor nodes 

is the same as that of the high-power sensor nodes. Therefore, each sensor node is enabled to 

communicate within a 1-hop neighborhood. Each sensor node collects the data from its region only. 

There are two types of communication: one is between sensor nodes and the DON, and the other is 

from DON to DON in the case of a greater distance of the DON from the base station. Therefore, 

TDMA is combined with frequency division and multiple access (FDMA) to enable concurrent 

communication among the sensor nodes [19]. The frequency channels are recycled throughout the 

simulation process in the entire WSN so as to minimize the required number of frequency channels. 

Consequently, the sensor nodes and DON can communicate self-reliantly without snooping each other.  

We have considered the industrial, scientific and medical (ISM) bandwidth for the WSN. The entire 

bandwidth is 2.4 GHz and is initially distributed into two portions with a ratio of 1:6. The larger  

2.0 GHz portion is assigned to the nodes of the region, and the smaller 0.4 GHz portion is allocated to 

the DONs that use the FDMA technique for communication. The bandwidth is distributed among the 

sensor nodes such that each neighboring sensor node uses a different frequency band. The PT routing 

paradigm is used for data routing. PT involves two important features: the packet generation rate, the 

pheromone sensitivity, which helps determine the predicted amount of pheromone, and each link’s 

capacity. The packet generation rate helps determine how many packets could be generated. As such, 

this feature provides advanced information regarding the flow of traffic that helps avoid congestion 

over the network. In addition, pheromone sensitivity predicts the amount of traffic on each link and 

helps in forwarding the data to each link according to the capacity, which maintains load balancing. If 

this system model is deployed in a realistic environment, it could provide both operational stability and 

a swift recovery for critical scenarios. It would also guarantee that the disaster recovery process could 
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be accurately monitored and communicated to all staff, clearly recognizing all of the essential roles 

and their responsibilities using WSNs. 

3. O-MAC Protocol Design Goals and Architecture 

For several applications, hybrid approaches are preferred over individual technology approaches in 

terms of energy efficiency, scalability and QoS provisioning. To improve the energy efficiency, 

scalability and QoS, O-MAC with the PT routing paradigm is designed and implemented. The O-MAC 

protocol leverages the features of both CSMA and TDMA. O-MAC uses a novel ODFF model for 

CSMA as a replacement for the IEEE 02.15.4 data frame format, whereas TDMA deploys the  

semi-synchronized scheduling methodology rather than traditional scheduling approach. The  

semi-synchronous approach helps to obtain faster access to the medium [20]. In our case, we deploy a 

semi-synchronized approach to handle the additional energy consumption that is consumed in the 

overhearing problem. The ODFF incorporates new features, such as a reduction in the size of the short 

preamble, introduction of the anycast methodology, automatic buffering, and insertion of a security 

portion. In addition, O-MAC involves three modules: interior communication, exterior communication, 

and dynamicity of the operational node. These three modules aim to improve the QoS provision and 

energy efficiency. As a result, the network lifetime is extended. The interior communication module 

uses the anycast methodology, semi-synchronized features, automatic buffering and randomization. 

The randomization feature is used to handle the congestion in the network when two nodes attempt to 

access the same slot in the channel. We achieve the following goals using O-MAC: 

• Reducing the time and energy consumption for channel access, 

• Reducing the time and energy consumption for loss (retry) packets, 

• Reducing the time and energy consumption for acknowledgement, 

• Reducing the time and energy consumption for data forwarding, 

• Handling the overhearing and avoiding congestion in the network,  

• Improving the QoS provisioning (e.g., throughput, latency, bandwidth utilization), and 

• Extending the network lifetime. 

3.1. Interior Communication 

This process involves the communication of a region’s nodes using the flat network topology. In 

this process, the sender uses the semi-synchronization methodology to synchronize the particular nodes 

in the 1-hop neighborhood. The semi-synchronization methodology does not require synchronization 

with all of the nodes but rather selects particular nodes within the 1-hop neighborhood based on the 

shortest distance, energy and buffer capacity of each node. Our scheme addresses the pair of nodes 

needed to forward the data in each neighborhood: the principal and backup nodes; however, each 

sender stores the information of all nodes if the principal and backup nodes run out of energy or cease 

communicating. Thus, in the situation of handoff or loss of a node (e.g., failure of node, depleted node 

energy), other nodes are chosen as the next principal and backup nodes. The selection process for the 

principal and backup nodes is explained in Algorithm 1.  
  



Sensors 2015, 15 16168 

 

 

Algorithm 1 Selection process for the principal and backup nodes 
1. Initialization of resources (ΔDs: Shortest Distance, ΔE: Energy, ΔBc: Buffer Capacity) 
2. Initialization of Nodes ( ௡ܲ: Principal Node & ܤ௡: Backup Node, ௡ܰ: Sensor node,  

&: Candidate Node) 
3. Initialization of network (ܴ஺: Region of Network) 
4. While ‘ܵ௡’ selects ௡ܲ & ܤ௡ nodes in ܴ஺  
5. If ܵ௡ → ௡ = ሼܥ ௡ܰ	/	 ௡ܰ ∈ 	ܴ஺	; 	∀		 ௡ܰ ≤ 1 ≤ ܴ஺	ሽ 	≡△Ds  
6. Set △ ≫∃	௦ܦ    ௡ܥ	
7. end if 
8. If ܵ௡ → ௡ܥ = ሼ ௡ܰ	/	 ௡ܰ ∈ 	ܴ஺	; 	∀		 ௡ܰ ≤ 1 ≤ ܴ஺	ሽ ≡△E + △Bc  
9. △ 	ܧ +	△   ௡ܥ	≫∃	ܿܤ
10. end if 
11. Compute ܥ௡ =△ 	ܧ +	△ ܿܤ +	△   ݏܦ
12. set ௡ܲǁܤ௡ =  	௡ܥ
13. end while 

In line 4, the sender node attempts to determine the principal and backup nodes in the interior 

region of the network. In line 5, the checking process for identifying the candidate node is performed. 

In line 6, the initial candidate node is selected based on the shortest distance from the sender node. 

Subsequently, in lines 8 and 9, a candidate node is selected based on the greatest energy and buffer 

capacity. In line 11, the weight of the candidate node is computed based on the distance, energy and 

buffer capacity. Finally, the node with the maximum weight is selected as either the principal node or 

the backup node in line 12. 

The chosen principal node takes on the responsibility of forwarding the data to the next 1-hop 

neighbor node. Furthermore, in the case of a loss or handoff of a principal node, a backup node 

replaces the principal node for forwarding the data. Subsequently, another backup node is selected 

within the 1-hop neighborhood. When either the principal or backup node hand off or  begin to run out 

of energy, each of the nodes (principal and backup) must incorporate a flag signal in the last packet 

sent that indicates the current situation of the node. This feature also helps the node to adjust for 

mobility. To forward the data to the next hop, the anycast addressing methodology is introduced to 

manage either the principal or backup node. The anycast addressing methodology is not a feature of 

the IEEE 802.15.4 data format packet, but is introduced in the ODFF model, which helps manage 

particular nodes in the 1-hop neighborhood to forward the data to the next hop. The interior 

communication process also involves the randomization function to avoid congestion when the node 

attempts to access a slot in the channel. For example, when node A wants to access slot 5, if  slot 5 is 

already occupied by node D, then the randomization function redirects node A to another available 

empty slot to avoid any possible collision in the channel. When node acquires access to a channel, it 

uses the short preamble prior to sending the original data. The impact of the reduced sized preamble 

introduced in the ODFF is a tradeoff between the time and energy efficiency in the network. We also 

prove the tradeoff impact of O-MAC with other MAC protocols that use the preamble-based approach, 

as explained and analytically validated in the next section. The interior communication involves the 

following phases: 
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• The ODFF model. 

• The preamble tradeoff validation model. 

3.1.1. Optimized Data Frame Format Model 

The goal of the ODFF is to enable sensor nodes to maintain QoS provisioning. The ODFF is 

preferred over the IEEE 804.15.4 standard and modifies existing features and includes new features 

depicted in Figure 2. The architecture of the ODFF is compatible with a robust and reliable wireless 

link. The ODFF can individually detect every radio in a WSN as well as the process and layout of 

communications between the radios. It also works beyond the physical and MAC layers, providing the 

cross-layered support to connect with the routing protocol. 

The ODFF reduces the channel access time, data transfer time, preamble transfer time, acknowledgement 

time, and retry transmission time because the performance of small devices—especially sensor  

nodes—depends on the reduced amount of time. Hence, the timing overhead can affect the lifetime of 

the node. In addition, the ODFF can be used with low-duty-cycle MAC protocols due to the reduced 

preamble size, addressing fields, addition of automatic buffering and employment of the anycast 

message addressing methodology. These modifications also enable the ODFF to transfer more data 

compared with the IEEE 802.15.4 standard. Based on the modifications and inclusion of new features, 

we focus on the following parameters to determine the impact. 

Bits: 0-2 3 4 5 6 7-9 10-11 12-13 14-15

Frame type Security Frame 
pending

Ack. Req. Intra PAN Inter PAN
Dest. 

addressing 
mode

Source 
addressing 

mode

Automatic 
Buffering

 

Figure 2. Optimized data frame format. 
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 Channel access time.  

 Data frame transfer time.  

 Transmission timing for acknowledgement.  

 Retry transmission. 

 Possible transfer data rate in the ideal and worst-case scenarios. 

Channel Access Time 

In this section, the ODFF improves the CSMA portion of IEEE 802.15.4 and determines the time 

consumed in accessing the channel. As in IEEE 802.15.4, a sensor node in the ODFF must wait for a 

random back-off period within the range of {0, 2γ−1}. The node can wait for the channel up to 2γ−1 in 

the case of congestion, and then, it begins to access the channel again. Here, we set a value of 3 for 

“γ”. Thus, the channel access time can be obtained as: ∆φ + ܿ = (2ஓ − 1) × (ܷ௕௧)ଶ + ω × β 

Hence:  ܥ௔௧ = ∆φ + ௔௧ܥ ܿ = ∆φ + ܿ = (2ஓ − 1) × (ܷ௕௧)ଶ + ω × β  
(1)

We use a maximum wait time of ω = 8 to send the data over the channel after a collision to 

determine whether there is any further possibility of a collision. Each symbol takes 16 µs.  

Data Frame Transfer Time  

The ODFF reduced the preamble size from 4 bytes to 1 byte because the 4-byte preamble size 

creates overhead and reduces the throughput. Based on the standard transfer rate of the modem, we 

have calculated the data frame transfer time as: 

௙ܶ = ( ௠ܲ௔௫ + ௟ܲ+ ௗ௜௟ܨ + (௟ܨ × ω∆ܴ  (2)

Transmission Timing for Acknowledgement  

We have already indicated that our objective is to reduce the preamble size. Therefore, the ODFF 

uses an 8-byte acknowledgement frame that can reduce the substantial amount of time in the 

acknowledgement frame, as shown in Figure 3. Based on the standard data rate of the modem, we can 

calculate the acknowledgement transmission time “ ௔ܶ௖௞” as: 

௔ܶ௖௞ = ൫ܯ௣ௗ௨ + ௟ܲ+ ௗ௜௟ܨ + ௟൯ܨ × ω∆ܴ  (3)

Retry Transmission 

The node can wait for a particular amount of time for the MAC acknowledgement prior to 

attempting a retry transmission. We have set a wait time of 48 symbols. Each symbol takes 16 µs. If 

the number of symbols increases, the transmitting node could stay for a longer time in an ideal mode. 
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Based on our experiments, we have determined that the ideal wait time for MAC could be 30, 36, 42, 

48 or 54 symbols. We chose 48 symbols, but a smaller number could be chosen instead. If the network 

consists of multi-hops, then a smaller number is not an ideal choice for a large-scale wireless sensor 

network. Therefore, a 48-symbol wait time works perfectly on single-hop as well as multi-hop WSNs. 

Thus, the retry transmission time can be calculated as follows: 

௥ܶ௘௧௥௬ = ௦ܶ∆ × β  (4)

 

Figure 3. Acknowledgement data frame format. 

Possible Transfer Data Rate in the Ideal and Worst-Case Scenarios 

The possible data rate can be determined using an ideal scenario and a worst-case scenario.  

In an ideal situation, the ODFF-based approach finds the free channel for sending the data on a  

non-beacon-enabled network. The ODFF also improves the data payload and reduces the 

acknowledgement time. In the worst-case scenario, it should be assumed that 25% of the data packets 

require a retry transmission. Thus, the possible total time in the ideal and worst-case scenarios can be 

calculated as follows: 

௧ܶ௜ = ௔௧ܥ + ௙ܶ + ௧ܶ௨௥௡ + ௔ܶ௖௞ (5)

Equation (5) shows the total time consumed for transmitting the data frame in an ideal scenario. 

ௗ௔௧௔ܫ = ቀܦ௣	 × ω ቁ௧ܶ௜  (6)

Equation (6) shows possible data rate in an ideal situation using the ODFF approach. 

௧ܶ௪ = ௔௧ܥ + ௙ܶ + ௥ܶ௘௧௥௬ + ௔௧ܥ + ௙ܶ + ௧ܶ௨௥௡ + ௔ܶ௖௞			 (7)

Equation (7) shows the total time consumed for transmitting the data frame in the worst-case scenario. 

We have already calculated the total time in ideal scenario “ ௧ܶ௜” consumed by the 75% of the data 

frame packets that do not require a retry transmission; 25% of the data frame packets are assumed to 

experience a retry transmission. Thus, the data rate in the worst-case scenario can be calculated  

as follows:  

௧ܶ௜௠௘ = ( ௧ܶ௜ × 75%) + ( ௧ܶ௪ × 25%) 
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ௗܹ௔௧௔ = ቀܦ௣ × ω ቁ௧ܶ௜௠௘  (8)

When a specific amount of data is transmitted on network using ODFF approach, the total time can 

be calculated as follows: 

௧ܶௗ = ܵௗܦ௣ × ௧ܶ௜௠௘  (9)

Based on this mathematical formulation, we have validated the important parameters of our 

proposed ODFF and the existing IEEE802.15.4 data frame formats. The statistical data are shown  

in Table 1. 

Table 1. Comparison of BN-MAC and IEEE 802.15.4 based on the data frame model. 

Name of the Parameter 
Analytical Calculation for the  

Optimized Data Frame Format 

Analytical Calculation 

for IEEE 802.15.4  

Chanel access time Cat = (23 − 1) × 16×16 + 8×16 = 1.92 ms 2.368 ms 

Data frame transfer time ௙ܶ = (127 + 1 + 1 + 1) × 8250 × 10ଷ = 4.16 ms 4.256 ms 

Transmission timing for 

acknowledgement ௔ܶ௖௞ = (5 + 1 + 1 + 1) × 8250 × 10ଷ = 0.256 ms 0.352 ms 

Turnaround time 0.192 ms 0.192 ms 

Retry transmission time ௥ܶ௘௧௥௬ = 48 × 0.016 = 0.768 ms  0.864 ms 

Total access channel, frame 

transfer and acknowledgement 

and turnaround time in  

an ideal scenario 

௧ܶ௜ = 1.92 + 4.16 + 0.192 + 0.256 = 6.528 ms 7.168 ms 

Total access channel, frame 

transfer and acknowledgement 

and turnaround time in the 

worst-case scenario 

௧ܶ௪ = 1.92 + 4.16 + 0.768 + 1.92 + 4.16 + 0.192+ 0.256 = 13.376 ms 14.656 ms 

Time to send 1 MB of data ௧ܶௗ = ଶమబଵଵ଻ × 8.24 = 70  s  

Based on the obtained statistical results, the ODFF is considerably better than the existing IEEE 

802.15.4 protocol in terms of each parameter; therefore, the ODFF can extend the network lifetime and 

improve the QoS. The details of the metrics used in the ODFF are provided in Table 2. 

3.1.2. Preamble Tradeoff Validation Model 

The O-MAC uses the ODFF model, which is a tradeoff between the energy consumption and time. 

The ODFF comes with a short preamble that shows an improvement in the QoS and energy efficiency 

compared with existing lower-power listening (LPL) protocols. The LPL protocols use a long-sized 

preamble prior to sending the data on the channel. The long-sized preamble takes additional time to 

reach to other nodes. As a result, additional time and energy are consumed at non-targeted receivers. 

The LPL protocols also introduce an additional latency at each hop. The long preamble-enabled 
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protocols have a serious problem because all of the nodes over a channel must wait until the long 

preamble is delivered to the targeted node. This scheme consumes additional energy at both the sender 

and receiver. For example, in X-MAC [21], the destination address is incorporated within each 

preamble, which not only increases the size but consumes additional energy and requires additional 

time to arrive at another node. Despite the address of a particular node having been merged into the 

packet, each node checks all of the preamble packets on the network. As a result, all of the nodes along 

the way consume time and additional energy because the sensor nodes are not intelligent. If a preamble 

packet is discarded by a non-intended node, then there is no possibility for the preamble to be 

delivered to the anticipated node. If the node is the anticipated recipient, it remains awake for the 

subsequent data packets.  

Table 2. Description of the notations used in the ODFF. 

Notation Description/Definition (2ஓ − 1) Total number of slot waits  β Required time for sending each symbol ܿ Congestion ܥ௔௧ Channel access time ܦ௣ Data payload ܨௗ௜௟ Frame delimiter used for giving the signal of the preamble ܨ௟ Frame length ܯ௣ௗ௨ Medium access control protocol’s data unit length  ௟ܲ Packet length ௠ܲ௔௫ Maximum number of packets ௥ܶ௘௧௥௬ Retry transmission ௙ܶ Data frame transfer time ௧ܶ௜ Total time in the ideal scenario ௧ܶ௜௠௘ Total time spent in the worst-case scenario ௦ܶ∆ Total symbol wait time for the acknowledgement ௧ܶ௪ Total time in the worst-case scenario ௧ܶ௨௥௡ Processing time ω Number of symbols ∆ܴ Standard transfer rate ∆φ Initial back-off time used to give space to other nodes to access the channel 

Furthermore, X-MAC is purely based on an asynchronous approach, and it does not follow the 

neighboring nodes’ schedules. As a result, the nodes consume additional energy while waiting on the 

channel for the next traffic to be called, which is an idle listening problem. The reduced size of the 

preamble in O-MAC confirms and validates the tradeoff between time and energy. We demonstrate the 

processes of B-MAC [22] and WiseMAC [23] (long preamble-enabled MAC protocols), short 

preamble (X-MAC) and O-MAC in Figure 4. As noted above, O-MAC uses an ODFF that not only has 

support for a short preamble but also provides an automatic packet buffering process. Thus, it reduces 

the wake up time and consumes less energy.  
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Figure 4. Timeline comparison of low-duty-cycle hybrid MAC protocols. 

We analytically proved in the previous section that use of a short preamble consumes less time for 

several parameters; here, we validate the energy consumed by a short preamble and by the sending and 

receiving of data over the channel.  

The energy consumed for the short preamble can be obtained as: ܧ௦௣ = ∆р + ௦௬௡ଶܧ × ௗ௥௜௙௧ܥ  (10)

The node that transmits its clock to the one-hop neighbor during interior-region-communication is 

called the source node, and the node that receives the clock in the one-hop neighborhood is called the 

particular node (either the principal or backup node). The synchronized nodes send a short preamble 

prior to sending data without using the target address because a short preamble is sent to particular 

nodes in the one-hop neighborhood, which reduces the energy consumption.  

Let us assume that the energies consumed in one work cycle by the source and the particular nodes 

are “β” and “δ”, respectively. The average short preamble reception time could be reduced because the 

particular node wakes up based on the stored schedule. Thus, the source node and particular node 

consume an amount of energy that can be calculated as follows: 
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β =෍ ௝ܵ௡
௜ୀ଴

(∆φ. ߤ × ଶݒ∆ ) × ൫ ௦௬௡ଶܧ × ௗ௥௜௙௧൯ܥ + ௖௧ܧ) ା∆р)	∆௧ 				 (11)

Equation (11) yields the energy consumed by the source node. δ =෍ ௝ܵ௡
௜ୀ଴

(∆φ. ߤ × ଶݒ∆ ) × ൫ ௦௬௡ଶܧ × ௗ௥௜௙௧൯ܥ + ௖௧ܧ) ା∆р)	∆௧ 	
+ ൫	ܧ௦௬௡ଶ ௗ௥௜௙௧൯ܥ	× + ௧∆	(ା∆р			௖௧ܧ) (12) (12)

Equation (12) yields the energy consumed by the particular node that is available at the one-hop 

destination. Table 3 provides the factors used in the preamble tradeoff validation model.  

Table 3. Notations and system definitions. 

Notations System Definitions 

C Collision on the channel 
Cdrift Clock drift ۳ܜ܋ Energy consumed during the channel access time ۳ܘܛ Energy consumed by the short preamble ۳ܖܡܛ૛ Energy consumed by synchronization at both the transmitter and receiver sides 

i Starting number of the short preamble 
N Ending number of the short preamble ܒ܁ Short preamble ṩ Symbol sent over the channel to determine the availability of the channel (ܜ܊܃)૛ Unit backup time to avoid deadlock at the channel 
∆φ Size of the short preamble ∆р Average energy consumed by carrier sensing ∆૎ Initial backup time ∆ܜ Time consumed for sending the short preamble ∆ܞ૛ Short preamble speed ṫ Check time ઺ Energy consumed by the source node ઼ Energy consumed by the particular node (principal or backup node) ૄ Nature of the location 

To validate the analytical model, we have substituted the equations and compared the results  

for X-MAC, IEEE 802.15.4, B-MAC and WiseMAC. We are interested in determining the energy 

consumed for the metrics, such as the channel access, the short preamble, and data forwarding, which 

are calculated and given in Table 4.  
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Table 4. Time and energy consumption of MAC protocols. 

Parameters 
Preamble-Enabled MAC Protocols 

WiseMAC B-MAC X-MAC O-MAC IEEE802.15.4

Energy consumed to 
access the channel 

0.886 × 10−6 
Joules 

0.896 × 10−6 
Joules 

0.839 × 10−6 
Joules 

0.619 × 10−6 
Joules 

0.936 × 10−6 
Joules 

Energy consumed to 
send the short preamble 

1.832 × 10−6 
Joules 

1.842 × 10−6 
Joules 

1.659 × 10−6 
Joules 

1.152 × 10−6 
Joules 

1.805 × 10−6 
Joules 

Energy consumed to 
forward 5 MB of data 

0.964 × 10−1 
Joules 

0.962 × 10−1 
Joules 

0.928 × 10−1 
Joules 

0.821 × 10−1 
Joules 

0.976 × 10−1 
Joules 

Furthermore, to confirm the analytical results shown in Table 4, we have programmed and 

simulated the preamble-enabled protocols using the network simulator-3 (NS3). The simulation results 

were identical to those obtained through the analytical calculation. Based on the simulation results, we 

depict the energy consumed for the channel access, short preamble and data forwarding in Figure 5. 

(a) (b) 

(c) 

Figure 5. (a) Average energy consumed to access the channel; (b) Average energy 

consumed to forward the short preamble and (c) Average energy consumed to forward 5 MB 

of data (Joules).  
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3.2. Exterior Communication 

This section describes how to fix the schedules within the regions and exterior to the regions (base 

station or adjacent region). Each region of the WSN is managed and controlled by the DON, which 

collects the data packets from interior nodes and forwards the data packets to the exterior region. The 

DON of each region uses a schedule-based mechanism to communicate either interior or exterior 

nodes. When a DON wants to share its schedule with interior nodes, it first broadcasts three “hello” 

messages to warn the interior nodes to be ready for receiving the dynamic operational node indication 

signal (DONIS). The DONIS contains the current time, next collection time, and next delivery time. 

The current time consists of the current activities of the DON. The next collection time gives the 

complete schedule to the interior nodes and also collects the data from them. The next delivery time 

indicates when the DON must forward the collected data packets from the interior nodes to the base 

station or adjacent DON. If the interior region is far from the base station, the DON must synchronize 

with another DON to forward the collected data packets from the interior nodes to the base station. All 

of the interior nodes are active only during the DONIS to receive the schedule from the DON. Once 

the DON announces the schedule for the interior nodes, all of the nodes must follow the announced 

schedule. The working process for exterior communication is described in Algorithm 2. 

Algorithm 2 Exterior Communication Process 

1. Input (Ds: Dynamic operational node indication signal, ܣ௖௞: Acknowledgement &  Ĥ: Hello messages) 

2. Output (ܺܧ௧: Exterior traffic, & ܧ ௧ܰ: Exterior traffic) 

3. Parameters (ܥ௧: Current time, ܣܥ௧: Next collection time, & ܦ௧: Next delivery time) 

4. Initialization of network (ܵܤ: Base station, : Adjacent region, ܦ௢௡: Dynamic operational 

node, ܵ௡௦: Sensor nodes of region ௡ܶ: Total nodes, & ܴ஺: Region of Network) 

5. if ܦ௢௡ forwards Ĥ into ܴ஺ then;  

6. Set ܵ௡௦ response with ܣ௖௞ 

7. end if 

8. if ܦ௢௡ gets ܣ௖௞  then; 

9. Set ܦ௢௡ broadcasts Ds 

10. Set Ds =ܥ௧ ௧ܣܥ	+ +  	௧ܦ
11. end if 

12. if ܵ௡௦ receive Ds then; 

13. ܵ௡௦ forwards ܧ ௧ܰto ܦ௢௡ 

14. for (ܵ௡௦ = 	0;	ܵ௡௦ ≤ 	 ௡ܶ; 	ܵ௡௦ + 1) 
15. Store  ܧ ௧ܰ = ܧ	 ௧ܰ +	ܵ௡௦ 
16. Set ܺܧ௧ 	≈ 		 ܧ ௧ܰ 
17. end for 

18. Set ܦ௢௡ forwards ܺܧ௧to ܵܤ	ǁ	ܣோ  

19. end if 
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In line 5, the DON forwards 3 “Hello” messages to the region’s nodes to ensure that they are ready 

to receive the DONIS. In line 6, the region’s nodes respond to the DON with an acknowledgement. In 

lines 8–9, the DON receives the acknowledgements and forwards the DONIS to the region’s nodes. 

Line 10 shows the contents of DONIS. In lines 12 and 13, once the sensor nodes receive the DONIS, 

they respond by forwarding the data of the sensed events to the DON for the end node. In lines 14  

and 15, the data of the exterior’s nodes are stored in the buffer of the DON during the allocated 

scheduled time. In lines 16 and 18, the DON converts the collected interior traffic into exterior traffic 

for forwarding to either an adjacent region or the base station. 

3.3. Dynamic Operational Node 

The DON is selected based on the residual energy, data-forwarding capacity and buffer allocation 

resources. We assign a weight to each factor. The node with the highest weight is selected as the DON. 

Once the DON completes 10 cycles, a base station broadcasts the message inside the network for the 

selection of a new DON. After receiving the message from the base station, the nodes with substantial 

data-forwarding capacity are declared as the candidate DONs. Subsequently, each sensor node 

determines its residual energy and buffer allocation resources. 

The advantage of this approach is that it provides a sufficient number of options to each node to be 

declared the DON based on the set criteria. We describe the residual energy process of each node in 

each region. Let us assume that single-hop communication is used among the sensor nodes to detect 

events and transmit the information. Each node forwards data at some specified distance within the 

region and located within the N * N area of the WSN. We determine the residual energy of two types 

of nodes: the DON and the non-dynamic operational nodes (NDONs), which can be expressed as 

described below.  

A DON requires three types of messages for communication, with their corresponding consumed 

energies: “	Eୱୡ୦” for scheduling, “Eୟୢ୴	” for the advertisement and “Eୢୟ୲” for sending the data. Thus, 

the energy consumed by a DON for scheduling can be computed as follows: ܧ௦௖௛ = ݊൫∆ܥ௣ × ܴ௘൯ + ݊൫ܣ௘ × ௘ܯ௣൯2ܥ∆ + ଶݎ (ܰ − 1) (13)

Equation (13) provides the energy consumed in scheduling the nodes. ܧ௔ௗ௩ = ൫∆ܥ௣ × ܴ௘൯ + ൫ܣ௘ × ௘ܯ௣൯2ܥ∆  (14)

Equation (14) provides the energy consumed in advertising the message for the interior and  

exterior communication. ܧௗ௔௧ = ൛݊൫∆ܦ௣ × ܴ௘൯ + ݊൫ܣ௘ × ௘ܯ௣൯ൟଶ2ܦ∆ + ଶݎ (ܰ − 1) (15)

Equation (15) provides the energy consumed in receiving the data from the region’s nodes  

(interior communication) and in forwarding the data to either the base station or adjacent DON of 

another region.  
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By combining Equations (13)–(15), we can determine the total energy consumed by the DON for 

the entire communication process. Finally, the energy consumed by the DON will be subtracted from 

the initial energy, which yields the residual energy of the DON, as given in Equation (16): ܧܦ௥௘௦ = ൥ܧ௜௡௜ −	ቊ݊൫∆ܥ௣ × ܴ௘൯ + ݊൫ܣ௘ × ௘ܯ௣൯2ܥ∆ + ଶݎ (ܰ − 1)ቋ
+	ቊ൫∆ܥ௣ × ܴ௘൯ + ൫ܣ௘ × ௘ܯ௣൯2ܥ∆ ቋ
+ ൝൛݊൫∆ܦ௣ × ܴ௘൯ + ݊൫ܣ௘ × ௘ܯ௣൯ൟଶ2ܦ∆ + ଶݎ (ܰ − 1)ൡ൩			 

(16)

Similarly, we can determine the total energy consumed by the NDONs, but the NDONs do not use 

an advertisement message in our case. The NDONs only use “ܧ௦௖௛” and “ܧௗ௔௧” messages. Thus, the 

consumed energy of the NDONs is obtained from Equation (17): ܰܧܦ௥௘௦ = ൥ܧ௜௡௜ −	ቊ݊ × ൫∆ܥ௣ × ܴ௘൯ + ݊ × ൫ܣ௘ × ௘ܯ௣൯2ܥ∆ + ଶݎ (ܰ − 1)ቋ
+ ൝൛݊ × ൫∆ܦ௣ × ܴ௘൯ + ݊ × ൫ܣ௘ × ௘ܯ௣൯ൟଶ2ܦ∆ + ଶݎ (ܰ − 1)ൡ൩						 (17)

Based on Equations (16) and (17) and the data-forwarding capacity and buffer allocation, a new 

DON is selected. The notation is described in Table 5. 

Table 5. Notation and its description. 

Notation Description ܣ௘ Energy consumed in amplifying the signal ܧ௔ௗ௩ Energy consumed in advertisement ܧௗ௔௧ Energy consumed in sending the data ܧ௜௡௜ Initial energy of the border node or non-border nodes ܧ௥௘௦ Residual energy of the node after performing several cycles ܧ௦௖௛ Energy consumed in synchronization 2	M௘ Mean energy consumed by the radio and in amplifying the signal ݊ Number of messages ܰ Number of nodes ݎଶ Number of hops ܴ௘ Energy consumed by the radio signal ∆ܦ௣ Data packets ∆ܥ௣ Control packets ܧܦ௥௘௦ Residual energy of a DON ܰܧܦ௥௘௦ Residual energy of NDONs 
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4. Pheromone Termite Analytical Routing Model 

Pheromones are the chemicals used for communication. Pheromone communication is conceivably 

the most ancient means of communication in the animal realm. The animals transmit the chemical 

messages that include information regarding food location, territory, threats, and companions. The 

chemical messages are private, potent in darkness, and long-term, and they may function over long 

distances. Here, we specifically consider pheromones as used by termites. Termites use pheromones 

for communication purposes. When termites search for food, they use a pheromone to mark the track 

from the food to their shell. The termites deposit the pheromone from a gland on the bottom of their 

stomachs. When termites are back at the nest, they recruit other termites to follow the trail of the 

pheromone back to the food. Based on the idea of termites’ use of pheromones, we introduce the 

pheromone termite model with new features added for routing purposes. Our pheromone termite model 

adds two additional new features into the existing working process of the pheromone termite model: 

the packet generation rate and pheromone sensitivity. The packet generation rate helps avoid congestion, 

and the pheromone sensitivity helps determine the link capacity prior to sending the packets on each 

link. These two additional features provide a tradeoff between fault tolerance and QoS provisioning.  

Here, we use the PT model with O-MAC to obtain cross-layering support. The model with two 

additional new features connects the MAC sub-layer with the network layer to find the optimal path to 

transmit the data packets through one-hop neighbor nodes. We achieve the following goals using the 

PT model. 

• Low latency, 

• Higher throughput, 

• No-overlapping, 

• Collision/congestion handling, 

• Fault-tolerance, and 

• Use of the shortest paths. 

The working process of the PT model starts once a carrier is accessed to forward the data packets 

using the optimal path. We use an analytical mathematical computation to determine the effectiveness 

of the PT model with the two additional features. 

Let us assume that “ܥோ” is the communication range and that the distance between the two nodes is 

“r” in meters. The force is inversely proportional to the distance [24]. Therefore, we can apply the free 

space propagation model to measure “ܥோ”, as shown in Equation (18):  ܥோ = ௑ܶ ܴ௑ ௧ܲλଶ(4πଶ)ݎଶ ௟ܰ  (18)

where “ܴ௑” and “ ௑ܶ” are the energy gains of the receiver and transmitter, respectively, in watts, ௟ܰ 	( ௟ܰ 	≥ 1) is the network loss, and “λ” is the wavelength in meters/second. It is typical to set  ܴ௑ = ௑ܶ	 = 1 and ௟ܰ = 1. 

The distance between the two sensors, “r”, is periodically calculated after a time interval to generate 

new entries in the table. This process removes the old entries and calculates “r”, which is used to 

update the trajectory pheromone in the sensor nodes. The trajectory pheromone is the group of termites 
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extending from the source to the destination (݈,  We deploy the features of the trail pheromone and .(ݏ

ant control algorithm [25]: ܲ(ே)		௟,௦ = ቄܲ(ே)		௟,௦ × ݁ି൫௥௖ି௥௦௡)ഁ൯ା ܲ௔ ; ݈ = ℎ௣ (19)

where ܲ(ே)		௟,௦  is the number of pheromones (total number of packets transmitted over the network). from 

the source sensor node “s” that are forwarded onto the link to the one-hop neighbor “l” for node “n”, hp 

is the previously determined hop of the packet, “Pa” is the amount of pheromone that each packet 

carries, “rc” is the current distance to the neighbor node “n” at link “l”, “e” is the distance from the 

same neighbor node at link “l” to the destination node where the last packet was delivered, and “β” is 

the packet generation rate. The calculated trail pheromone (initial control message sent by a termite 

either for discovery of the route or for informing the next termite to follow the chosen route) is used to 

determine the forwarding power (power capacity for sending the packets) of each neighbor node, 

which can be calculated as:   

ܲ(ே)		௤,௥ = (ܲ(ே)௤,௥ + Ƈ)௉ೞ∑ (ܲ(ே)௨,௥௄௨ୀଵ + Ƈ)௉ೞ  (20)

where P(N)
q,r is the power strength of each neighbor node “u” that forwards the packet destination “r” to 

node “n”, “K” is the total number of neighbor nodes, “Ƈ” is the pheromone threshold, which is a 

constant, and “ ௦ܲ” is the level of pheromone sensitivity. In a WSN, two nodes work as routers to 

establish the communication link to send the data packets. The pheromone threshold and pheromone 

sensitivity (the detection power—emitted signal—that the termite uses to communicate with  

other termites) can also be used to find the second-best alternate path to forward the packets to the  

desired destination. 

We determine an average predicted amount of pheromone “Pψ” on different links of the WSN. Let 

us assume that “X” is the source node and “Y” is the destination node that uses multiple links 

,ଵ݇݊݅ܮ) ,ଶ݇݊݅ܮ ,ଷ݇݊݅ܮ . . . ,  ௡) to send the pheromone (carrying or transferring the substance as a݇݊݅ܮ

signal to other termites for communication). Each link has attributes that are characterized by a  

non-negative random operation λo(r) with a mean value of Фo(r). Each packet carries a fixed amount 

of pheromone “Pa”. Let us assume that each node generates the pheromone at a constant rate “β”. 

Suppose that two nodes, X and Y, are located at two locations separated by a distance “r” and are 

uniformly distributed over the WSN. The sensor node distance distribution is applied using a Rayleigh 

distribution [26]. If the transmission power of a sensor node is less than the WSN area, then the 

separation distance is divided into a range from 0 to r, and the distribution can be described as a 

probability density function, as follows [27]: 

V(r) = ܴ௘ିோஒ/(2ܴଶ)ܴଶ  (21)

where V(r) is the node separation distribution, which can be used to compute the predicted pheromone 

generation ܲ(ܴ݁ିோஒ)	at a node separation distance “r” that corresponds to the number of arrival 

packets. This probability density function is used to determine the density of the WSN. 
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Let us assume that “Z” is used to describe the rate of pheromone generation ܼ = (ܴ݁ିோஒ) at a node 

separation distance “r” that corresponds to the packet arrival rate.  

Thus, we can obtain the node separation distribution V(r), the rate of pheromone generation “Z”, 

and the separation distance “r”. ܸ(r) = ೃ೐షೃಊమೃమோమ 	0	ݎ݋݂		 ≤ 	ݎ ≤ ܴ	ܽ݊݀	ܼ = ൫ܴ௘ିோஒ൯; then: ݎ = − log βݖ  

We use the generated pheromone “Z” as the input and apply the node separation distribution V(r) to 

determine the total generated predicted pheromone as follows: ܸ(ܼ) = ܴ௘ିோஒ2ܴସ (log௓)β × ฬ−1ܼβฬ 
Enumerating the order of equalities results in: ܸ(ܼ) = ܴ௘ିோஒ2ܴସ × 1ܼ (ݖ݃݋݈−) ܴ௘ି௥మ ≤ ܼ ≤ 1  (22)

Thus, the predicted generated pheromone can be calculated as follows: ܲ(ܴ௘ − (ଶݎ = ܲ(ܼ) = න 2ܴଶߚଶ଴
ோ೐ିೃഁ		 ∗ 1ܼ × ܼ (–  ݖݎ(ݖ݃݋݈

ܲ ቀܴ௘ −ோఉି௥మቁ = 	 2ܴଶߚଶ 		න ଴ݖݎ	)	ݖ݃݋݈−
ோ೐ିೃഁିೃഁ		 ) 

ܲ൫ܴ݁ି௥మ൯ = 2ܴଶߚଶ ݖ݃݋݈ݖ)−]	 − ܴ௘				ଵ[	(ݖ −ோఉ 

ܲ ቀܴ௘ି௥మቁ = 2ܴଶߚଶ ൣ1 − ܴ௘ −ோఉ ߚܴ) + 1)൧  

(23)

The predicted pheromone generation rate is used to compute an average predicted amount of 

pheromone on single and multiple links using the pheromone update generation function. However, the 

analytical model of pheromone generation (Packet generation rate) must be validated. Let us assume 

that “P” is the population at a distance “h” and that “Pi” is the initial population (Number of termites at 
the beginning of activity (sensor nodes) taking part in performing the activities). Therefore, 

௥௣௛ 	= 	β ௜ܲ. 
Substituting the value of pi yields Equation (24):  

where ூܲ = ℎ ௥௣௛ݎ 	= 	β × 	݌ݎ ;ℎݎ = 	β × ܲ ;ℎଶݎ = β × ℎଶ݈݌݃݋ = −β × ℎ + ώ ݌ = ω × ܴ௘ିஒ∗௛ 
(24)

The pheromone update function can also be written as: ݌ = ω × ܴ௘ିஒ∗௛ = ω × ܴ௘ି௛ × β  (25)

This function is used to calculate an average predicted amount of pheromone on single and multiple 

links. Based on the following assumptions, an average predicted amount of pheromone on a single link 

can be obtained using the pheromone update function for several packets “n” consecutive times. 
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For a number of delivered packets, let us assume the following: 

a. The number of delivered packets for a distance “r” is a Poisson distribution (The number of 
dropped packets in the network) with an average wavelength 	ߣ = ௩௙  packets/meter. These 

packets consume resources in the network. 

b. The average amount of received pheromone is “Pψ”.  

c. The initial amount of pheromone on a single link is “Pi”. 

Thus, the pheromone update equation is used “n” consecutive times to determine the number of 

delivered packets on a single link: 

(݊)݌ = ܴ௘ି 	൭෍ݎ௫௡
௫ୀ଴ ൱ β + ψ݌ × ෍ܴ௘ − ቌ෍ݎ௫௡

௫ୀ௬ ቍβ		௡
௬ୀଵ  (26)

The predicted amount of pheromone PP(n) for “n” delivered packets can be calculated as follows: ܲܲ(݊) = ௜݌ × ( ܲ ቀܴ௘ି௥మቁ)௡ + ψ݌ ቆ(ܲ(ܴ௘−௥ଶ)௡ܲ൫ܴ௘−௥ଶ ൯ ቇ 

ܲܲ(݊) = ௜݌ σ௡ + ψ݌ ∗ ൬1 − σ௡1 − σ௡ ൰  

(27)

Thus, the predicted amount of pheromone for “n” arrived packets “PP(r)” on a single link for a node 

separation distance “r” is expressed as a Poisson distribution: ݂(ݖ) = ௭ߣ × ܴ௘ିఒܼ!  (28)

where “λ” is the average number of successfully received packets, “Z” is the number of successful 

attempts in which we are interested, and “Re” is the base of the logarithmic function. We map and 

apply the Poisson distribution in our problem; the details are as follows: ܲܲ(ݎ) =෍[݊݋ݏݏ݅݋݌ ,ݎߣ) ݊)[ܲܲ(݊)]ஶ
௜ୀ଴  

(ݎ)ܲܲ =෍[ஶ
௜ୀ଴ ܴ௘ିఒ௥ !݅(ݎߣ) 	] × 	 σ௡	௜݌] + ψ݌	 × ൬1 − σ௡1 − σ 		൰] ܲܲ(ݎ) = ψ1݌ − σ௡ + ܴ௘ି஛௥ (λβݎ)ߣ + β ൬݌௜ − ψ1݌ − σ ൰  

(29)

An average pheromone performance for a longer time can be obtained as follows: ݈݅݉௥→ஶ	 (ݎ)	ܲܲ = ௣நଵି஢; ܲܲ(ݎ) = ௣ந (஛ାஒ)ஒ ; and λ = ௩௙; 

Thus: 

(ݎ)ܲܲ = ψ݌ ൬݂ݒ + β൰β  (30)
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If we use only a single link to send the packets, then PP(r) provides the predicted amount of 

pheromone on the single link. We can determine the predicted amount of pheromone on multiple links 

in a similar manner. On multiple links, the value of the constant pheromone threshold “Ƈ” is set to 0, 

and the pheromone sensitivity level “Ps” is 1.  

Let P0, P1, P2, …, Pn be the multiple links that forward the data over the WSN with a packet 
generation of ܲ൫ܴ݁ିோஒ൯ . Thus, the average pheromone for the multiple links can be calculated  

as follows: 

଴ܲ௒௑ = 	 ଴ܲ௒௑ × ൥ 2ܴଶβଶ 	ൣ1 − ܴ௘ିஒோ	(1 + βܴ)൧൩
+ ቈ	 ( ଴ܲ௑௒ 	+ Ƈ	)௉ೞ( ଴ܲ௑௒ + Ƈ	)௉ೞ + ( ଵܲ௑௒ + Ƈ )௉ೞ + ( ଶܲ௑௒ + Ƈ )௉ೞ+, . . . , ( ௡ܲ௑௒ 	+ Ƈ	)௉ೞ	቉ ×  ψ݌

(31)

A termite maintains the pheromone table to store information about each neighbor node. Similarly, 

each node maintains a routing table to preserve the amount of pheromone for each neighbor link. The 

node possesses a different pheromone trail and table in the form of a matrix with listed destination 

nodes, including side nodes and neighboring nodes, across the top. Rows represent the destination 

nodes, and columns represent the neighbor nodes. An entry made in a pheromone is represented by ௞ܲ,௥, where “k” is the neighbor index and “r” is the destination index, as explained in [28]. The value 

stored in pheromone Table 6 helps in calculating the probability of each node. 

Table 6. Pheromone routing table for node N. 

Neighbor/Destination Node V W X Y A 

B PV,B PW,B PX,B PY,B PA,B 
C PV,C PW,C PX,C PY,C PA,C 
F PV,F PW,F PX,F PY,F PA,F 
D PV,D PW,D PX,D PY,D PA,D 
V PV,V PW,V PX,V PY,V PA,V 
W PV,W PW,W PX,W PY,W PA,W 
X PV,X PW,X PX,X PY,X PA,X 
Y PV,Y PW,Y PX,Y PY,Y PA,Y 
Z PV,Z PW,Z PW,Z PY,Z PA,Z 

Figure 6 depicts the search process of the termite. When a packet is received at node “N” from the 
previous hop “ ௛ܲ௢௣”, that node could be a source node. Thus, the source, pheromone decay and 
pheromone are added to link ே௉೓೚೛ሱۛ ۛۛሮ. Therefore, node “N” consists of A, V, W, X, and Y neighbor 

nodes. The shortest link to reach the desired destination node is ே௒஼ሱۛሮ. The possible links to forward the 

data to destination C are ே௑஺஽஼ሱۛ ۛۛ ሮ , ே஺஽஼ሱۛ ሮۛ , ே௏ி஼ሱۛ ሮۛ  and ேேௐ௒஼ሱۛ ۛۛ ሮۛ , but ே௒஼ሱۛሮ  is the shortest link to reach the 

destination. Thus, the entire path-following process helps find the shortest path from the source to the 

destination with minimal overhead. 
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Figure 6. Routing process of the pheromone termite model. 

5. Simulation Setup and Result Analysis 

We have generated and simulated a disaster recovery scenario that covers indoor and outdoor 

activities using the ns-3.10 network simulator on the Ubuntu 14.04 operating system. In this scenario, 

different activities are performed that involve monitoring indoor patients and hospital staff. In addition, 

the movements of rescue team members are also monitored. The network scenario is divided into three 

regions. Each region involves three events. All monitored events are reported to the control room. The 

obtained simulation results are quite convincing and nearly identical to realistic experimental results. 

The main goal of the simulation is to accelerate the disaster recovery process by consuming  

the less energy and improving the QoS provisioning. We deploy the PT model with O-MAC to 

evaluate the performance and compare it with the following hybrid protocols: the enhanced cross-layer 

protocol (ECLP) [29], cross-layer MAC (CL-MAC) [30], pipeline-featured MAC (P-MAC) [31], 

routing-enhanced-duty-cycle MAC (RMAC) [32], MAC cross-layer (MAC-CROSS) [33], the unified 

cross-layer protocol (XLM) [34], and the energy optimization protocol (EOA) [35]. Similar parameters 

have been used to simulate competing hybrid protocols.  

The network contains 450 sensor nodes that are randomly deployed over a 1200 × 1200 m2 field. 

The network is divided into three regions and each region is handled and controlled by a DON. We 

initially let the DON remain at a corner of each region and distribute the sensor nodes in the three 

regions. When the simulation begins, the mobile sensor nodes move back and forth in the network 

regions and initiate their assigned responsibilities. Each simulation run lasts for 45 min. Furthermore, 

five routing protocols are deployed: PT, the multi-speed routing protocol (MMSPEED) [36],  

multi-constrained QoS multi-path routing (MCMP) [37], the energy aware-routing protocol (EAP) [38], 

and sensor protocols for information via negotiation (SPIN) [39]. 

We use a sensor application module with a constant bit-rate source that maintains QoS  

requirements [40]. The simulation parameters are presented in Table 7. We obtained several results but 

use the following metrics to demonstrate the performance of the PT model and O-MAC with PT: 

 Predicted pheromone rates at each link with respect to the number of delivered packets by 

deploying MCMP, MMSPEED, SPIN, EAP and PT. 
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 Throughputs of MCMP, MMSPEED, SPIN, EAP, and PT with respect to the different  

mobility rates. 

 The end-to-end delays of packets using MCMP, MMSPEED, SPIN, EAP and PT. 

 The successful packet delivery rates and energy utilization efficiencies using the O-MAC and 

hybrid protocols. 

 Throughput performance of the O-MAC and hybrid MAC protocols. 

 Latency of the O-MAC and hybrid MAC protocols. 

Table 7. Simulation parameters and their corresponding values. 

Parameter Value 

Size of the WSN 1200 m × 1200 m 
Size of each region 400 m × 400 m 
Number of nodes 450 
Routing protocols MCMP, MMSPEED, SPIN, EAP and PT 

Medium access control protocols X-MAC, WiseMAC, B-MAC, and IEEE 802.15.4 
Transmission range 30 
Size of the packets 256 Bytes 

Hybrid MAC protocols 
O-MAC, ECLP, CL-MAC, P-MAC, RMAC,  

MAC-CROSS, XLM and EOA 
Time for topology change 1.5 s 

Propagation model Deterministic 
Sensing range of the node 30 m 
Initial energy of the node 4 Joules 
Bandwidth of the node  50 kb/s  

Simulation time 45 min 
Average number of simulation runs 15 

5.1. Predicted Pheromone Rate at Each Link 

We use four links to examine the trends of the arriving packets. The PT model always chooses the 

highest pheromone link to transfer data packets. Hence, it is important to choose suitable values for the 

pheromone generation “β” and pheromone sensitivity “Ps”. Figure 7 indicates that the PT model can 

use secondary, tertiary, and other paths if the primary path is congested, which helps avoid congestion 

on the network and reduces the packet drop rate. The network transmits 48,015 data packets and only 

loses fifteen packets. Thus, approximately 99.97% of the packets are successfully delivered, which is a 

better outcome.  

The speeds of the sensor nodes vary from 0 to 18 m/s. The simulations demonstrate that O-MAC 

with PT produces a stable throughput, whereas MCMP, MMSPEED, SPIN, and EAP with O-MAC 

experience slight problems due to motion. As a result, the competing protocols have decreased 

throughputs. The simulation results demonstrate that PT with O-MAC is the superior choice for 

improving the QoS, whereas O-MAC-EAP, O-MAC-MCMP, O-MAC- MMSPEED and O-MAC-SPIN 

result in low throughput because of a lack of mobility features. 

The primary link shares 93.85% of the successfully delivered packets. Choosing the primary path 

while delivering additional packets helps reduce the energy consumption because the specific nodes on 
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the path can collaborate to send the packets while the other nodes are in the sleeping state. These 

results confirm that PT provides a higher throughput and reduced congestion. In the case of broken 

links, PT provides the flexibility to choose an alternate path that saves the network from congestion. 

As a result, the throughput remains stable. 

 

Figure 7. Predicted pheromone on multiple links. 

5.2. Throughput of MCMP, MMSPEED, SPIN, EAP and PT 

We evaluate the throughput efficiency of each routing protocol in Figure 8. PT appears to be 

compatible with O-MAC. In Figure 8, we present the results of simulations of mobile and static 

scenarios using MCMP, MMSPEED, SPIN, EAP, and PT with O-MAC. To examine the robustness of 

these five routing protocols, we simulate a combined mobile and static scenario. The static sensor 

nodes are fixed in the three monitoring regions of the network, whereas the mobile nodes are attached 

to people (e.g., rescue team members, doctors, nurses, and other staff) and the moving vehicles being 

used in the affected area to rescue the injured and victims. We analyze the flow of communication and 

delivered successful data (throughput) when performing the different activities in the three regions. 

 
(a) (b) 

Figure 8. (a) Throughput when the nodes are all static and (b) Throughput when 50% of 

the nodes are mobile.  
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5.3. End-to-End Delay of Packets Using MCMP, MMSPEED, SPIN, EAP and PT 

The end-to-end delay is one of the most significant parameters for improving the QoS for WSNs. 

Many WSN applications require an end-to-end delay for time-sensitive data. However, this delay is 

difficult to bound for event-driven WSNs, in which the sensor nodes produce and broadcast data only 

when an event of interest occurs, thus creating a variable traffic load. The end-to-end delay is also 

tightly linked to other factors, such as the network capacity, energy, and the relative location of the 

sensors and sink nodes. In real-time applications, packets are dropped when they are transmitted with 

excessive delays. Figure 9 presents the end-to-end delays of PT, MCMP, MMSPEED, SPIN and EAP.  

 

Figure 9. End-to-end delay for PT, SPIN, MCMP, MMSPEED and EAP. 

PT produces a lower end-to-end delay than do the other competing protocols, and the end-to-end 

delay and node density are inversely proportional in the PT algorithm, which aids in finding alternative 

paths to the destination. PT also exhibits higher route maintenance than do SPIN, MCMP, MMSPEED, 

and EAP due to the efficient use of alternative paths, which helps produce low end-to-end delays even 

with mobile nodes.  

5.4. Successful Packet Delivery Rate and Energy Utilization Efficiency of O-MAC and Competing 

Hybrid Protocols 

In this section, we analyze and evaluate the performance of the O-MAC and other competing hybrid 

(cross-layered) protocols: ECLP, CL-MAC, P-MAC, RMAC, MAC-CROSS, XLM and EOA. We 

created a mobility scenario with 80% of the nodes as mobile nodes and monitored the activities of all 

four regions. There is one problem noticed in the mobile scenario, which occurs when the nodes 

occasionally exceed the transmission range. Thus, the nodes require the dynamic sink (head node) to 

reduce its energy consumption; in our case, we use a DON to handle this issue.  

We used a node speed varying from 0 to 18 m/s. Figure 10 illustrates that O-MAC outperforms the 

other competing protocols in terms of the successful delivery of packets. The O-MAC protocol has a 

higher packet delivery rate because of its efficient use of several features, such as semi-synchronization,  

the anycast methodology, randomization, the ODFF, automatic buffering, and determination of a  
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node’s information prior to leaving the communication; whereas the competing hybrid protocols lack  

these features. 

 

Figure 10. Successful packet delivery rates of O-MAC and other competing hybrid MAC 

protocols with 80% mobile nodes. 

The performance of O-MAC and competing hybrid MAC protocols were analyzed in highly 

congested networks. O-MAC outperforms all competing hybrid protocols. The success rates of the 

competing protocols decrease when the simulation time increases. Figure 11 illustrates that O-MAC 

consumes less energy than the other competing MAC protocols. The reason for the lower energy 

consumption is the use of a short preamble without incorporating the address with the preamble. The 

short preamble reduces the time and energy consumption of each node in the network. In addition,  

O-MAC has the support of the PT model, which includes two important features: the packet generation 

rate and pheromone sensitivity to help find a reliable and robust path for forwarding the packets over 

single and multiple links, which leads to lower energy consumption and increased efficiency. 

 

Figure 11. Energy consumption of O-MAC and other competing hybrid MAC protocols 

with 80% mobile nodes. 
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5.5. Throughput Performance of O-MAC and Other Hybrid MAC Protocols 

We analyze the throughput efficiency of O-MAC and other competing hybrid MAC protocols. We 

used combined static and mobile scenarios for determining the throughput based on the varying 

number of transmitting nodes. In Figure 12, we set 25% of the nodes to be mobile, including 

transmitting nodes throughout the simulation. O-MAC and other competing MAC protocols initially 

produce an average throughput of 458 to 500 kb/s, but when the number of transmitting nodes 

increases, the performance of O-MAC decreases only slightly compared with other hybrid MAC 

protocols. The O-MAC throughput decreases from 500 to 439 kb/s, whereas the throughput of the 

other hybrid MAC protocols decreases from 458 to 324 kb/s with the same number of transmitters.  

O-MAC is superior to the other competing MAC protocols and achieves a throughput that is 8.4% to 

23% higher. This mobility analysis is measured using two methodologies: analysis based on synthetic 

traces and analysis based on real-world traces, as discussed in [41]. 

 

Figure 12. Throughput of O-MAC and other competing hybrid MAC protocols with a 

varying number of transmitters. 

5.6. Latency 

In this section, we introduce the latency by using O-MAC and other competing hybrid MAC 

protocols. We measure the latency in terms of how much time one packet takes to travel from the 

sender to the destination point.  

In addition, we measure and display different types of latencies, including the propagation delay, 

transmission delay, router delay and storage delay. These four types of delays are collectively shown 

in Figure 13. We also used the combined mobile and static scenario for determining the latency. 

The latency at the different speeds is shown in Figure 13. The simulation illustrates that the latency 

increases with increasing mobility. O-MAC has 0.0012–0.058 s of latency at speeds of 0–18 m/s with 

25% mobility, whereas other competing MAC protocols show higher latency, namely, 0.0013–0.094 s 

for the same number of mobile nodes. CM-MAC produces higher latency than the other hybrid MAC 
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protocols. O-MAC achieves 9.23%–37.07% lower latency than the other MAC protocols. We validate 

that O-MAC can be used for different types of applications that require a faster delivery of data. Based 

on the simulation, our modular energy efficient paradigms based on MAC and network layers 

substantially improved the energy efficiency and QoS provisioning. The improvement of our proposed 

paradigms is shown in Table 8. 

 

Figure 13. Latency of O-MAC and other competing hybrid MAC protocols with varying 

mobile speeds. 

Table 8. The improvement of the proposed O-MAC with the PT model compared with 

other competing hybrid protocols. 

Metric Improvement in Percentage 
Energy consumed in accessing the channel 5.4% to 8.2% 

Energy consumed in sending the short preamble 13.5% to 18.4% 
Energy consumed in forwarding 5 MB of data 3% to 4.2% 

Energy efficiency 3.88% to 31.84% 
Successful packet delivery rate 8.2% to 15.4% 

Throughput with a varying number of transmitters 8.4% to 23% 
Latency 9.23% to 37.07% 

Channel access time 18.9% 
Data frame transfer time 2.3% 
Retry transmission time 27.3% 
Retry transmission time  11.1% 

Total channel access, frame transfer and acknowledgment and 
turnaround time in an ideal scenario 

8.9% 

Total channel access, frame transfer and acknowledgment and 
turnaround time in the worst-case scenario 

8.7% 
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6. Conclusions 

This paper presents modular energy-efficient paradigms that comprise two archetypes: the 

operational medium access control protocol and pheromone termite model. The O-MAC reduced the 

overhearing and congestion and improved the energy efficiency by deploying semi-synchronization, 

the anycast methodology, randomization, dynamic node selection and determination of the node’s 

information prior to leaving the communication. O-MAC also involves an ODFF model for the carrier 

sense multiple access portion. This model reduces the channel access time, data forwarding time, 

acknowledgement time, and retry transmission time. As a result, there is a substantial reduction in the 

energy consumption and improvement of the QoS parameters. The PT paradigm provided robust and 

reliable routing for single and multiple paths in disaster recovery scenarios. Two important features of 

the PT model are introduced: the packet generation rate and pheromone sensitivity. These features 

helped avoid congestion and improve the QoS. The performance of O-MAC with the PT model is a 

tradeoff between energy efficiency and QoS provisioning. Thus, several metrics were investigated and 

demonstrated the improvement achieved by our proposed paradigms.  

To investigate the effectiveness of paradigms, the ns3.10 network simulator with Ubuntu 14.04 was 

used to demonstrate the strengths of O-MAC with the PT model in a realistic disaster recovery 

scenario. O-MAC with PT improved the throughput and reduced the latency and energy consumption 

in the mobile and static scenarios. Furthermore, we compared O-MAC with known low-duty-cycle 

protocols (X-MAC, LPL and IEEE 802.15.4) and found improvements in terms of time savings and 

energy efficiency. These results demonstrate that O-MAC with PT could be used for several 

application areas over large-scale WSNs. These paradigms have marginal limitations at the transport 

level. Thus, in the future, we will lessen these limitations by introducing transport-level synchronization to 

re-order the packets, guaranteeing consistent pre-packet delivery for different packet types and faster 

recovery in the case of packet loss. 
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