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Abstract

Menkes disease (MD) is caused by mutations in the ATP7A gene. We describe 33 novel splice site mutations detected in
patients with MD or the milder phenotypic form, Occipital Horn Syndrome. We review these 33 mutations together with 28
previously published splice site mutations. We investigate 12 mutations for their effect on the mRNA transcript in vivo.
Transcriptional data from another 16 mutations were collected from the literature. The theoretical consequences of splice
site mutations, predicted with the bioinformatics tool Human Splice Finder, were investigated and evaluated in relation to in
vivo results. Ninety-six percent of the mutations identified in 45 patients with classical MD were predicted to have a
significant effect on splicing, which concurs with the absence of any detectable wild-type transcript in all 19 patients
investigated in vivo. Sixty-seven percent of the mutations identified in 12 patients with milder phenotypes were predicted
to have no significant effect on splicing, which concurs with the presence of wild-type transcript in 7 out of 9 patients
investigated in vivo. Both the in silico predictions and the in vivo results support the hypothesis previously suggested by us
and others, that the presence of some wild-type transcript is correlated to a milder phenotype.

Citation: Skjørringe T, Tümer Z, Møller LB (2011) Splice Site Mutations in the ATP7A Gene. PLoS ONE 6(4): e18599. doi:10.1371/journal.pone.0018599

Editor: Paul Cobine, Auburn University, United States of America

Received December 29, 2010; Accepted March 6, 2011; Published April 11, 2011

Copyright: � 2011 Skjørringe et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: lbm@kennedy.dk

. These authors contributed equally to this work.

Introduction

Menkes disease (MD) is an X-linked, multisystemic lethal

disorder of copper metabolism caused by mutations in the ATP7A

gene. The severe classical form of MD is characterised by

progressive neurodegeneration, connective tissue abnormalities,

distinctive ‘‘kinky’’ hair and ultimately death in early childhood.

Though most patients (90–95%) exhibit the severe clinical course,

there are various milder atypical forms with longer survival of the

affected patients (atypical MD). The Occipital Horn Syndrome

(OHS), mainly characterized by connective tissue manifestations is

the mildest form [1].

A broad spectrum of ATP7A mutations (from single amino acid

substitutions to large deletions and chromosome aberrations) has

been identified in patients with classical or one of the milder MD

forms [2]. Approximately 22% of these ATP7A mutations are

splice site mutations [2].

Splice site mutations are DNA sequence changes that alter or

abolish correct mRNA splicing during the process of precursor

mRNA maturation. Splice site mutations can result in the

complete skipping of one or more exons, retention of introns,

creation of a pseudo-exon, or activation of a cryptic splice site

within an exon or an intron [3]. The resulting transcript may

either be in-frame or out-of-frame. An in-frame transcript may

lead to the production of a functional or partially functional

protein, whereas out-of-frame transcripts are likely to cause the

formation of a premature termination codon and subsequent rapid

nonsense–mediated mRNA decay [4,5]. Some splice site muta-

tions do not abolish the wild-type transcript expression completely,

which may lead to less severe phenotypes [6,7,8].

This study presents a comprehensive overview of 61 splice site

mutations in the ATP7A gene including 33 novel mutations,

identified in patients with classical MD, atypical MD or OHS.

Studies of splice site mutations are highly relevant in order to

identify a correlation between the effects of splice site mutations

and patient phenotypes, to enable a prediction of the severity of

the disease, and to design therapies. It has been proposed that MD

patients might especially benefit from early copper therapy when

some functional ATP7A protein is present [9]. We investigated the

effect of 12 mutations in vivo, and 61 mutations with the

bioinformatics tool, Human Splicing Finder (HSF). We compared

the in silico predictions with in vivo results and with the observed

phenotypes of the patients.

Materials and Methods

Samples and mutation detection
The 33 novel splice site mutations were found in a cohort of

MD patients who were referred to the Kennedy Center for

molecular and/or biochemical diagnosis. Mutations were identi-

fied by PCR amplification and direct sequencing of the 23 exons

using an ABI3130XL sequencer (Applied Biosystems, Foster, CA).

Transcript analysis
Fibroblast cell cultures obtained from patient-skin biopsies were

grown in a 1:1 mixture of RPMI 1640 with 20 mM HEPES and a

nutrient mixture of F-10 Hams medium, supplemented with 7.5%

Amnio Max (Life Technologies), C100 supplement, 4% fetal calf

serum, penicillin, and streptomycin. RNA was isolated with

RNeasy (QIAgen, Bothell, WA), and single-stranded cDNA was

synthesized with the High-Capacity cDNA Archive Kit in

accordance with the manufacturers instructions (Applied Biosys-

tems, Foster, CA). To investigate the effect of selected splice site

mutations, RT-PCR was carried out with primers specific for
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Table 1. In silico splice site predictions.

Case (ID)
Pheno-
type Mutation WT CV

Mutant
CV

DCV
(%)

Exon length variation
and CV, if potential
cryptic splice site is used

Known transcripts
from mutant sequences

1 (93220) C c.1707+1G.A
(IVS6, DS) [14]

82.62 55.79 232.48 217: 72.02/+4: 85.11/+16: 70.01/
+50: 91.34/+55: 71.12/+86: 87.61

NNo wt transcript [14]; NCryptic
splice site leading to 4 bp elongation
of exon 6 (frameshift) [14]; NExon
6 skipping (frameshift) [14]; NExon
6 and 7 skipping (frameshift)[14]

2 (91209) C c.1707+5G.A
(IVS6, DS) [14]

82.62 70.46 214.72 217: 72.02/+16: 70.1/+50: 91.34/
+55: 71.12/+86: 87.61

NNo wt transcript [14]; NCryptic
splice site leading to 50 bp
elongation of exon 6 (frameshift)
[14]; NExon 6 skipping (frameshift) [14];
NExon 6 and 7 skipping (frameshift) [14]

3 (94268) O c.1707+6_+9del
TAAG (IVS6, DS)
[13,14]

82.62 80.29 22.83 217: 72.02/+16: 70.1/+50: 91.34/
+55: 71.12/+86: 87.61

NWt transcript present[13,14];
NExon 6 skipping
(frameshift)[13,14]

4 (93279) C c.1708-1G.C*
(IVS6, AS)

89.36 60.42 232.39 25: 75.83 (+4.82)/240: 70.03/
262: 77.13/264: 70.05/+23: 78.93

5 (9224) C c.1870-1G.C
(IVS7, AS) [24]

75.73 46.79 238.22 22: 91.28 (+12.71)/27: 80.24 (+3.27)/
216: 74.05/230: 78.15/233: 75.45/
243: 73.38/255: 72.14/+32: 84.74/
+62: 71.02

NNo wt transcipt*; NCryptic splice
site leading to a 2 bp deletion
of exon 8 (frameshift)*

6 (93271) C c.1870-2A.T*
(IVS7, AS)

75.73 46.79 238.22 22: 80.88/27: 80.91 (+4.14)/
216: 74.05/230: 78.15/233: 75.45/
243: 73.38/255: 72.14/+32: 84.74/
+62: 71.02

NNo wt transcript*; NCryptic splice site
leading to a 7 bp deletion of exon 8
(frameshift)*; NCryptic splice site leading
to a 2 bp deletion of exon 8
(frameshift)*

7 (95222) C c.1946+1G.A*
(IVS8, DS)

83.72 56.88 232.05 231: 72.38/239: 86.07/
253: 74.15/+16:78.3/+65: 84.11

8 (91266) C c.1946+1G.C
(IVS8, DS) [24]

83.72 56.88 232.05 231: 72.38/239: 86.07/253:
74.15/+16: 78.3/+65: 84.11

NNo wt transcript*; NExon
8 skipping (frameshift)*

9 (93237) C c.1946+1G.T*
(IVS8, DS)

83.72 56.88 232.05 231: 72.38/239: 86.07/
253: 74.15/+16:78.3/+65: 84.11

NNo wt transcript*; NExon
8 skipping (frameshift)*

10 (91267) C c.1946+2T.C
(IVS8, DS) [15]

83.72 56.88 232.05 231: 72.38/239: 86.07/
253: 74.15/+16: 78.3/+65: 84.11

NNo wt transcript[15]; NExon
8 skipping (frameshift)[15]

11 (94235) C c.1946+2_+3del
TA (IVS8, DS) [24]

83.72 32.58 261.08 - NNo wt transcript*; NExon
8 skipping (frameshift)*

12 (94230) C c.1946+5G.A
(IVS8, DS) [24]

83.72 71.55 214.53 231: 72.38/239: 86.07/
253: 74.15/+16: 78.3/+65: 84.11

NNo wt transcript*; NExon
8 skipping (frameshift)*

13 (9529) C c.1946+5G.C
(IVS8, DS) [24]

83.72 71.7 214.35 231: 72.38/239: 86.07/
253: 74.15/+16: 78.3/+65: 84.11

NNo wt transcript *; NExon
8 skipping (frameshift)*

14 (91226) C c.1946+6T.G
(IVS8, DS) [24]

83.72 81.78 22.31 231: 72.38/239: 86.07/
253: 74.15/+16: 78.3/+65: 84.11

NNo wt transcript*; NExon
8 skipping (frameshift)*

15 (92288) C c.1947-1G.T*
(IVS8,AS)

78.85 49.91 236.71 26: 71.53 (+3.17)/224: 79.21/
+45: 80.72/+61: 74.54/+68: 82.15

16 (92285) A c.1947-5_-1
dupATAAG
(IVS8,AS) [15]

78.85 68.06 213.68 224: 79.21/+5: 78.85 NNo wt transcript [15]; NCryptic
splice site leading to a 5 bp
elongation of exon 9 (frameshift) [15];
NExon 8 skipping and cryptic splice
site use in exon 9 (as described above)
(in-frame) [15]

17 (94247) C c.2171A.C*
(E9,DS)
Gln724Pro

73.16 68.41 26.49 216: 73.46/+4: 76.1/+11: 76.23/
+59: 71.12/+64: 73.05/+89: 80.17

18 (92263) C c.2172G.T
(E9, DS) [9]
Gln724His

73.16 62.3 214.85 216: 73.46/+4: 76.1/+11: 76.23/
+59: 71.12/+64: 73.05/+89: 80.17

NNo wt transcript[9]; NExon 9 skipping
(frameshift)[9]; NExon 8 and 9 skipping
(in-frame)[9]; NExon 9 and 10 skipping
(frameshift)[9]; NExon 8 to 10 skipping
(in-frame)[9]; NExon 9 to 10 skipping
(in-frame)[9]

19 (96281) - c.2172+1G.A*
(IVS9, DS)

73.16 46.33 236.68 216: 73.46/+4: 75.14/+11: 76.23/
+59: 71.12/+64: 73.05/+89: 80.17

20 (96202) C c.2172+5G.C
(IVS9, DS) [20]

76.13 61.15 216.42 216: 73.46/+11:76.23/
+59: 71.23/+64: 73.05/+89: 80.17

N No wt transcript[20]; N Exon 9 skipping
(frameshift)[20]; N Exon 8 and 9 skipping
(in-frame)[20]
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Table 1. Cont.

Case (ID)
Pheno-
type Mutation WT CV

Mutant
CV

DCV
(%)

Exon length variation
and CV, if potential
cryptic splice site is used

Known transcripts
from mutant sequences

21 (95237) A c.2172+6T.G
(IVS9, DS) [25]

73.16 71.23 22.64 216: 73.46/+11: 76.23/
+59: 71.23/+64: 73.05/+89: 80.17

NWt transcript present[25];
NExon 9 skipping[25]

22 (95267) C c.2172+5_+19del
GTGAATTGTTAG-
CAA* (IVS9, DS)

73.16 61 216.63

23 (93217) C c.2173-1G.C*
(IVS9, AS)

84.92 55.98 234.08 210: 80.46 (+2.3)/230: 91.77/
258: 73.35/+40: 81.82/
+59: 71.26/+67: 75.55

24 (92276) - c.2406G.C*
(E10, DS)
Lys802Asn

84.95 73.93 212.96 284: 72.97/+5: 85.11/
+15: 78.68/+32: 72.88/+37: 71.5

25 (94207) O c.2406+3A.T
(IVS10, DS) [16]

84.95 79.92 25.91 284: 72.97/+5: 85.11/
+15: 78.68/
+32: 72.88/+37: 71.5

NNo wt transcript[16]; NExon
10 skipping (in-frame)[16]

26 (91249) O c.2497A.G
(E11, DS)
[23] Ser833Gly

78.88 74.02 26.16 232: 71.41/266: 71.28 NWt transcript present[23];
NExon 11 skipping[23]; NCryptic
acceptor splice site activation
leading to 220 bp deletion[23]

27 (9421) C c.2498+1G.A*
(IVS11, DS)

78.88 52.04 234.02 232: 71.41/266: 71.28

28 (93242) C c.2499-1G.A*
(IVS11, AS)

83.47 54.52 234.68 25: 74.99 (+0.09)/238: 72.02/
250: 75.22/253: 72.2/259: 83.01/
262: 77.07/274: 80.01/295: 79.14/
+43: 71.15/+48: 76.56/+53: 74.64/
+55: 74.32/+68: 73.14/+85: 70.4

29 (92294) C c.2626+2T.A*
(IVS12, DS)

91.2 64.36 229.43 218: 70.02/222: 73.79

30 C c.2626G.C
(E12, DS)
[27] Gly876Arg

91.2 80.18 212.08 218: 70.02/222: 73.79 NNo wt protein expression[27]

31 (93233) C c.2627-2A.G
(IVS12, AS) [24]

93.47 64.52 230.97 25: 70.12/+43: 76.86/+71: 74.12/
+85: 82.75

32 (91247) A c.2627G.A
(E13, AS)
[27] Gly876Glu

93.47 89.31 24.45 223: 72.24/234: 76.68/
239: 80.17/262: 82.32/299: 71.17/
+43: 76.86/+71: 74.12/+85: 82.75

NWt transcript present*;
NExon 14 and 15 skipping*

33 (91214) C c.2781+1G.A*
(IVS13, DS)

87.03 60.2 230.83 263: 73.43/288: 78.11

34 (93243) C c.2916+1G.A*
(IVS14, DS)

84.38 57.55 231.8 245: 71.11/254: 82.53/+4: 74.27/
+43: 81.25/+60: 70.37

35 (9724) - c.2916+3_2916
+6delAAGT*
(IVS14, DS)

84.38 71.21 215.61 -

36 (95243) C c.2916+5G.A*
(IVS14, DS)

84.38 72.22 214.42 245: 71.11/254: 82.53/+43: 81.24/
+60: 70.37

37 (94209) O c.2917-4A.G
(IVS14, AS) [21]

87.24 87.17 20.08 211: 70.03/228: 85.47/255: 78.76/
267: 86.13/+40: 87.11/+71: 75.67

NWt transcript present[21];
NExon 15 skipping (in-frame)[21]

38 (96255) C c.3111G.T
(E15, DS)
[26] Lys1037Asn

96.71 85.84 211.24 229: 75.45/256: 73.56/260: 74.47/
268: 70.26/272: 84.8/+60: 85.64

39 (94211) O c.3111+4A.C*
(IVS15, DS)

96.71 87.91 29.1 229: 75.45/256: 73.56/260: 74.47/
268: 70.26/272: 84.8/+60: 85.64

40 (95202) C c.3112-2A.C*
(IVS15, AS)

94.41 65.47 230.66 26: 79.57 (+3.38)/224: 71.55/252: 77.66/
264: 70.27/269: 72.94/283: 73.04/289:
76.04/+35: 71.88/+46: 79.18/+70: 82.84

41 (92265) C c.3112-2A.G*
(IVS15, AS)

94.41 65.47 230.66 26: 77.03 (+0.08)/224: 71.55/252: 77.66/
264: 70.27/269: 72.94/283: 73.04/289:
76.04/+35: 71.88/+46: 79.18/+70: 82.84

42 (92244) C c.3294+1G.C*
(IVS16, DS)

79.03 52.2 233.96 250: 74.12/266: 71.59/
+41: 73.71/+71: 72.97

Splice Site Mutations in ATP7A
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ATP7A and designed to amplify those exon(s) that were expected

to be affected by the mutation, and the flanking exons. The cDNA

fragment spanning from exon 6 to exon 9 was PCR amplified from

8 patients (cases: 5, 6, 8, 9, 11–14). The cDNA fragment spanning

from exon 12 to exon 16 was PCR amplified from patient 32. The

cDNA fragment spanning from exon 18 to exon 23 was amplified

from 3 patients (cases: 58–60). Primer sequences can be obtained

upon request. The PCR products were separated on a 1% agarose

gel. The relevant bands were purified, and sequenced using an

ABI3130XL sequencer (Applied Biosystems, Foster, CA).

Bioinformatics
We have compiled 61 ATP7A splice site mutations. All were

analysed with HSF version 2.4 [10] (http://www.umd.be/HSF/).

Only those mutations that are located in the defined splice site

consensus sequences are included here. The consensus sequences

are (C/A)AG|gt(a/g)agt and cag|G for the donor splice site and the

acceptor splice site, respectively [11]. The mutation designations

are based on ATP7A transcript ENST00000341514 from En-

sembl. A in the ATG start codon is defined as c.1. The relative

strength of the splice sites obtained from the bioinformatics tool is

Case (ID)
Pheno-
type Mutation WT CV

Mutant
CV

DCV
(%)

Exon length variation
and CV, if potential
cryptic splice site is used

Known transcripts
from mutant sequences

43 C c.3293_3294del AG
(IVS16, DS) [13]

79.03 67.06 215.15 - NNo wt transcript[13];
NExon 16 skipping[13]

44 (96201) - c.3294+2T.C*
(IVS16, DS)

79.03 52.2 233.96 250: 74.12/266: 71.59/
+41: 73.71/+71: 72.97

45 (96272) C c.3511+1G.A*
(IVS17, DS)

87.25 60.41 230.76 254: 70.42

46 (94210) O c.3511+5G.A
(IVS17, DS) [21]

87.25 75.08 213.94 254: 70.42 NWt transcript present[21]; NExon 17
skipping (frameshift)[21]

47 (95278) C c.3658+1delG*
(IVS18, DS)

92.36 32.29 265.05 21: 85.44 (+106.3)

48 (95219) C c.3801+1G.T*
(IVS19, DS)

87.68 60.85 230.6 +13: 84.58/+17: 71.34

49 (93273) C c.3801+3A.C*
(IVS19, DS)

87.68 82.66 25.73 254: 79.73/+13: 86.04

50 (94294) C c.3801+4A.G*
(IVS19, DS)

87.68 79.34 29.51 +13: 84.58/+17: 71.34

51 C c.4004delG
(E20, DS) [13]

94.19 17.93 280.96 21: 99.05 (+86.96)/266: 76.34/
+28: 71.67/+48: 76.3

52 (91224) C c.4005+1G.T*
(IVS20, DS)

94.19 67.35 228.49 21: 79.92 (+50.55)/266: 76.34/
+28: 71.67/+48: 76.3

53 (92275) C c.4005+5G.A*
(IVS20, DS)

94.19 82.02 212.92 266: 76.34/+28: 71.67/
+48: 76.3

54 (96203) C c.4006-2A.G
(IVS20, AS) [15]

82.54 53.6 235.07 219: 77.51/241: 74.39/243: 73.64/
245: 72.36/249: 70.58/256: 70.86/
+35: 71.75/+37: 70.96/+41: 74.56/
+68: 77.5

NNo wt transcript[15]; NExon 21 skipping
(frameshift and premature stop
codon)[15]; NCryptic splice site in exon
21 (frameshift and premature stop
codon)[15]

55 C c.4123+1G.A
(IVS21, DS) [22]

86.45 59.61 231.04 222: 79.55/+4: 73.98/+38: 71.13

56 (94206) A c.4123+3A.T
(IVS21, DS) [23]

86.45 81.42 25.81 222: 79.55/+38: 71.13 NWt transcript present[23]; NExon 21
skipping (frameshift)[23]

57 (91284) A c.4123+5G.A*
(IVS21, DS)

86.45 74.28 214.07 222: 79.55/+38: 71.13

58 (92235) C c.4226+1G.A*
(IVS22, DS)

83.43 56.59 232.17 285: 77.51/+4: 76.3/+62: 84.93 NNo wt transcript*; NExon 22 skipping*

59 (91233) C c.4226+2T.C
(IVS22, DS) [24]

83.43 56.59 232.17 285: 77.51/+4: 78.28/+62: 84.93 NNo wt transcript*; NExon 22 skipping*

60 (9522) C c.4226+5G.A*
(IVS22, DS)

83.43 71.26 214.58 285: 77.51/+62: 84.93 NNo wt transcript*; NExon 22 skipping*

61 (92278) A c.4226+6T.C*
(IVS22, DS)

83.43 81.25 22.61 285: 77.51/+62: 84.93

A comprehensive overview of identified splice site mutations in donor sites (DS) and acceptor sites (AS) of the ATP7A gene. The mutations are located in exon-intron
boundaries in either the intervening sequence (IVS) or in the exon sequence (E). The various mutations lead to different MD phenotypes classified as classical MD (C),
atypical MD (A), OHS (O) or unknown (2). The mutations were analysed with the online bioinformatics tool, Human Splicing Finder (HSF), to predict the splicing signals
in wild-type and mutated DNA sequences. The strength of the splice sites is indicated by the consensus value (CV) and the CV variation (DCV). Potential cryptic splice
sites predicted with HSF are given. Effects on pre-mRNA splicing that have been identified in vivo are listed.
*Found in this study.
doi:10.1371/journal.pone.0018599.t001

Table 1. Cont.
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given as the consensus value (CV), which ranges from 0 to 100.

Splice sites with CVs higher than 80 are strong splice sites; less

strong sites have CVs that range from 70 to 80. Splice sites with

CVs of 65 to 70 are weak, as only a few of these sites are active

[10]. Hence, splice sites with CVs below 70 are herein considered

non-functional. The CV-output from HSF only indicates the

strength of the actual splice site and does not take the possible

effect of (and on) other cis-acting elements into account. The effect

of a splice site mutation does not solely depend on the CV value,

but also on the relative change in DCV. Desmet et al. (2009) [10]

emphasised that DCV reductions of at least 10% for a mutation in

any position, or of 7% for a mutation in position +4, are likely to

affect splicing.

Results

When screening the coding region of the ATP7A gene in

patients with Menkes disease or Occipital Horn Syndrome, we

identified a total of 33 novel splice site mutations. They are listed

in Table 1 together with 28 previously identified splice site

mutations. Forty-five of these mutations lead to classical MD, 6

lead to the less severe atypical MD, and 6 mutations were

identified in patients with the mildest phenotype, OHS. Only 4 of

the mutations were identified in MD patients with unknown

clinical phenotypes.

We determined the effect of the mutations on ATP7A transcript

processing in 12 patients, from whom fibroblast cultures were

available (cases: 5, 6, 8, 9, 11–14, 32, 58–60) (Figure 1). In total,

the effect on mRNA splicing in vivo is described for 28 of the 61

mutations, as the effects of the mutations on mRNA processing in

16 other cases were collected from the literature. The results are

summarised in Table 1. Most of the mutations analysed in vivo lead

to exon-skipping (cases: 3, 8–14, 18, 20, 21, 25, 32, 37, 43, 46, 56,

58–60). Other mutations lead to the use of a cryptic splice site

(cases: 5, 6) or to several different transcripts with a combination of

exon-skipping and the use of a cryptic splice site (cases: 1, 2, 16,

26, 54). The majority of the reported cases lead to the production

of out-of-frame transcripts and hence, probably to non-functional

protein. However, in some cases (cases: 3, 21, 26, 32, 37, 46, 56), a

limited amount of wild-type transcript is produced alongside the

mutant transcript. Only in two cases, leading to atypical MD and

OHS respectively (16, 25), wild-type transcript could not be

detected. No wild-type transcript was identified in any of the

classical MD cases analysed (cases: 1, 2, 5, 6, 8–14, 18, 20, 30, 43,

54, 58–60).

To explore whether a bioinformatics tool can be used to predict

the effect of the genomic mutations on mRNA processing, and

possibly the severity of the disease, we compared the experimental

results and the observed phenotypes with the predictions obtained

with the Human Splicing Finder.

The Human Splicing Finder results are listed in Table 1.

Seventy-six percent (34/45) of the classical MD cases have a splice

site CV below 70. Ninety-three percent (42/45) of the cases have a

DCV reduction over 10% (or 7% for +4 mutations) (Table 2).

Ninety-six percent of the same mutations (43/45) lead to either a

CV below 70 or a DCV reduction over 10% (or 7% for +4

mutations). Only two of the mutations among the classical MD

cases lead to both a CV above 70 and a DCV reduction below

10% (cases: 14, 49).

In contrast, among the mutations identified in the 6 atypical

MD patients and the 6 OHS patients, only four mutations (33%)

lead to a DCV reduction over 10% (or 7% for +4 mutations)

(cases: 16, 39, 46, 57). One of these mutations (16) also leads to a

splice site CV below 70 and, as expected, no detectable wild-type

transcript in the fibroblast material. In 67% of the mutations that

lead to the mild phenotypes, the splice site CVs were above 70 in

combination with DCV reductions below 10%, indicating that

these sites are active (Table 2). In agreement with this, detectable

amounts of wild-type transcript were found in 7 of the 9 analysed

patients with mild phenotypes. Only two patients (cases: 16, 25)

lacked detectable wild-type transcript.

In 15 cases (2, 12, 13, 17, 24, 30, 35, 36, 38, 39, 46, 50, 53, 57, 60) the

CV- and DCV-parameters contradicted in the prediction of activity of

the splice site. Mutations at the +5 position in particular, are responsible

for a large fraction of these cases, as they constitute half of the total

inconsistent incidences. In fact, the predictions for 8 out of 9 +5 point

mutations are inconsistent. This indicates that the determination of both

the CV and the DCV is essential.

As splice site mutations may lead to the use of cryptic splice

sites, potential splice sites in the vicinity of wild-type splice sites

were identified with HSF. Most cryptic splice sites are likely to be

located +/2 100 bp on each side of the exon-intron boundary

[12]. Therefore only this area was investigated for the presence of

potential splice sites. All experimentally identified cryptic splice

sites in the patient material were among the potential splice sites

suggested by HSF.

Discussion

This study reviews disease-causing splice site mutations in

ATP7A in relation to their effect on transcript processing and

patient phenotype. Of the 57 mutations identified in patients with

known clinical phenotypes, 21% of the mutations lead to the

milder phenotypes, atypical MD or OHS (Table 2). We have

previously reported that only 9% of all MD patients display the

milder phenotypes [2]. Thus, splice site mutations relatively often

lead to the milder phenotypes when compared to ATP7A

mutations in general. This fact renders these mutations highly

interesting for further research, and makes predictions of effects on

pre-mRNA splicing, using bioinformatics tools, very relevant.

Wild-type transcript was detected in vivo in most OHS and

atypical MD cases, but not in any of the tested, classical MD cases.

We and others have previously shown that even a small amount of

wild-type protein may have a major impact on the outcome of the

disease in individuals with splice site mutations in ATP7A [13,14].

For instance, 2–5% correctly spliced ATP7A mRNA, as compared

to the level in unaffected individuals, is enough to develop the mild

phenotype, OHS [14].

Assuming that a splice site CV above 70 combined with a DCV

reduction below 10% (or 7% for +4 mutations) allow the

production of some amount of wild-type transcript, whereas a

CV below 70 combined with a DCV reduction over 10%

Figure 1. Analysis of ATP7A mRNA from patient fibroblasts. RT-
PCR was performed on mRNA extracted from 12 different patient
fibroblast cultures. The picture is obtained from three different gels
marked by space separation. Gel A) Fragment spanning the cDNA
sequence from exon 6 to exon 9; Gel B) Fragment spanning the cDNA
sequence from exon 12 to exon 16; Gel C) Fragment spanning the cDNA
sequence from exon 18 to exon 23. N = Normal, fibroblasts from
unaffected individual.
doi:10.1371/journal.pone.0018599.g001
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completely block the production of wild type transcript, 96% of

the mutations identified in classical MD patients are predicted to

have a significant effect on splicing with no production of wild type

transcript. However, this is only the case for 33% of the mutations

identified in patients with the milder phenotype. Overall, when

using the CV parameter in combination with the DCV parameter,

51 of 57 mutations (89%) fit the hypothesis that mild phenotypes

develop when wild-type transcript is produced, whereas classical

MD is the phenotypic outcome when no wild-type transcript is

produced (Table 2). Only, in vivo result from one case with classical

MD does not fit this hypothesis. In case 14, with a CV above 70

and a DCV reduction below 10%, we were, in contrast to the

prediction, unable to detect any wild-type transcript in vivo. There

are also two exceptions, based on in vivo results, among cases with

the mild phenotypes. In case 16, no wild-type transcript was

detected in vivo in fibroblasts with the identified mutation, which

concurs with the prediction given by HSF. The mild phenotype is

thought to be caused by the production of an in-frame transcript,

in which exon 8 is skipped and exon 9 is extended with 5 bp [15];

exon 8 encodes the region of the ATP7A-protein between the last

metal-binding domain and the first transmembrane domain. In

Case 25 with OHS phenotype: we were unable to detect any wild-

type transcript; this contradicts the prediction given by HSF. The

mild phenotype is also in this case thought to be related to the

production of a partially functional protein-variant encoded by an

in-frame transcript, which in this case lacks exon 10. The resulting

ATP7A-protein lacks transmembrane domains 3 and 4, and is

located in the endoplasmatic reticulum instead of its correct

location in the trans-Golgi network [16]. It has been proposed that

this ‘‘mis-localised’’ protein may retain some of its copper

transporting function, resulting in the less severe phenotype.

In approximately one third of the represented exon-intron

boundaries (8 of 26) the CV for one or more of the potential splice

sites identified with HSF is higher than the CV for the un-mutated

wild-type splice site. A similar observation has previously been

reported in e.g. the b-globin intron 1 [17]. In b-globin intron 1 the

authentic donor splice site is always used in the wild-type sequence,

although there is a slightly stronger cryptic splice site close by which

is only used when the wild-type splice site is mutationally weakened.

In case 2, HSF found several possible alternative donor splice

sites (217, +16, +50, +55, +86), in the vicinity of the wild-type

splice site. We have previously reported that a cryptic splice site at

position +50 is used in the mutated sequence in this patient [14].

This means that the active cryptic splice site is not the potential

splice site closest to the wild-type splice site. This concurs with

observations made by Roca and colleagues [17] who found that 26

of 61 transcripts (43%), in which cryptic splice sites were analysed,

skip the nearest potential splice site and use a site further away.

The choice of site involves a very complex interplay between

various factors, such as sequence context, available transacting

factors and secondary structure of the pre-mRNA [17,18,19].

In conclusion, both the in silico predictions and in vivo results support

the hypothesis previously suggested by us and others, that the

presence of some wild-type transcript correlates with a milder

phenotype. Notably, disease-causing mutations identified in patients

with mild phenotypes might be difficult to distinguish from benign

mutations, which do not cause disease. However, if the family history

confirms beyond any doubt, that a splice site mutation is the cause of

disease, HSF is very successful in predicting the phenotype.
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