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Abstract
Abdominal aortic aneurysm is a prevalent cardiovascular disease with high mortality rates. The mechanical response of 
the arterial wall relies on the organizational and structural behavior of its microstructural components, and thus, a detailed 
understanding of the microscopic mechanical response of the arterial wall layers at loads ranging up to rupture is necessary to 
improve diagnostic techniques and possibly treatments. Following the common notion that adventitia is the ultimate barrier at 
loads close to rupture, in the present study, a finite element model of adventitial collagen network was developed to study the 
mechanical state at the fiber level under uniaxial loading. Image stacks of the rabbit carotid adventitial tissue at rest and under 
uniaxial tension obtained using multi-photon microscopy were used in this study, as well as the force–displacement curves 
obtained from previously published experiments. Morphological parameters like fiber orientation distribution, waviness, 
and volume fraction were extracted for one sample from the confocal image stacks. An inverse random sampling approach 
combined with a random walk algorithm was employed to reconstruct the collagen network for numerical simulation. The 
model was then verified using experimental stress–stretch curves. The model shows the remarkable capacity of collagen fibers 
to uncrimp and reorient in the loading direction. These results further show that at high stretches, collagen network behaves 
in a highly non-affine manner, which was quantified for each sample. A comprehensive parameter study to understand the 
relationship between structural parameters and their influence on mechanical behavior is presented. Through this study, the 
model was used to conclude important structure–function relationships that control the mechanical response. Our results 
also show that at loads close to rupture, the probability of failure occurring at the fiber level is up to 2%. Uncertainties in 
usually employed rupture risk indicators and the stochastic nature of the event of rupture combined with limited knowledge 
on the microscopic determinants motivate the development of such an analysis. Moreover, this study will advance the study 
of coupling microscopic mechanisms to rupture of the artery as a whole.
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1 Introduction

Aortic aneurysm can be identified as a focal dilation of the 
blood vessel in comparison with the normal, healthy artery 
(Aggarwal et al. 2011; Humphrey and Holzapfel 2012). Aor-
tic aneurysms are found to fail in two ways: dissection and 
rupture, mechanical phenomena that occur when the wall 
stress exceeds the local strength of the artery (Humphrey and 
Taylor 2008). This fatal condition has been reported to have 

a mortality rate of up to 85% in western countries (Erhart 
et al. 2014; Robert et al. 2017). Maximum vessel diameter 
and diameter increase rate are the clinical indicators used for 
decision making. Peak wall stress is also an indicator often 
promoted for predicting rupture (Marini et al. 2012; Gas-
ser et al. 2010). However, various cases have been recorded 
where the above indicators fail to predict aortic rupture. This 
might be due to the fact that these indicators are based on 
the macroscopic mechanical state of the tissue and do not 
take into consideration the mechanics at the micro-level, 
and the local strength of the tissue. Hence, in order to better 
understand the mechanical phenomena responsible for rup-
ture, an accurate description of the mechanical response at 
the level of the microstructure is needed. Structurally accu-
rate computational models of arterial wall layers are still an 
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improving aspect of arterial mechanics and any step forward 
would be very significant.

The current paper focuses on the tunica adventitia, which 
is the outermost layer of the arterial wall. The adventitia 
primarily consists of a dense network of collagen type I 
fibers, a small amount of elastin fibers, fibroblasts, nerves, 
vasa vasorum, and connective tissue (He and Roach 1994). 
The collagen fibers in the adventitia tend to have a complex 
organizational structure with highly dispersed orientations 
and undulations in their unloaded configuration (Smith et al. 
1981). In contrast, the fibers in the tunica media, the mid-
dle layer, are less undulated and highly aligned toward the 
circumferential direction (Wolinsky and Glagov 1967). The 
distribution and organization of collagen in the adventitia 
gives the layer its unique structural integrity. The adventitia 
serves various functions like anchoring the wall to the sur-
rounding tissue, supplying necessary nutrients and oxygen 
through vasa vasorum, and synthesizing collagen through 
fibroblasts. But, the main function of the adventitia is to 
protect the arterial wall from overdistention and rupture, i.e., 
is to act as a protective sheath at loads beyond physiological 
pressure (Humphrey 2002). This is facilitated by the fact 
that the elastic modulus of collagen fibers is much higher 
than that of elastin (Oxlund and Andreassen 1980; Viidik 
et al. 1982). As the pressure increases, collagen fibers in 
the adventitia get straightened and become stiff to carry the 
load. Hence, the overall tissue mechanical response is highly 
dependent on the microscopic structural organization of col-
lagen as illustrated in Fig. 1.

Numerical models provide an alternate means to study 
the evolution of abdominal aortic aneurysm and under-
stand rupture as they are noninvasive and time-efficient. 
Initial advances in developing a computational model for 
the arterial wall gave rise to the realization that, due to the 
nonlinear, anisotropic stress–strain behavior, mathemati-
cal descriptions in the form of exponential, polynomial, or 
logarithmic functions are needed to extrapolate the experi-
mental results to full range of in vivo loading conditions 
(Wagenseil and Mecham 2009). This type of modeling tech-
nique where a strain energy density function is deployed 

to compute stresses is called phenomenological modeling. 
Phenomenological models vary in terms of their choice of 
strain energy density function and the number of parameters. 
These parameters are later fitted using nonlinear regression 
methods with a comparison to experimental data. Some of 
the widely used phenomenological models include: seven-
parameter polynomial (Vaishnav et al. 1973), four-parameter 
logarithmic model (Takamizawa and Hayashi 1988), four- 
or seven-parameter exponential models (Chuong and Fung 
1983). Humphrey made a detailed comparative study of the 
strain energy functions proposed in above-mentioned litera-
ture (Humphrey 1999). Although phenomenological models 
predict the behavior of the tissue accurately, they do not 
account for any structural information. This leads to dif-
ficulties in studying and predicting the behavior of diseased 
arteries where changes in physiology and pathology directly 
influence the mechanical behavior (Alford et al. 2008).

On the other hand, structurally motivated constitutive 
models incorporate the contributions of individual micro-
structural components in the strain energy density function 
(Zulliger and Stergiopulos 2007). A number of researchers 
investigated structural constitutive models, which can be 
broadly classified into two categories: the angular integra-
tion approach and the structural tensor approach (Gasser 
et al. 2006). Improving on their existing physiological expo-
nential model (Holzapfel and Weizsäcker 1998) used for pre-
dicting the behavior of arterial walls in the physiological 
pressure range, Holzapfel et al. proposed a structural model 
for individual layers of the arterial wall. Two structural ten-
sors each representing a family of collagen fibers are used 
to model the anisotropic behavior of collagen. Collagen is 
assumed to be embedded as parallel fibers within each fam-
ily, which is limited by the fact that collagen is dispersed in 
the arterial wall and does not maintain a fixed orientation 
at no-distention state. A generalized structure tensor was 
introduced by Gasser et al. (2012) to address the above limi-
tation. More recently, based on their experimental findings, 
a bivariate von Mises distribution to define the structural 
tensor was implemented in Polzer et al. (2013). Angular 
integration approaches, on the other hand, utilize a prob-
ability distribution for the fibers to be incorporated directly 
into the strain energy potential (Gasser et al. 2006; Holzapfel 
et al. 2014). In Alastrué et al. (2010), a Bingham distribution 
for collagen was used to statistically model the mechanical 
response of the arterial wall within the angular integration 
framework. A detailed study made in Holzapfel et al. (2015) 
and Cortes et al. (2010) to evaluate these two approaches 
concluded that both approaches yield significantly different 
results at high fiber dispersion and for different loading con-
ditions. Although these formulations are straightforward and 
offer significant computational advantages, the parameters 
are often derived using an inverse approach rather than a his-
tology study, like in purely phenomenological approaches. Fig. 1  Mechanical behavior of collagen under uniaxial tension
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In addition, the structural organization arising from crimp 
is not directly considered from such analysis.

Another important structural aspect of fibrous tissues 
is the presence of waviness and the phenomenon of fiber 
recruitment. A few of the existing microstructural constitu-
tive models assume a wave shape for the collagen crimp 
and incorporate it at either the fibril or molecular level. 
Lanir (1979, 1983) pioneered this work by laying out the 
theoretical framework for modeling collagen fiber as a 
two-dimensional wave, with statistical distributions for 
either the wave shape or crimp behavior. This work was 
followed by the idea of modeling collagen crimp as a sto-
chastic parameter (Cacho et al. 2007) and motivated further 
works which adopted it for constitutive modeling of various 
fibrous soft tissues (Zulliger and Stergiopulos 2007; Hurs-
chler et al. 1997). Assuming a wave-like structure for the 
shape of crimped collagen fibers was also considered for 
discrete models by introducing kinematic linkages between 
small straight fiber segments (Stouffer et al. 1985; Kastelic 
et al. 1980; Diamant et al. 1972). Owing to the ambigu-
ity in observing the shape of collagen crimp from experi-
ments, Beskos and Jenkins (1975) proposed a cylindrical 
helix to represent it and derived a constitutive model based 
on this assumption. Being the first to model the collagen 
crimp as a smooth 3-D wave, the model was riddled with 
limitations, one of which was the assumption of fiber in-
extensibility resulting in an infinite stiffness at full extension. 
Several authors extended the model by modifying the fiber 
response with simple (Freed and Doehring 2005) or more 
refined assumption like that of beam deformation (Grytz and 
Meschke 2009). These models were shown to be capable 
of reproducing stress–stretch responses of fibrous tissues in 
uniaxial tension, but their outputs in terms of microstructural 
geometry were not completely in agreement with experimen-
tal observations. In this context, the advantage of a discrete 
numerical model would be to consider the kinematics of 
fibers at a local and individual level, thus enabling non-affine 
transformation, and possible local interactions. Multi-scale 
homogenization method constitutes another class of models 
to be mentioned. They incorporate collagen crimp at either 
the fibrillar level or the fiber level also as a function of strain 
(Marino and Vairo 2014; Bianchi et al. 2016). In the frame-
work of arterial mechanics, these models have provided 
novel insights in various scenarios, especially in rupture 
prediction, however, they often assume an average value of 
the constitutive parameter for the whole wall, thus neglect-
ing local heterogeneities. Discrete models are suitable to 
address this limitation and motivated the presented work.

Another way of studying micro-mechanics of homog-
enous fibrous networks is to incorporate the network 
geometry into the model. One approach for incorporating 
structural information of the fiber network can be achieved 
through image processing, in which the desired network is 

segmented from the images and skeletonized (Krauss et al. 
2012). Instead, numerically generated random fiber networks 
have been instrumental in studying the mechanics of large 
network models like collagen gels, carbon nanotubes, poly-
mer networks, etc. (D’Amore et al. 2010; Spanos and Esteva 
2009; Lake et al. 2012; Zhang et al. 2012). The mechanical 
behavior of human amnion was modeled and predicted using 
a discrete network model by ensuring geometric and stiffness 
percolation (Mauri et al. 2016; Bircher et al. 2017). Com-
monly used methods like Voronoi tessellations, Delaunay 
triangulations and other tessellations resulting from simi-
lar construction principles are not ideal for studying com-
plex structures such as the adventitia. This is due to the fact 
that even though the structural arrangement of fibers in the 
adventitia is random, it can be identified by a stochastic pro-
cess with proper geometrical implications. This is necessary 
as the mechanical response of the structure is highly sensi-
tive to the microscopic arrangements of the fibers. More 
recently, random walk algorithms have been used to model 
fiber networks in fibrous biomaterials and arterial wall layers 
(Jin and Stanciulescu 2016). Although the approach pre-
sented by Jin and Stanciulescu (2016) utilized morphologi-
cal parameters like orientation and waviness to describe the 
fiber network, the model fails to address some important 
aspects related to morphology and kinematics. Firstly, the 
assumption of realizing the collagen network to be made up 
of two families of fibers with identical mean orientations 
about the axis with an equal percentage of fibers in both 
families for adventitia. Upon investigation of several second-
harmonic generation microscopy image stacks of adventitia, 
we observed that this is not the case where sometimes even 
the presence of two families of fibers is indistinguishable. 
Secondly, the assumption that the underlying kinematics of 
the fibers follow an affine transformation is perhaps inaccu-
rate. Random fiber networks such as collagen in the adven-
titia are shown to not necessarily undergo affine kinematics 
(Krasny et al. 2017; Chandran 2005). These factors pose 
some important questions to be addressed, which motivated 
us in developing a discrete model generated based on experi-
mentally measured orientation distributions, and including 
features to enable and control non-affinity of the networks 
transformation, similar to the previous works (Mauri et al. 
2016).

Hence, the main objective of this paper is to bridge the 
gap by combining the above-mentioned numerical recon-
struction methods with a thorough histological analysis and 
stochastic quantification of the microstructure, with the aim 
to study the microscale mechanical state of such fibrous 
tissues. The interactions between neighboring fibers, and 
between fibers and the ground matrix are not included in 
the model. The possible contribution of the matrix on the 
mechanical response of the tissue is in the form of hydro-
static pressure developing with stretch (Lanir 1979). The 
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assumption to exclude any interactions between the ground 
matrix and fibers was shown to be a valid one by some stud-
ies (Harkness and Harkness 1959; Daly 1969). The present 
study was based on experimental data previously obtained 
on rabbit carotid arteries using multi-photon confocal 
microscopy and uniaxial tension testing (Krasny et al. 2017). 
Herein, we hypothesized that the parameters which influence 
the passive mechanics of the adventitial fiber network are: 
orientation, waviness, volume fraction, diameter and elastic 
modulus of the fibers. Note that the study was limited to the 
mechanics of the collagen network in the adventitia most 
relevant in studying extreme loading scenarios neglecting 
the effects of other microstructural components. This choice 
lied onto the common hypothesis that at high loads beyond 
physiological pressure levels, collagen acts as the princi-
pal load-bearing component in the arterial wall. Through 
thorough histological analysis, the morphological param-
eters were quantified for one sample. Next, discrete network 
modeling was implemented for reconstructing the collagen 
fiber network which was further used as an input for numeri-
cal (Finite Element, FE) simulations of uniaxial tension 
tests. A constrained optimization problem was defined to 
identify constitutive (and morphological, if missing) param-
eters for various samples. After finding a good agreement 
for the macroscopic mechanical behavior, the microscopic 
mechanical state was quantified and analyzed. Finally, an 
extensive sensitivity analysis was performed to establish the 
relationship between (1) the selected mechanical outputs 
and (2) each of the governing constitutive/morphological 
parameters, thus providing insight to discuss structure-to-
mechanics relationships in adventitial tissue. A brief discus-
sion on the non-affine nature of fiber kinematics is provided 
based on the obtained results. And finally, utilizing the result 
of the mechanical state of the fibers at various load levels, 
a possible probabilistic tool for understanding the onset of 
rupture is presented.

2  Methods

2.1  Experimental data and analysis

All the data that were used to develop and validate the finite 
element model were acquired from experiments on carotid 
arteries from male New Zealand White rabbits which were 
previously published (Krasny et al. 2017). Briefly, the initial 
pre-stretch condition of the excised samples was assessed 
by measuring in vivo and ex vivo lengths promptly after 
harvesting. The excised samples were frozen until the day 
of the experiment at − 20 ◦ C and then unfrozen in a phos-
phate-buffered saline solution at an ambient temperature 
of 24 ◦ C. It should be noted that the mechanical tests were 
conducted at a temperature less than the one in vivo, which 

might possibly stiffen the arterial wall (Zemanek and Michal 
2009). Also, it was evident from the literature that freezing 
the arteries also induces mechanical and structural changes, 
but there is no consensus as to what kind of histological 
changes happen (Stemper et al. 2007; Venkatasubramanian 
et al. 2006; Chow and Zhang 2011). A better understanding 
of these changes requires a more in-depth examination, per-
haps with the aid of better imaging techniques, which was 
not carried out during the experimental study. However, all 
the samples were stored and tested under similar conditions. 
Cylindrical sections of length 10 mm were cut out from the 
arteries and cut open along the longitudinal axis to form rec-
tangular sections of approximately 5 mm width. In the pre-
sent study, the following data from these experiments were 
used: multi-photon microscopy imaging in the initial no-load 
state, and the mechanical testing curves (uniaxial tests in in-
plane circumferential, axial, and diagonal directions).

2.1.1  Image acquisition

Multi-photon microscopy images of the arterial specimens 
at zero load state were acquired with a Nikon A1R MP plus 
microscope. The excitation wavelength was set to 870 nm 
for optimal adjustment of auto-fluorescence and second-
harmonic generation (SHG) signals. Microscopic images of 
the tissue were obtained, with the adventitial side facing the 
objective of the microscope (see Fig. 2). The images were 
acquired at an imaging resolution of 0.5 μ m in each direc-
tion with an imaging window of 512 × 512 μ m. The depth 
of the scan, which depended on the quality of the signal in 
response to the pulsed laser beam, varied in the range of 
60–90 μ m. The total acquisition time for each stack with a 
scan speed of 2 frames per second, with two-frame averag-
ing, took about 20–30 min.

2.1.2  Image processing

In order to develop a structurally accurate FE model of 
the adventitia, it is pivotal to study histology, to identify 
morphological parameters which define the structure, and 
to quantify those using reasonable stochastic formulations. 
Hence, the image stacks representing the collagen (SHG sig-
nal) were analyzed to extract relevant quantitative informa-
tion regarding orientation, waviness, volume fraction, and 
diameter of this fibrous component.

The global orientation of a collagen fiber can be quanti-
fied with two parameters, polar angle � , which is the angle 
with respect to the axial–radial plane, and azimuthal angle � , 
which is the angle in the circumferential plane. Previous stud-
ies (Humphrey 2002; Wagenseil and Mecham 2009) showed 
that the orientation of collagen fibers in the axial–radial direc-
tion is negligible. Subsequently, we only focused on extracting 
the orientation of fibers in the axial–circumferential plane. The 
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images were analyzed using an FFT analysis, which was previ-
ously utilized in studying the global orientation of collagen in 
the arterial wall (Polzer et al. 2013; Polzer and Gasser 2015). 
A total of 10 slices through a depth of 100 microns were ana-
lyzed and the measured azimuthal angles � were averaged for 
all analyzed sections to obtain the orientation of collagen. The 
orientation distribution of fibers in the microstructure was then 
fitted using a finite mixture of von Mises distributions given 
by Eqs. 1 and 2, in order to later generate a numerical network 
by inverse random sampling.

where k1 and k2 are the concentration parameters defining 
the dispersion of each family of fibers, �1 and �2 are the 
mean orientation angles, and 0 < p < 1 is assigned to define 
the weight of each distribution. Finally, I0(k1) and I0(k2) are 

(1)

f (�‖�1,�2, k1, k2, p) = p
ek1 cos 2(�−�1)

�I0(k1)
+ (1 − p)

ek2 cos 2(�−�2)

�I0(k1)

(2)I0(k) =
1

� ∫
�

0

ek cos �d�

zero-order Bessel functions of type I given by Eq. 2, which 
act as a normalization parameter such that:

If k is small, the distribution tends to be uniform, whereas 
for very high values of k the distribution assumes a Dirac-
delta function. As the value of k increases, the distribu-
tion approaches a Gaussian distribution with mean � and 
variance 1

k
 . Von Mises distribution is �-periodic such that 

f (�) = f (� + �) . By varying the mean and concentration 
parameters, the above function can represent a wide range 
of collagen organizations, which can be used in modeling 
collagen networks in these tissues.

Collagen fiber waviness defines the initial crimp in the 
model and partially controls the strain at which collagen is 
recruited under loading, and therefore, it is significant in 
network reconstruction. For this reason, all the images of 
the stack were analyzed semi-automatically to obtain fiber 
characteristics such as end-to-end length (ls) , and crimped 
length (lc) . These parameters were measured using ImageJ 

(3)∫
�

0

f (�‖�1,�2, k1, k2, p)d� = 1

Fig. 2  a–d Multi-photon 
microscopy images of adventi-
tial collagen at depths of 25 μ m, 
50 μ m, 75 μ m, and 100 μ m 
through the microstructure

(a) (b)

(c) (d)
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tracing and measuring tools, which was also demonstrated 
by Rezakhaniha et al. (2012) using NeuronJ, an ImageJ 
plugin for neurite tracing and analysis. The waviness of a 
collagen fiber is then defined by Eq. 4.

As the above equation suggests, W has a lower bound of 
0 and an upper bound of 1. The higher the value of W, the 
straighter the fiber is. A value of 1 indicates that the fiber is 
not undulated. A beta distribution was used to characterize 
waviness distribution in the imaged sample. It consists of a 
continuous probability density function defined by Eq. 5, 
where � and � are shape parameters, and C(�, �) is the nor-
malizing constant. Maximum likelihood estimation was 
used to obtain the parameters of orientation and waviness 
distributions.

The result of using a finite mixture of von Mises distribu-
tions is illustrated in Fig. 3a. The resulting parameters from 
the identification process were �1 = − 38.7◦ , k1 = 8.32 and 
�2 = 40.7◦ , k2 = 10.03 , and p = 0.31 . Similarly, the result-
ing probability density function for waviness with � = 15.78 
and � = 6.21 from the fitting process is illustrated in Fig. 3b.

To estimate the amount of collagen in the microstruc-
ture, a semi-automatic segmentation analysis was conducted 
in  ScanIp®, a core image processing platform of the com-
mercial software  Simpleware®. As a first step, the images 
obtained from confocal microscopy are preprocessed in 
order to enhance the contrast of the fibers and diminish the 
background. The main segmentation step was realized with 
utilizing an array of pathfinding algorithms (shape detec-
tion, fast marching, geodesic active contours, etc). Seed 
points were defined manually by the user to track the fibers 
in the image stack following which the segmentation was 

(4)W =
ls

lc

(5)f (W, �, �) = C(�, �)W�−1W�−1

achieved by solving a global optimization function specific 
to each algorithm used, which is based on the energy. Even 
though the segmented network could not be used to run a 
full-scale finite element analysis, it was used to approxi-
mately estimate the collagen content. An average value of 8 
semi-automatic segmentations was taken as the representa-
tive volume fraction of collagen. This was done by taking 
the ratio of segmented volume to envelope volume, which 
yielded a volume fraction of 36.4 ± 2.57 %. The obtained 
value of volume fraction is in accordance with the reported 
values in the literature (Chen et al. 2016, 2011).

2.1.3  Mechanical testing

As mentioned in the above section, harvested arteries were 
used to perform uniaxial tension tests in three in-plane 
directions: circumferential, axial, and diagonal (Krasny 
et al. 2017) (Fig. 4). For this purpose, the samples were 
cut into a dog-bone shape. The cross-sectional area of the 
resulting strips was measured to be about 0.5 ± 0.1mm2 . 
A high-precision tensile machine  (Deben® Microtest ten-
sile/compression stage) with a load cell capacity of 150 N 
and a precision of 0.01 N was used for the uniaxial tensile 
tests. Before conducting the test, each sample was sub-
jected to quasi-static triangular preconditioning. Following 
this step, the width of the tissue in the unloaded configura-
tion was recorded four times and averaged. Uniaxial ten-
sion was then carried out at a controlled displacement until 
a target tensile force of 1 N was reached. The force meas-
ured at every loading state allowed the computation of first 
Piola–Kirchhoff stress � =

F

A0

 , where F is the force at a 
given displacement and A0 is the initial cross-sectional 
area. The stretch was measured based on the inter-clamp 
lengths measured at the initial state, which serves as the 
reference configuration, and at a given load (Krasny et al. 

(a) (b)

Fig. 3  Measured versus identified probability density function for a orientation of collagen, b waviness of collagen
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2017). For a more detailed understanding of the uncertain-
ties arising from the experimental protocols, we direct the 
reader to Krasny et al. (2017). The obtained stress–stretch 
curves will be later used to identify model parameters and 
further validation.

2.2  Mechanical model

2.2.1  Assumptions

The following assumptions were taken into account in 
building and analyzing the mechanics of the model:

1. Each fiber was assumed to be a sinusoidal curve; made 
up of segments of length lseg , whose direction of propa-
gation is defined by a global orientation � and local ori-
entation �rel.

2. For each fiber, the global mean orientation was defined 
by the finite mixture of von Mises distributions given by 
Eq. 1.

3. The waviness of the fiber W was introduced by �rel such 
that W = cos(�rel).

4. The polar angle of the fibers, which is the angle out 
of the axial–circumferential plane, was assumed to be 
negligible for the reconstruction.

5. Every fiber was assumed to have its ends intersect the 
boundaries of the defined volume, such that no fiber 
lies dangling inside the volume. This assumption stems 
from the observations made on the microstructure of 
the adventitia under the confocal microscope of differ-
ent arterial tissues. It was noted that the length scale of 
a collagen fiber is much larger than the field of view 
employed for this study, which is 500 μm.

6. For global orientations of each sample, a similar prob-
ability density function with constant mean orientations 
and varying standard deviation was used to generate the 
network.

7. All the fibers were assumed to have the same diameter, 
instead of a distribution.

8. For the mechanics, only the collagen fiber network was 
simulated and analyzed. On the other hand, mechanical 
tests were performed on the whole tissue

2.2.2  Numerical network reconstruction

Motivated by the work of Jin and Stanciulescu (2016) and 
Mauri et al. (2016), we defined the collagen fiber network 
as a discrete line network with each fiber represented as a 
worm-like chain, with a uniform diameter of 10 μ m (Car-
lisle et al. 2010; Sherman et al. 2015) for each fiber. This 
assumption was supported following a pore size analysis 
conducted on image stacks using a template matching algo-
rithm as described by Krauss et al. (2012). The radius was 
taken to be the most probable value from the distribution of 
radius of fibers inside the tissue as shown in Fig. 5a. This 
enforced more support to the scale at which the mechanics 
of the collagen network are being studied. In this respect, a 
distinction can be made between the fibril and fiber scales 
based on the recorded diameter values (Ushiki 2002). It was 

Fig. 4  Schematic representation of the uniaxial tensile test sample

(a) (b)

Fig. 5  a Pore size radii distribution in the microstructure, b schematic representation of the reconstruction algorithm
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also observed that at initial state some fibers tend to coalesce 
into bundles, which later separate upon application of load.

The steps followed in reconstructing the collagen network 
were as follows:

1. A 3-D volume of 500 μm × 500 μm × 100 μ m was speci-
fied to simulate the samples.

2. A uniform random distribution was used to specify the 
initial seed points of the fibers.

3. The orientation of each fiber � � (0,�) was inverse sam-
pled from its defined probability density function [Eq. 
(1)].

4. The waviness of the fiber W was inversely sampled from 
its defined probability density function [Eq. (4)].

5. The angle of each line segment relative to the fibers 
mean orientation, �rel , was computed based on the fiber 
waviness.

6. The fiber was propagated with segments of length lseg , 
which is the average wavelength measured from images, 
in opposite directions from the initial seed point until 
both ends meet the boundary of the volume.

7. Steps 2–6 were repeated until the desired fiber volume 
fraction was achieved.

A schematic of the above-mentioned fiber parameters is 
shown in Fig. 5b. The polar angle of the fiber was assumed 
to be insignificant and hence not considered in the recon-
struction process. The parameter �rel captures the waviness 
of fiber in the network. For sample no 4, the morphological 
parameters identified directly from the images were used as 
input, whereas for other samples an inverse approach based 
on the tensile stress–stretch response was used to identify 
modulus of collagen, axial connector stiffness, volume frac-
tion, waviness, and orientation. This has been done for two 
reasons: the image stacks were only available for the first 
four samples, and the quality of the images for the other 
samples at no-distention state was adjudged to be insufficient 
to extract any meaningful morphological information.

2.2.3  Finite element model

The collagen fiber network obtained from the above recon-
struction process was then used as an input for FE analysis. 
A custom script in  Matlab® was used to generate an input 
file to be imported to  Abaqus®. It has been well documented 
that a pin-jointed random fiber network is stable for a coor-
dination number of at least 4 at each joint (Picu 2011). As 
this is not the case with the generated network, which has a 
coordination number of 2 at each joint, the fiber segments 
were modeled using 3-D beam elements in the input file 
generation process. In order to simulate an equivalent truss-
like behavior, the ratio of axial stiffness to bending stiffness 
for the beams was adjusted by reducing the radius from 5 to 

0.1 μ m and increasing the elastic modulus proportionally, 
thus keeping the axial stiffness constant. The reconstructed 
network was meshed with 11000 B31H beam elements 
with the material behavior of each collagen fiber defined as 
incompressible and linearly elastic.

2.2.4  Boundary conditions

The boundary conditions imposed on the model in order to 
simulate the uniaxial tension experiments are shown in 
Fig. 6. Node sets for each face where the fibers intersect with 
the boundaries were created. The desired axial stretch is 
achieved by displacing all the nodes on one axially sym-
metric surface, by a value ucirc , while restraining the other 
end. To induce the effect of apparent Poisson’s ratio of the 
sample on the network, an axial connector was introduced 
and coupled to the transverse displacement degree of free-
dom of all boundary nodes. One node of the axial connector 
element was displaced in the traction direction according to 
the affine kinematics assumption while the other node 
(called pivot) was free (hence only transverse displacement 
possible). The stiffness of the axial connector was varied to 
control the displacement of the pivot. This pivot was then 
coupled with boundary nodes of the network to control their 
transverse displacement. Equation constraints were used to 
couple each node of the circumferentially symmetric bound-
ary surfaces to the pivot as uy = ± upivot . Similarly, a user-
defined constraint was defined to couple each node on the 
axially symmetric boundary surfaces to the pivot as 
uy = (

y−
L

2
L

2

) upivot . The transverse deformation of the network 

was then controlled by the axial connector stiffness, a param-
eter of the present model.

Static analyses were performed using the Abaqus Stand-
ard solver. A displacement ucirc = 500 μ m (i.e., a stretch of 
2) was applied in the traction direction. The main output of 
the simulations was the force versus stretch curve. The 
response was then used to compute the first Piola–Kirchhoff 
stress � =

F

A0

 , where F is the tensile force computed as the 
sum of individual fiber reaction forces (projected along the 
traction direction) at the elongation boundary and A0 is the 
initial cross-sectional area.

2.3  Design of experiment approach for model 
evaluation

A reduced model of the previously presented model was 
constructed for two purposes. First, it was employed in an 
inverse identification approach to accelerate the identifica-
tion of missing input parameters of samples exhibiting insuf-
ficient image quality. Second, the reduced model was used in 
a sensitivity analysis of the mechanical response to the main 
model parameters (see section below).
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2.3.1  Input parameters

To build this reduced model, it was important to know the 
meaningful range of each parameter to be identified. All the 
parameters and their range of values used in constructing 
the reduced model are presented in Table 1. The modulus of 
collagen employed in this model was taken from previously 
reported experimental data (Aifantis et al. 2011; Dutov et al. 
2016; Kato et al. 1989). About 20 simulations with varying 
stiffness values for the axial connector were run, following 
which the bounds of stiffness values for the axial connec-
tor element were chosen such that the lower bound value 
represented a free pivot and the upper bound value asymp-
totically approached affine kinematics behavior. A similar 
literature study helped in choosing the bounds for collagen 
content in the adventitia and initial collagen waviness. Fol-
lowing the choice of bounds for each input parameter, a 
uniform sampling method was employed to sample input 
points in all dimensions of the parameter space. The prin-
ciple of this technique is to partition space of m parameters 
into 

∏m

i=1
ni parts, where ni is the number of intervals the ith 

input parameter range is divided into. Then, 
∏m

i=1
ni sets of m 

dimensions were created such that each set contains exactly 
one partition of each parameter.

A total of 7200 simulations were performed for extracting 
the uniaxial response and microscale mechanics of networks 
generated by varying the parameters presented in Table 1. 
For the purpose of avoiding over-complexification, the mean 
fiber orientations and weight of individual distributions were 
not varied from the values extracted from the image stacks. 
Only the standard deviation was varied but assumed to be 
the same for both families. The standard deviation for a 
given von Mises distribution can be computed using the 
equation �2 = 1 −

I1(k)

I0(k)
 , where k is the concentration param-

eter as described in Sect. 2.1.2. This allowed reducing the 
number of parameters to be varied for orientation distribu-
tion to one in place of five and yet be able to simulate a wide 
range of initial network configurations. The resulting 
stress–stretch data from each simulation were fed to a six-
dimensional gridded interpolant in  Matlab®. The first dimen-
sion of the grid corresponded to a macroscopic stretch value, 
while the other five dimensions correspond to the input 
parameters. This helps in extracting the stress–stretch 
response of any configuration of parameters defined within 
the bounds of the input parameters.

2.3.2  Responses

The overall response of the microstructure depends on 
the parameters used to construct the model, which are 
shown in Table 1. In order to study the influence of vary-
ing these model parameters on the global response of the 

Fig. 6  Boundary conditions 
used for the uniaxial tension 
simulations

Table 1  Range of input parameters

Parameter Lower bound Upper bound

Parameter list
Collagen modulus 60 MPa 300 MPa
Axial connector stiffness 0.05 Nm−1 20 Nm−1

Volume fraction 20% 40%
Waviness ( �) 0.67 0.83
Orientation ( �) 2.5◦ 10◦
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microstructure, two independent responses of the model 
were specifically chosen: the final slope, and the recruit-
ment stretch of the stress–stretch curve. The final slope 
response was chosen such that it is indicative of the mac-
roscopic stress of the network. This implies that higher the 
final slope of the network, higher will be the global stiffness 
of the network. Thus, the index is helpful in identifying the 
various possible combinations of constitutive and morpho-
logical parameters which result in stresses leading up to rup-
ture. On the other hand, collagen recruitment is a stiffening 
mechanism observed in the arterial wall and other colla-
genous tissues and marks the onset of collagen being the 
principle load-bearing component. The recruitment stretch 
response was chosen in order to quantify the mechanical 
behavior of collagen in the network. There is not a lot of 
information in the literature as to what factors influence the 
recruitment of collagen. The commonly accepted notion is 
that the waviness of the fibers controls collagen recruitment 
(Hansen et al. 2002). Thus, the evaluation of this response 
is used to quantify the effect of other parameters on collagen 
recruitment.

Final slope: The final slope was computed as the slope 
of the stress–stretch curve comprising the final 10% of the 
stretch. This index, unit of MPa, was computed for all the 
7200 simulations, and the result was stored as a vector 
sfinal = {s1, s2,… , s7200}.

Recruitment stretch: The recruitment stretch of a colla-
gen network can be defined as the global stretch at which 
collagen starts to act as the major load-bearing component. 
The recruitment stretch was computed, in this study, as the 
global stretch at which the rate of change of slope was found 
to be the highest in the stress–stretch curve. The index for 
recruitment stretch is unitless. Like for the final slope, the 
index was computed for all the 7200 simulations and the 
result was stored as a vector �recruitment = {�1, �2,… , �7200}.

2.3.3  Linear and nonlinear regression for sensitivity 
analysis

Five-dimensional response surfaces sf  and �r, respectively, 
represent the final slope and recruitment stretch indices as a 
function of the five-dimensional input parameter matrix (X) 
described by Eq. 6:

where cs and c� are the residuals obtained during the fit-
ting process. Each of the response surfaces was fitted using 
regression analyses, which were performed in  Matlab® using 
the in-built regression models. First, a linear regression with 
5 linear terms and 1 constant term was fitted to study the 
global influence of each input parameter on each of the 

(6)
sfinal = sf {X} + cs

�recruitment = �r{X} + c�

chosen indices. Then, a quadratic regression with 5 linear 
terms, 14 quadratic terms and 1 constant term was fitted 
to study the interactions between input parameters for each 
response. Practically, each of the regression analyses utilized 
the whole parameter space of the reduced model. Since all 
parameters have different units, they were normalized on a 
scale of 0 to 1, where 0 corresponds to the lower bound and 
1 corresponds to the upper bound of the parameter.

In order to assess the accuracy of the fitted models, two 
different statistical methods were used. The root mean 
squared error (RMSE) value and the R-squared value were 
calculated for both linear and quadratic regressions. Finally, 
in order to assess the meaningfulness of each predicted 
regression coefficient, the p value was used. Using this infor-
mation, regression coefficients with an insignificant p value 
(p value > 0.05) were neglected and the regression analyses 
were performed again.

2.4  Identification of model parameters

The 6-D gridded interpolation function was used as a 
reduced model in order to speed up the identification process 
of the missing parameters including collagen modulus, axial 
connector stiffness, volume fraction, waviness, and orienta-
tion for each sample.

2.4.1  Validation on sample no 4

Through a morphological analysis, we were able to extract 
the morphological parameters required to build the model 
for sample no 4, hence leaving us with only collagen modu-
lus and axial connector stiffness to be identified. Using the 
experimental stress–stretch data, it was possible to uniquely 
identify these two parameters which optimize the predic-
tive capability of the model to represent the measured 
behavior of the microstructure. To do so, the geometry of 
the microstructure of sample no 4 was built following the 
algorithm described in Sect. 2.2.2; and a genetic algorithm 
(MathWorks, 2015), which takes into account the initial 
population data for the gridded interpolants, and their input 
parameters as specified in Table 1 was used in  Matlab® to 
perform a constrained optimization. An R-squared func-
tion given by the equation below was used as the objec-
tive function to minimize the error between experimental 
and model force vs. stretch curves. In the equation below, 
n represents the number of data points where stress–stretch 
data were collected from the experiments. Corresponding 
values of stress–stretch data were computed from the grid-
ded interpolant in order to complete the equation below. 
The R-squared function was defined in a negative sense 
owing to the global minimization procedure adapted in the 
genetic algorithm. The constraints for the above function 
were given in the form of bounds for the input parameters. 
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For the morphology parameters, the values were fixed to 
the extracted data, whereas for the constitutive parameters, 
bounds were assigned as defined in Table 1. A sufficient 
number of independent runs were performed in order to 
obtain a global minimum. Finally, once an optimal set of 
constitutive parameters was obtained, the model was com-
pared with experimental data for validation.

2.4.2  Identification of model parameters on other samples

Unlike for sample no 4, for the other 5 samples the complete 
input parameter set (i.e., morphological + constitutive) was 
inversely identified from experimental data. As described 
earlier, a genetic algorithm with the objective function 
resembling an R-squared function was used to perform the 
constrained optimization. In this case, the constraints were 
applied in the form of bounds for all parameters as defined 
in Table 1. A series of independent runs were performed to 
ensure a global minimization.

3  Results

In order to demonstrate the predictive capability of the pro-
posed model, the computational results obtained from the 
simulations were compared to experimental data of six sam-
ples of rabbit carotid arteries under uniaxial tension [previ-
ously published in Krasny et al. (2017)]. It is interesting to 
note that the uniaxial tension tests were performed on the 
whole tissue, while the reconstructed microstructure rep-
resents only the adventitial layer. This was done due to the 
fact that the depth to which confocal microscopy images 
could be obtained with reasonable quality was limited. This 
often times resulted in image stacks representing a thickness 
of less than 200 μ m, while the tissue is much thicker than 
that. To overcome this limitation, comparisons were made 
on stress data, assuming homogeneous stress through the 
sample thickness. Also, it is interesting to note that com-
parisons were made beyond a high stretch value, where col-
lagen is usually considered to be the principle load-bearing 
component.

3.1  Model validation

First, we present the model parameters corresponding to 
sample no 4 in Table 2, for which only the modulus of col-
lagen and axial connector stiffness were identified. The 
comparison between experimental data and the numerical 
response of the model is presented in Fig. 7a. Note that since 
we are interested in the mechanical response of the collagen 

(7)

R-Squared =

∑n

i=1
(Experiment(i) − Interpolant(i))2

∑n

i=1
(Experiment(i) −mean(Experiment))2

− 1

fiber network as opposed to the whole tissue, the relevance 
of comparison mainly lies in the recruitment stretch value 
and beyond that point, where the simulation results demon-
strated an accurate prediction of the mechanical response. In 
this case, an R-squared value of 0.968 was obtained, which 
confirmed the fitting accuracy.

3.2  Parameter identification from experimental 
data

The methodology described above was applied to 5 other 
samples previously tested experimentally to obtain their 
optimum input parameter set. The parameters obtained from 
multiple runs of the genetic algorithm for each sample are 
presented in Table 3. It can be seen that all the parameters lie 
in their respective range without reaching range limits. The 
comparison between experimental data and the simulation 
results for these samples is shown in Fig. 8. In each case, an 
R-squared value above 0.9 was obtained, with a minimum 
obtained value of 0.92 for no 3. Note that the insignificant 
contribution of fibers to the global stress until the point of 
recruitment can be explained by the uncrimping process they 
undergo as the sample stretches. This aspect is addressed 
later in Sect. 3.4.

3.3  Sensitivity analysis

3.3.1  Linear model

A linear regression model with 6 terms was identified to 
study the linear effect of each parameter on the overall 

Table 2  Optimal parameter set for sample no 4

Collagen 
modulus

Axial 
connector 
stiffness

Volume frac-
tion

Waviness Orientation 
( �)

297 MPa 0.955 Nm−1 37.1% 0.80 3.55◦

Fig. 7  For sample no 4 comparison of stress–stretch results from 
finite element simulations with experimental data



1518 V. Ayyalasomayajula et al.

1 3

response. The linear regression model with 6 terms exhib-
ited an RMSE value of 0.246 MPa, an R-squared value 
of 0.94 for final slope and an RMSE value of 0.0328, an 
R-squared value of 0.92 for recruitment stretch. The com-
puted sensitivity coefficients for each output are presented 
in Fig. 8. The value of a coefficient signifies the amount 
of influence the corresponding parameter has on the 
response. For instance, in evaluating the sensitivity on the 
final slope, it was observed that modulus of collagen has 
the most influence. By increasing its value on the normal-
ized scale from 0 to 1 (i.e., 60–300 MPa), the final slope of 
the response increases by 7.15 MPa. On the other hand, the 
initial waviness in the network exhibited the most negative 
influence on the final slope of the response. A sensitivity 
coefficient of − 1.92 MPa signifies that by increasing the 
initial waviness in the network from 0 to 1 (i.e., 1.2–1.45 
straightness), the final slope reduces 1.92 MPa. The most 
influential parameter for recruitment of collagen was the 
initial waviness in collagen. By increasing its value from 
0 to 1 on the normalized scale, stretch at which collagen is 
supposed to be recruited increased by 0.19. While collagen 
modulus, volume fraction, and orientation variance had 
almost no influence on collagen recruitment, axial con-
nector stiffness displayed a slight negative influence with 
a sensitivity coefficient of − 0.028.

3.3.2  Nonlinear model

A nonlinear regression model with 20 terms was also built 
to analyze the nonlinear effects and interactions between 
parameters. An initial analysis revealed some parameters 
which did not have any significance on the output (p value 
> 0.05) . Following this, the analysis was repeated with 18 
terms for final slope and 13 terms for recruitment stretch. 
The nonlinear regression model with 6 terms exhibited an 
RMSE value of 0.0889 MPa, an R-squared value of 0.992 
for final slope and an RMSE value of 0.312, an R-squared 
value of 0.902 for recruitment stretch. The nonlinear con-
tribution of individual parameters and their interactions 
are presented in Fig. 9, from which they can be interpreted 
according to the intensity of the color plot. The coefficient 
values which were found to be insignificant (p value > 0.05) 
are displayed in black. The quadratic terms corresponding to 
each parameter revealed that none of them exhibit a strong 
nonlinear response w.r.t. both final slope and recruitment 
stretch. Waviness exhibited the most nonlinear behavior in 
both cases. For the final slope response, modulus of col-
lagen with volume fraction, and modulus of collagen with 
waviness exhibited significant interactions. The interaction 
between modulus of collagen and waviness was found to 
be negative, which is reasonable as they have a reciprocal 
influence on it. For the recruitment stretch, the interaction 
between collagen modulus and every other parameter was 
found to have very little significance, whereas axial con-
nector stiffness and waviness showed the most interaction.

3.4  Morphological changes of the fiber network

3.4.1  Reorientation

The mechanics of the model collagen network is completely 
determined by the constitutive behavior of the fibers, their 
waviness and orientation, and the network density. It has 
been well documented in the experimental literature that 
collagen fibers gradually reorient toward the load direction 
(Niestrawska et al. 2016; Krasny et al. 2017). To understand 
this behavior, the evolution of the orientation distribution of 
fibers was studied at various stages of loading. The orienta-
tion distribution of collagen in its initial configuration and at 

Table 3  Optimal parameter set 
for samples 1, 2, 3, 5, and 6

Sample Collagen modu-
lus (MPa)

Axial connector stiff-
ness (Nm−1)

Volume frac-
tion (%)

Waviness Std deviation 
of orientation

1 163.34 1.78 29.03 0.757 5.21°
2 283.86 3.81 28.53 0.793 4.33°
3 80.64 1.06 31.98 0.746 5.86°
5 194.6 4.4 36.80 0.769 3.98°
6 70.45 1.39 29.35 0.757 6.16°

Fig. 8  Comparison of results obtained from finite element simula-
tions with experimental data of different arterial samples
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a maximum stretch of each sample is presented in Fig. 10a. 
The analysis of fiber angles in their final configuration sug-
gested that fibers preferred orienting themselves close to the 
traction direction. The dispersion of fibers was also observed 
to reduce as fibers tend to align toward the loading direc-
tion. The initially preferred orientations of collagen fibers 
with respect to the circumferential direction in all samples 
were approximately 40◦ and − 40◦ . As the samples were 
stretched uniaxially in the circumferential direction, the pre-
ferred orientations changed to approximately 18◦ and − 18◦, 
respectively. The amount of reorientation in each sample was 
dictated by its transverse stiffness and global stretch. This 
was computed as the average of percentage reorientation 
of all fibers in a sample. At a given global stretch, the sam-
ple identified with least axial connector stiffness underwent 
most reorientation. For instance, at a global stretch of 2.0 
in the simulations; sample no 4 underwent the maximum 
reorientation of about 85.63% followed by sample no 3 with 
85.14%, sample no 6 with 77.89%, sample no 1 with 72.81%, 
sample no 2 with 72.05%, and sample no 5 with 70.62%. 
Nevertheless, at their respective maximum global stretches 
of 1.75 and 1.52 in the experiments, sample no 3 underwent 

a maximum reorientation of about 67.45%, and sample no 
4 a reorientation of about 46.33%, signifying that the axial 
connector stiffness bore lesser influence on the amount of 
reorientation as compared to the global stretch (Fig. 11).

3.4.2  Straightening

Collagen fibers which were undulated in their initial state 
underwent a straightening process as the load increased. It 
can be seen from Fig. 10b that the average waviness in the 
network almost reaches 1 at high stretches. It was observed 
that, for some samples, even at high loads the collagen fibers 
remained slightly crimped. This might be due to a high initial 
average waviness combined with the amount of transverse 
displacement induced by the pivot governing transverse 
response. For two samples with approximately equal initial 
waviness, the amount of reorientation had a direct impact on 
the final average waviness in the model. For instance, sample 
no 3 and sample no 6 had identical initial waviness of about 
0.752, which resulted in 0.984 and 0.996, respectively. In the 
above scenario, sample no 3 had to undergo a reorientation 
of 85.14%, whereas sample no 6 underwent a reorientation 

(a) (b)

Fig. 9  Sensitivity indices from linear regression for a final slope response, b recruitment stretch response

(a) (b)

Fig. 10  Sensitivity indices from nonlinear regression for a final slope response, b recruitment stretch response



1520 V. Ayyalasomayajula et al.

1 3

of about 77.89% signifying that the straightening process for 
a fiber undergoing higher reorientation is slower than for a 
fiber undergoing lesser reorientation.

3.4.3  Non‑affine behavior

The morphological rearrangement of collagen also deter-
mines the apparent non-affine nature of the network defor-
mation. A random fiber network with low network density 
and a high ratio of axial to bending stiffness is more compli-
ant with non-affine behavior (Picu 2011). To this effect, the 
computed collagen fiber displacements were used to study 
the apparent non-affinity in the network using a strain-based 
metric defined in Eq. 8.

where E = �11, �22, �12,�12 is a vector containing the strain 
and rotation components, Eaffine is the corresponding affine 
vector. The length scale at which these strain values were 
probed is defined by r, which was chosen to be lseg , the 
distance between the cross-links. To understand the evolu-
tion of non-affine behavior of these networks, the obtained 
non-affinity value was plotted against far-field stretch and is 
reported in Fig. 12. The amount of non-affinity computed 
using the above method showed a clear tendency that sam-
ples with low transverse stiffness exhibited a higher non-
affine behavior as compared to samples with high transverse 
stiffness. This can be observed to be the case from the figure 
where sample 4 exhibited the highest non-affinity of almost 
16% and sample 5 exhibited the lowest of about 2.5%. The 
reason for such a drastic difference between the highest and 
lowest is that for sample 5 the identified transverse stiff-
ness corresponded to a near affine behavior. The amount of 
non-affinity in the network can be quantitatively analyzed 
at various stages of loading, which revealed a similar evolu-
tion trend in all samples. The initial phase was character-
ized by low non-affine values with a very gradual increase 
when increasing global stretch. Beyond this, the non-affinity 

(8)NA(r) = ||(E − Eaffine)
2||

increased considerably when increasing global stretch. The 
point of separation between these two phases was observed 
to be the recruitment stretch of collagen.

3.5  Analysis of the micro–macro‑relationship

The model was further used to analyze the micro-level 
mechanical state of each sample at stretches corresponding 
to average peak wall stress at rupture. This kind of analysis 
facilitates the investigation of physical quantities that are 
not (yet) accessible through experiments. A value of 1 MPa, 
representative of peak wall stress at rupture, was taken from 
literature (Gasser et al. 2010; Fillinger et al. 2002), and a 
simulation was run again for each model in order in to reach 
that stress value and study the corresponding mechanical 
state of the fiber network.

The microscopic strain distribution in fibers for each sam-
ple at this macroscopic stress of 1 MPa is shown in Fig. 13. 
It is possible to observe from the histograms that majority 
of the fibers in each sample underwent an axial strain of 
less than 5%. Samples 1, 3, and 6 exhibited axial strains of 
more than 10% in several fibers. It is possibly a result of high 
macroscopic stretch required for each of these samples to 
achieve stress of 1 MPa. It should also be observed that these 
three samples were identified with relatively lower values of 
collagen modulus and higher values of initial collagen wavi-
ness. From the sensitivity analysis conducted, it was found 
that these two parameters bear the most influence on the final 
slope response. Samples 2, 4, and 5, which were identified 
with high collagen modulus and low initial waviness, had 
all fibers with an axial stretch less than 10%. Thus, it can be 
concluded that axial strain in individual collagen fibers at a 
given macroscopic stretch depends indirectly on their elastic 
modulus and initial crimp.

A similar analysis of the microscopic stress distribution 
of fibers at macroscopic stress of 1 MPa is shown in Fig. 14. 
It can be noticed that even though samples 3 and 6 have 
been identified with a relatively low elastic modulus, the 

(a) (b)

Fig. 11  a Comparison of orientation distribution of collagen at initial state in each sample to each sample’s maximum stretch state, b Evolution 
of average waviness of the collagen network in all samples
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fibers exhibit high-stress values. This is possibly due to the 
fact that they exhibit high axial strains in fibers as noted in 
Fig. 13. Although it might be imperative to conclude inter-
esting remarks about fiber rupture based on these stress val-
ues, the heterogeneity in the material constitutive parameters 
should be noted. There is not enough data in the literature to 
facilitate such an analysis. Hence, only strain distributions 
were used as will be described in Sect. 4.5.

4  Discussion

4.1  Main contributions

In this paper, a discrete random network model of the tunica 
adventitia built from experimental data is presented, to 
capture the mechanical behavior at the scale of the fibrous 
microstructure. Computing and analyzing the mechanical 

Fig. 12  Evolution of non-affinity index with stretch computed for all samples
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phenomena occurring at the scale of the microstructure has 
been a focused area in arterial mechanics. Histomechani-
cal constitutive models are used widely to distribute mac-
roscopic stress to various microstructural components and 
correlate macroscopic loading to microscopic component 
responses. Previous attempts at developing an anatomically 
representative finite element model for arterial wall lay-
ers did not investigate the morphology but rather relied on 
inversely identifying the morphological parameters. With 
the method specified here, morphological analysis was made 
to study the distribution of collagen fiber orientations, wavi-
ness, diameter and their volume fraction in the tissue. The 
proposed model is anatomically based, as it incorporates 
this information by employing an inverse random sampling 
approach. Recently, it has been realized that macroscale 
rupture occurs at locations of localized strain concentra-
tion, which interestingly was in contradiction to the notion 
that rupture occurs at the location of maximum stress 
(Romo et al. 2014). While it is possible to investigate the 
mechanical behavior of individual arterial wall layers with 
analytical models, it is interesting to develop a microscale 
finite element model of the adventitia to study microscopic 

mechanical phenomena responsible for the risk of rupture. 
The main objective of this work was to introduce a method 
that can be readily implemented with necessary image pro-
cessing and FE analysis tools.

The histology-based reconstruction presented in this 
paper is general in the sense that it can be applicable to 
many stochastic fibrous microstructures. The orientation of 
fibers is one of the two important parameters required for 
the reconstruction. The presence of two distinct families of 
fibers was evident from the microscopy images. Hence, the 
orientation distribution of collagen in the network obtained 
through an FFT analysis was later fitted to a mixture of von 
Mises distributions (with each distribution representing a 
family of fibers). Also, it was observed from the analysis of 
the images that the number of fibers in each family was not 
the same as it was normally believed to be. To this effect, a 
weighting parameter p was introduced to take into account 
the contribution of each family of fibers. The model also 
takes initial waviness of collagen into consideration which 
was fitted to a beta probability distribution. The initial wavi-
ness of collagen coupled with dispersed orientations controls 
the highly nonlinear mechanical response of the network. To 

Fig. 13  (1–6) Distribution of axial strain in collagen fibers in each sample computed at a global stress of 1 MPa
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reconstruct a numerical network which represents the actual 
collagen network as accurately as possible, the diameter 
and content of collagen were also extracted from the image 
stacks, which had not been previously considered. The entire 
workflow of this forward approach of reconstructing numeri-
cal network from morphology data was conducted on a sam-
ple no 4.

4.2  Comparison with the literature

To ensure fast applicability of the method on a wide range of 
experimental data from other samples, a reduced model was 
constructed using constitutive and morphological parameters 
as inputs. Constrained optimization was then conducted to 
inversely identify the parameters of all samples from which 
obtaining morphological data was not feasible due to image 
quality. The data from uniaxial tensile tests were used in 
that case. All the identified parameters (see Table 2) fell 
in an acceptable range of values reported in the literature 
(Rezakhaniha et al. 2012; Chen et al. 2011; Sherman et al. 
2015; Chandran 2005; Schriefl et al. 2012). Since we were 

mainly interested in studying the behavior of collagen in the 
adventitia, the response of the network prior to the point of 
collagen recruitment was not taken into consideration. The 
capability of this modeling method was demonstrated by 
comparing the numerical simulation result in experimental 
data (Figs. 7, 8). The satisfying agreement with experimen-
tal data demonstrated the capability of the model to predict 
the macroscopic response of the tissue at high strains for a 
wide range of microstructural arrangements.

4.3  Sensitivity analysis

Following the comparison of numerical results with experi-
mental data, a comprehensive parameter sensitivity analysis 
was conducted to establish meaningful relationships between 
individual model parameters and macroscopic mechanical 
response determinants. The responses studied include the 
stretch at which collagen is recruited and the stiffness of 
the tissue following collagen recruitment. Linear regression 
model for the final slope response revealed that axial con-
nector stiffness and orientation dispersion had negligible 

Fig. 14  (1–6) Distribution of axial stress in collagen fibers in each sample computed at a global stress of 1 MPa
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impact compared to those of collagen modulus, waviness 
and volume fraction. As previously shown in Gizzi et al. 
(2014), Chen and Kassab (2016), it was observed here that 
collagen waviness had a negative influence on the final slope 
response. Regarding the recruitment stretch, collagen wavi-
ness was found to be the main influencing parameter. This 
aspect was also briefly studied from 3-D rendered MPM 
images (Hill et al. 2012), where it was found to bear a direct 
relationship. This finding is in line with the present linear 
regression coefficient predicting an increase in recruitment 
stretch with an increase in collagen waviness. A comparative 
study conducted by Holzapfel and Ogden (2017) showed that 
collagen fiber dispersion effects the macroscale mechanical 
response significantly. However, it is to be noted that the 
range of dispersions considered in their study is much higher 
than what we explore with our model. In any case, a quanti-
tative comparison of the explored sensitivity indices could 
not be made at this moment. Although the linear regression 
helped to understand the overall effect each parameter exhib-
ited on each response, the nonlinear regression model was 
found to be a more accurate representation in both cases with 
lesser RMSE and higher R-squared values. However, it did 
not highlight any remarkable combined effect.

4.4  Fiber kinematics

The kinematical reorganization of collagen fibers under load 
was emulated by the model as shown in Fig. 10 and is in 
coherence with previous investigations. The amount of trans-
verse deformation combined with the increasing tension the 
fiber network has to bear dictated the amount of reorienta-
tion in collagen fibers. A review on the mechanics of ran-
dom networks of various densities in Picu (2011) suggested 
that collagen fiber reorientation is explained by non-affine 
kinematics. We always observed that collagen reorientation 
predicted by the model was greater than the affine predic-
tion. It was also computed that the average error in reorien-
tation prediction made by an affine assumption was 22.65% 
± 6.02%, which is in agreement with the average value of 
25% reported from experimental investigation (Krasny et al. 
2017). As the load increased, collagen fibers also underwent 
a straightening process which combined with reorientation 
to control their recruitment. It was observed that the average 
waviness in the network did not reach 1 meaning not all fib-
ers were straightened at the end of loading. To understand 
the recruitment phenomena, a mathematical foundation 
for fibril recruitment in tendons was developed by Bevan 
et al. (2018), based on which they estimated average criti-
cal recruitment waviness in arteries as 0.996. For further 
analysis, for each sample, collagen recruitment stretch was 
computed as the global stretch at which the rate of curva-
ture change was found to be the highest. As can be seen 
from Fig. 15, recruitment of collagen is in a comparable 

range of the average experimental value. It was also noted 
that the rate of straightening reduced significantly beyond 
the point of recruitment stretch. This result confirms that 
the macroscopic notion of recruitment stretch defined from 
macroscopic stretch–strain curves (Bevan et al. 2018; Hill 
et al. 2012) is closely related to the microscopic, fiber-level, 
recruitment stretch which could be investigated thanks to 
the present model.

4.5  Rupture prediction

The study of the macroscopic mechanical response of arte-
rial wall layers is well documented in the literature with the 
use of phenomenological and structural constitutive models 
(Chuong and Fung 1983; Raghavan et al. 2000). While these 
models accurately predict the mechanical behavior of the 
tissue, they do not provide any insight into the phenomena 
occurring at the microstructure level. To this effect, the pro-
posed model was used to investigate the microscopic strain 
and stress distributions in individual fibers constituting the 
network. This was used to study the mechanical state of 
collagen fibers at a macroscopic stress level corresponding 
to rupture. Interestingly, this analysis indicated that fibers 
approaching their tensile limit were closely oriented toward 
the circumferential direction in comparison with their mean 
orientation at that loading level. Following that, for each 
sample, the strain distributions at load corresponding to 
rupture were analyzed and fitted to a probability density 
distribution. This could be used to compute the probability 
of finding a fiber in any given range of tensile stress/strain, 
and hence estimating a rupture probability index. Indeed, it 
was noted that for some samples a small percentage of fibers 
approached their tensile limit. Their probability is quantified 
and presented in Fig. 16. It was noted that for a sample no 
3, which was subjected to maximum stretch the probability 
was found to be the highest. From this, we can hypothesize 
that damage initiation would possibly occur at a local level 

Fig. 15  Comparison of computed recruitment stretch for collagen in 
each sample to theoretical estimates
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before propagating toward macroscopic rupture. By utiliz-
ing this information, the model could serve as a probabilis-
tic tool for predicting rupture based on the morphological 
information of the microstructure. As current experimental 
data do not include the necessary information for quantify-
ing rupture, one of the main perspectives of the present study 
would be to gather experimental data at loading conditions 
reaching rupture. These data would be then fed to the model 
in order to quantify meaningful rupture criteria based on 
structure–function relationships.

4.6  Limitations

The model presented in the study is not without limitations, 
which can be discussed as below:

1. We recall, first, that the study was limited to the mechan-
ics of collagen network in the adventitia as the effects 
of the connective tissue and other microstructural com-
ponents were not considered. This choice lied onto the 
common hypothesis that at high loads beyond physi-
ological pressure levels, collagen acts as the principal 
load-bearing component in the arterial wall.

2. Physical interactions between the fibers and the ground 
matrix were not considered in the current model. This 
was rather modeled phenomenologically using a con-
nector element which is kinematically linked to the 
boundary edges of the model, thus controlling the over-
all non-affine behavior of the network and enabling com-
pressibility in the collagen network.

3. Interactions between individual fibers are not considered 
in this model assuming that their effect would be of a 
lesser order compared to tension effect in the overall 
response to uniaxial tension.

4. In the presented model, collagen fibers were assumed to 
be oriented mostly in the axial–circumferential plane. 
Hence, the orientation distribution obtained from 
image stacks only corresponded to the azimuthal angle, 
neglecting the effect of a polar angle like in many stud-
ies in the literature (Jin and Stanciulescu 2016; Holzap-
fel et al. 2015; Gasser et al. 2006). For a more realistic 

representation of the microstructure, 3-D segmentation 
tools which can accurately render the fiber morphology 
are required. At this moment, the quality of the images 
prevents such analysis which would be beyond the scope 
of this study.

5. We also assumed the same collagen orientation den-
sity distribution for all samples. Nonetheless, it can be 
seen from the reported data in Krasny et al. (2017) that 
the assumed distribution is within the limits of average 
orientation density of the measured samples. This is a 
strong simplification, however; but when it is possible 
to experimentally measure this distribution, it can easily 
be introduced in the model.

6. Next, the experimental image stacks corresponded to 
a depth of 100 μ m owing to the quality of the signal at 
in-depth focal positions. Therefore, morphological infor-
mation extracted from the image stacks was assumed to 
be representative of the tissue, which may be questioned.

7. Each fiber in the network was modeled as a chain of 
segments alternating around a given orientation. This 
led us to the assumption that all fibers had their ends on 
the boundaries of the modeled volume. Although this 
did not compromise the overall stochastic nature of the 
network, it is worth noting that realistically, fibers which 
dangle inside the microstructure could possibly exist.

8. Finally, the material parameters identified for the sam-
ples were only based on uniaxial tension loading data. 
For other loading scenarios, the applicability of these 
identified parameters has not yet been verified and will 
be the purpose of future investigations.

To further elucidate the significance of out-of-plane ori-
entation of collagen on the mechanical response, a sample 
simulation was conducted. We include a phantom distri-
bution for the polar angle distribution, which has an over-
all mean in the axial–circumferential plane, the likes of 
which have been studied briefly in the literature (Holzapfel 
et al. 2015; Weisbecker et al. 2015; Gasser et al. 2012). 
From Fig. 17, it could be concluded that the exclusion of 
polar angle has a noticeable effect. The stretch at which 
collagen was recruited was observed to be very slightly 
higher in the case of a 3-D oriented network, while the 
overall stiffness of the network in the loading direction 
slightly reduced. In short, as expected, the 3-D nature of 
orientation distributions, compared to 2-D, is the cause 
of a slightly higher magnitude of reorientation effects in 
uniaxial tension. Future studies, in particular experimental 
one involving the network behavior of collagen, should 
incorporate the measurement of out-of-plane orientation 
distribution if possible.

Fig. 16  Bar chart of computed values of strain-based failure probabil-
ity of collagen in all the samples
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5  Conclusions

The mechanical behavior of collagen microstructure under 
uniaxial tensile loading was studied with a discrete random 
line network model. The microstructural model incorporated 
relevant stochastic information of collagen fibers extracted 
from multi-photon microscopy image stacks. The underly-
ing network kinematics and the global mechanical response 
were accurately predicted by the model. Reliable consti-
tutive parameters corresponding to collagen and apparent 
transverse stiffness of the network were estimated by the 
model. From this investigation, the model was used to con-
clude important structure–function relationships that control 
the mechanical response. The present model, which corre-
sponded to healthy aortas, can be extended to aneurysmal 
aortas in the future in light of improving our understanding 
of initiation and propagation of rupture. This model could be 
ultimately used to develop better safety measures in assess-
ing the risk related to aortic rupture.
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