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Real‑time single‑pixel imaging 
using a system on a chip 
field‑programmable gate array
Ikuo Hoshi*, Tomoyoshi Shimobaba, Takashi Kakue & Tomoyoshi Ito

Unlike conventional imaging, the single-pixel imaging technique uses a single-element detector, 
which enables high sensitivity, broad wavelength, and noise robustness imaging. However, it has 
several challenges, particularly requiring extensive computations for image reconstruction with high 
image quality. Therefore, high-performance computers are required for real-time reconstruction 
with higher image quality. In this study, we developed a compact dedicated computer for single-
pixel imaging using a system on a chip field-programmable gate array (FPGA), which enables 
real-time reconstruction at 40 frames per second with an image size of 128 × 128  pixels. An FPGA 
circuit was implemented with the proposed reconstruction algorithm to obtain higher image quality 
by introducing encoding mask pattern optimization. The dedicated computer can accelerate the 
reconstruction 10 times faster than a recent CPU. Because it is very compact compared with typical 
computers, it can expand the application of single-pixel imaging to the Internet of Things and outdoor 
applications.

Conventional imaging uses an image sensor, such as charged-coupled-device cameras. By contrast, single-pixel 
imaging is a unique technique that uses only a single-element detector, such as a photodiode1. In this technique, 
the target object image is reconstructed from acquired light intensities and known encoding mask patterns. Vari-
ous reconstruction algorithms have been proposed for single pixel imaging, including correlation calculations 
called ghost imaging2,3, the Fourier transform and Hadamard transform-based methods4,5, optimization methods 
solving an ill-posed problem6,7, and deep learning8–10. Because single-element detectors are used in single-pixel 
imaging, unlike in the case of conventional imaging, it enables high sensitivity, broad wavelength, and noise 
robustness imaging. Single-pixel imaging can be applied to remote sensing11, three-dimensional imaging12,13, 
terahertz imaging14,15, cytometry16, and Internet of Things (IoT) cameras for use in surveillance, factories, haz-
ardous dark areas, and outdoors, e.g. infrared camera17 and gas leak detection18.

Single-pixel imaging is computation intensive and requires compact and efficient devices for specific applica-
tions, e.g. IoT applications. Embedded computers can be the potential solution, but they are not suitable for the 
reconstruction calculation due to their low computational performance. Therefore, a small computer with high 
computational performance implemented in a single large-scale integration (LSI) chip is required. Dedicated 
computers for single-pixel imaging have been developed using field-programmable gate arrays (FPGAs). A 
FPGA is an LSI chip that can freely rewrite logic circuits on site. FPGAs can perform high-performance compu-
tation by designing application-specific circuits. There are several previous studies using FPGAs. Only the LED 
control was performed by an FPGA19,20, while the reconstruction computation was performed by a personal 
computer (PC). Iterative computation method, Hadamard transform, and differential ghost imaging (DGI) were 
implemented21–23, respectively, to speed up image reconstruction. The entire process from reconstruction calcu-
lation to display was performed on an FPGA24. However, the number of pixels and image quality, computation 
time, and image quality at low sampling are issues.

In this study, we developed a dedicated computer using a system on a chip (SoC) FPGA for single-pixel imag-
ing. A SoC FPGA is an LSI in which an embedded CPU and FPGA are implemented on a single chip. It has higher 
computing performance than an alone embedded CPU, more flexibility than an alone FPGA, and can be much 
smaller than a computer. In addition, the selection of reconstruction algorithms to should be implemented as a 
computational circuit is important in designing a computer dedicated to single-pixel imaging. Although FPGAs 
have high computing performance, they have a limitation of hardware resources and are not good at complex 
calculations, such as division and square root calculations. Among algorithms, optimization methods solving an 
ill-posed problem and deep learning can obtain high quality reconstructions in single-pixel imaging6–10; however, 
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deep learning has the problem of insufficient hardware resources, and optimization methods have the problem 
of computational load due to the iteration fashion.

Ghost imaging-based correlation calculation2,3 is suitable for FPGA implementation because of its low mem-
ory usage and the simplicity of calculation form. In this study, we used our ghost imaging algorithm, which 
introduces encoding mask patterns optimization25. It improves image quality with slight impact on the required 
computation and memory. In the proposed dedicated computer, the size of reconstructed images is 128 × 128 
pixels, with up to 1,024 encoding mask patterns. We evaluate the dedicated computer in terms of the image 
quality and computational speed using frames per second (fps) in numerical and optical experiments. Finally, 
we demonstrate a real-time display system of single-pixel imaging using the dedicated computer. The dedicated 
computer we have developed can obtain higher image quality than references19,20,22–24 at the same sampling rate, 
a larger image size than references19–21,23,24 and faster speed than references21–24, enabling real-time display with 
both size, image quality and speed. Because the dedicated computer is extremely compact compared with typical 
computers, it can expand the application of single-pixel imaging to the IoT and outdoor applications. Specific 
applications using dedicated computers include implementation in satellite topographical surveying26, taking 
advantage of the small size and power-saving features of dedicated computers. It can also be used for object 
tracking27–29 to build a car navigation IoT system. In addition, dedicated computers can be used to reconstruct 
wide-wavelength images that require computing power30.

Results
Experimental system.  Figure  1 shows the schematic of the experimental setup. The experimental 
setup comprises of a camera lens (Thorlabs MVL50M23), white light-emitting diode (LED), condenser lens, 
digital micromirror device (DMD) (Vialux Hi–Speed V–Modules V7000), single-element detector (Thorlabs 
PDA100A2), analog-digital converter (Digilent Inc. Pmod AD1), and the dedicated computer. The light trans-
mitted through the object is formed onto the DMD by the camera lens.

Real-time single pixel imaging is difficult because it requires sequentially the pattern display control, analog-
digital converter control, and reconstruction calculation processing, but the proposed system can perform a 
real-time reconstruction of target objects by performing parallel processing. The reconstructed image is displayed 
on a display panel.

The experimental procedure of the real-time display is as follows. The object light is formed on the DMD 
by the camera lens. An encoding mask pattern is displayed on the DMD, and the object light is modulated by 
the pattern. The modulated light is collected by the lens and measured as a light intensity by the single-element 
detector. The obtained light intensity is converted to a digital signal from the analog intensity signal by the analog-
digital converter. This operation is repeated while switching the encoding mask patterns. The receiving circuit 
in the FPGA saves converted signal in an FPGA built-in memory at the timing of asserting the synchronized 
signal, which is generated when the DMD switches to new encoding mask patterns. After the receiving circuit 
saves the signal a specified number of times, the reconstruction circuit starts calculating the target object image. 
Then, the embedded CPU on the SoC FPGA chip receives the reconstruction results and displays them on the 
display panel. Thus, we can observe the movie of the target object in real-time on the display panel by repeating 
the above procedure.

Figure 1.   Schematic of the experimental setup. A camera lens forms the image of a target object on a DMD. The 
image of the target object is modulated by encoding mask patterns displayed on the DMD. The modulated lights 
are collected by a lens and measured by a single-element detector, and subsequently converted to digital signals. 
Furthermore, the dedicated computer reconstructs the image of the target object from the light intensities. The 
FPGA part reconstructs an image, whereas the embedded CPU on the SoC FPGA generates the drawing on a 
display and initializes.
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Details of the dedicated computer.  We developed the dedicated computer using Zynq UltraScale+ 
MPSoC ZCU104 evaluation board provided by Xilinx. The schematic of the dedicated computer is shown in 
Fig. 1. We designed the circuit of the FPGA part using Vivado (version 2020.1) and the embedded CPU part 
using Vivado (version 2019.1), which are the integrated development environment for hardware design provided 
by Xilinx. The embedded CPU on the SoC FPGA runs a Linux operating system (OS) with the Linux kernel built 
using petalinux (version 2019.1) provided by Xilinx.

Figure 2 shows a block diagram of the reconstruction circuit. The reconstruction circuit performs the recon-
struction calculation25 as in Eq. (1).

where Ii(x, y) is the light distribution of encoding mask patterns with binary values, the subscript i is an index 
of the encoding mask patterns; and Ri =

∑Y
y=1

∑X
x=1 Ii(x, y) is the total light intensity of the encoding mask 

patterns, and X and Y are the horizontal and vertical sizes of the encoding mask patterns. These values are only 
determined by the encoding mask patterns. �αi� = 1

N�N
i=1αi is an ensemble average, where N is the number of 

the encoding mask patterns; Si =
∑Y

y=1

∑X
x=1 T(x, y)Ii(x, y) is the light intensity measured by the single-element 

detector, where T(x, y) is the light distribution of the target object; and O(x, y) is the intensity distribution of 
a reconstructed target object. An image of the target object to be displayed on a display panel is obtained by 
normalizing O(x, y). In Eq. (1), the calculations not including Si can be precomputed, and the circuit must only 
compute the calculations including Si . Although, the difference between the conventional and our reconstruction 
calculations is to introduce both encoding mask patterns optimization and the scaling factor αi , the image quality 
can be significantly improved with only a few additional operations. Essentially, the proposed method is suitable 
for FPGA implementation. Identification of optimal encoding mask patterns and αi is explained in the “Methods”.

The reconstruction circuit receives Si as inputs and outputs O(x, y) as the calculation results. The input is 
received from the receiving circuit shown in Fig. 1, and the output is sent to the embedded CPU on the SoC 
FPGA. In this study, we developed two circuits for 512 and 1024 encoding mask patterns. The values determined 
by the encoding mask patterns are stored on lookup tables implemented by read only memories (ROMs) in the 
FPGA. The 〈αS〉 calculation module, 〈α2SI〉 calculation module, and O calculation module perform the corre-
sponding calculations in Eq. (1). All the operations are implemented by fixed-point number calculations as they 
require fewer hardware resources and are faster. We implemented 128 modules for 〈α2SI〉 calculations and 128 
modules for O calculations; therefore, the dedicated computer can calculate 128 pixels in parallel.

Simulation.  We evaluate the image quality and calculation speed of the reconstruction circuit in simulations 
and optical experiments. In addition, we show that the dedicated computer can reconstruct dynamic scenes in 
real-time using the experimental system.

Because the reconstruction circuit uses fixed-point operations, the image quality depends significantly on the 
bit width of each signal. The evaluation of the image quality is shown in Fig. 3. We used peak signal-to-noise ratio 
(PSNR) as image quality index. The reconstructed images using the desktop, embedded CPUs, and dedicated 

(1)O(x, y) = �αiRi��Siα
2
i Ii(x, y)� − �αiSi��Riα

2
i Ii(x, y)�,

Figure 2.   Block diagram of the reconstruction circuit. The number of encoding mask patterns can be up to 
1024. The numbers above diagonal lines indicate the bit width of a signal. The reconstruction circuit comprises 
three calculation modules and lookup tables. We implemented 128 modules for 〈α2SI〉 calculation and O 
calculation for parallel processing.
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computer are similar. From these results, we confirmed that the dedicated computer could reconstruct the same 
image quality as the embedded and desktop CPUs.

We compared pure reconstruction times, not including pattern modulation, and analog-to-digital conver-
sion times in the embedded CPU, desktop CPU, and dedicated computer. The results are shown in Table 1. The 
computing environment of the embedded CPU on the SoC FPGA is as follows: the CPU is Quad Core Arm 
Cortex-A53 MPCore (1.2 GHz), memory is 2.0 GB, the OS is Ubuntu 18.04.1 LTS, and compiler is gcc 7.5.0 
(optimization option -O2 activated). The computing environment of the desktop CPU is as follows: the CPU is 
Intel® Core™ i5-4690 (3.5 GHz), memory is 32.0 GB, the OS is Windows 10 Enterprise, and compiler is visual 
studio 2015 (optimization option-O2 and streaming SIMD extensions activated). For the environment of the 
FPGA part, the operating frequency is 0.2 GHz. Each processing time are averaged 1000 measurement. From 
Table 1, it is evident that the dedicated computer is the fastest.

Experimental results.  Experiments was conducted on a real-time display using our dedicated computer 
under the same conditions as the simulations. Figure 4 shows the optical system with the same configuration as 
Fig. 1. Table 2 shows the frame rate, which is defined as the time of displaying a previous reconstruction image 
to the start of displaying a next reconstruction image. The time required for displaying encoding mask patterns is 
22.53 ms in 512 encoding mask patterns, and 45.06 ms in 1024 encoding mask patterns. In the real-time display 
experiment, we confirmed that the dedicated computer is the fastest.

Figure 5 shows the evaluation of the reconstructed images by the dedicated computer. As a result, the recon-
struction images obtained by the dedicated computer showed better image quality than previous FPGA-based 
studies22,23. Figure 6 shows the reconstructed dynamic scene using the dedicated computer. The reconstruction 
was performed in the cases of 512 and 1024 encoding mask patterns. Videos in the Supplementary Information 
show the real-time reconstruction movies using each computer in the cases of 512 and 1024 encoding mask 
patterns. Comparing these movies, we can see the dedicated computer can display the movement of a target 
objects smoothly. Noise of the embedded CPU alone and dedicated computer is significant compared to the 
desktop CPU due to the resolution of the analog-digital converter. The analog-digital converter of the desktop 
CPU has a 16-bit resolution, whereas the analog-digital converter of the embedded CPU alone and the dedicated 
computer has only a 12-bit resolution.

Figure 3.   Simulation results of the desktop, embedded CPUs, and the dedicated computer. The size of the 
images is 128 × 128  pixels. We used single-precision floating-point operations on the CPUs and fixed-point 
operations on the dedicated computer. The number of the encoding mask patterns used in the reconstruction is 
512 for (a) and 1024 for (b).

Table 1.   Reconstruction times of each computer, and speed-up ratio relative to the embedded CPU alone.

Computer

512 patterns 1024 patterns

Processing time (ms) Speed-up ratio Processing time (ms) Speed-up ratio

Embedded CPU alone 186.05 1.00 372.03 1.00

Desktop CPU 18.64 9.98 37.80 9.84

Dedicated computer 3.41 54.56 3.74 99.47
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Discussion
Here, we have proposed the dedicated computer for single-pixel imaging using a SoC FPGA. A novelty of pro-
posed dedicated computer is that parallelized reconstruction circuits are used in parallel based and a FPGA has 
been adopted with embedded CPU. In addition, the dedicated computer can perform task parallel processing 
including analog-digital conversions, reconstruction calculations, and display processing. The FPGA part in 
the Soc FPGA handles receiving measured intensities of the analog-digital conversion and the reconstruction 
calculation, and the embedded CPU part initialize the reconstruction circuit, and normalizes reconstruction 
results to 8-bit images, and displays the images on a display panel using OpenGL that open source software for 
computer vision. In particular, our dedicated computer can handle reconstructed images of  128 × 128  pixels 
that is larger size than previous studies using FPGAs23,24. To handle large images we must use ultraRAM, which 
has the largest capacity among built-in memories in the SoC FPGA. Since ultraRAM cannot be initialized from 
the FPGA part, it must be initialized by the embedded CPU when used as ROM.

Figure 4.   Optical system used in the experiment. The configuration and arrangement of the optical system is 
the same as in Fig. 1.

Table 2.   Frame rate of each computer, and speed-up ratio relative to the embedded CPU alone. In the desktop 
PC, we used an analog-digital converter (ELMOS, FAD-16HS).

Computer

512 patterns 1024 patterns

Frame rate (fps) Speed-up ratio Frame rate (fps) Speed-up ratio

Embedded CPU alone 5.08 1.00 2.61 1.00

Desktop CPU 21.63 4.26 11.06 4.24

The dedicated computer 45.36 8.93 21.89 8.39

Figure 5.   Reconstructed images by the dedicated computer. The image quality was evaluated by comparing 
with the ground truth reconstructed with the full sampling Hadamard transform. The image size is 128 × 128 
pixels. Numbers of the encoding mask patterns are 512 and 1024, respectively.
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Figure 6.   A reconstructed dynamic scene: (a) a target object (USAF1951 test target, Thorlabs R3L3S1N). The 
white arrow indicates the direction in which the target object is to be moved. The target object within the red 
rectangle moves in the direction of the arrow for 1 s, (b) reconstructed dynamic scene while moving the target 
object in the lateral direction in the case for 512 encoding mask patterns, (c) reconstructed dynamic scene while 
moving the target object in the lateral direction in the case for 1024 encoding mask patterns, (d) a target object 
when the movement direction is in the depth direction. The white arrow indicates the direction in which the 
target object is to be moved. The area indicated by the red rectangle was reconstructed. the target object was 
moved from −1 cm to +1 cm in 1 s, (e) reconstructed dynamic scene while moving the target object in the depth 
direction for 512 encoding mask patterns, (f) reconstructed dynamic scene while moving the target object in 
the depth direction for 1024 encoding mask patterns. The number of the reconstructed images is different since 
frames rate are different depending on the number of the encoding mask patterns, as shown in Table 2. The 
frame numbers are indicated above the images.
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We have analyzed the calculation speed of the dedicated computer. From Table 1, the calculation time of the 
embedded CPU alone and desktop CPU increase in proportion to the number of the encoding mask patterns. In 
contrast, the calculation time of the dedicated computer does not increase significantly as the number of encoding 
mask patterns increases. This is due to the communication time required in the dedicated computer occupies 
most of the entire processing time. The communication of the dedicated computer is only the transmission of 
reconstructed images to the embedded CPU since the encoding mask patterns are stored in the ROMs in the 
FPGA. Therefore, the communication time does not depend on the number of the encoding mask patterns. Thus, 
the dedicated computer becomes more advantageous in terms of the time required for reconstruction with the 
increase in the number of the encoding mask patterns.

From Table 2, it is evident that the dedicated computer is the fastest in the experiments. The reconstruction 
calculation is performed in parallel with displaying encoding mask patterns as in Fig. 7. The embedded CPU 
alone is slow since the reconstruction calculation is slower than displaying encoding mask patterns. In contrast, 
the desktop CPU and the dedicated computer are fast since the reconstruction calculation is faster than display-
ing encoding mask patterns.

The analog-digital conversion of the dedicated computer is faster than that of the desktop CPU. As shown in 
Fig. 7, in the desktop CPU, the analog-digital converter is controlled and communicated by software, whereas 
in the dedicated computer, the values of the analog-digital conversion are directly read by the FPGA, thereby 
resulting in higher throughput in the dedicated computer than desktop CPU. If the image size increases, the 
desktop CPU will be difficult to overlap the reconstruction calculation and displaying the encoding mask pat-
terns, whereas the dedicated computer can readily overlap it, further increasing its usefulness.

Methods
Ghost imaging with encoding mask patterns optimization.  In the ghost imaging method25, opti-
mized encoding mask patterns and scaling factor αi in Eq. (1) were introduced to conventional DGI31,32. The 
optimized encoding mask patterns are obtained gradient descent, often used in machine learning. The scaling 
factor αi in Eq. (1) is obtained as

Figure 7.   Time chart of the real-time display system. Each line shows the responsibilities of each process, 
executed in parallel. (a) Shows a time chart using the embedded CPU alone and desktop CPU. (b) Shows a time 
chart using the dedicated computer. The embedded CPU alone and desktop CPU perform processing to receive 
and transmit from the analog-digital converter because the analog-digital converter is controlled by the CPU. 
Thus, the embedded CPU alone and desktop CPU cannot perform analog-digital conversion constantly. In the 
embedded CPU alone, the reconstruction calculation takes a long time for encoding by patterns. In the desktop 
CPU, the reconstruction calculation time is short enough for the time of encoding by patterns. In contrast, the 
dedicated computer does not have such the time-consuming processing because the FPGA part receives a value 
of analog-digital conversion directly. Consequently, this allows the dedicated computer to perform analog-
digital conversion constantly, thereby reducing the reconstruction calculation time.
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where αi =
∑X

x=1

∑Y
y=1 Ii(x,y)IB,i(x,y)∑X

x=1

∑Y
y=1 I

2
B,i(x,y)

 , Ii(x, y) denotes grayscale encoding mask patterns before binarization; and 

IB,i(x, y) denotes binarized encoding mask patterns. The binarization is performed as IB,i(x, y) = 1 if Ii(x, y) ≥ 0.5 
otherwise IB,i(x, y) = 0 . Figure 8 shows the procedures of the pattern optimization. The optimization is per-
formed in two steps. In step 1, we obtain optimized grayscale patterns. In step 2, we reoptimize grayscale patterns 
while binarizing the grayscale pattens already obtained in the step 1. Next, the image reconstruction is performed 
by using Eq. (1) with the binarized pattern, and grayscale patterns are updated by a loss function for which we 
used a mean squared error. By repeating the above procedure, we obtain final optimized binary patterns.

To compare our method with conventional methods, Fig. 9 shows an example of mask patterns and corre-
sponding reconstructions using these methods. The DGI and Hadamard transform implemented in FPGA22,23 are 

(2)αi = arg min
αi

X∑

x=1

Y∑

y=1

(Ii(x, y)− αiIB,i(x, y))
2,

Figure 8.   Procedure of the patterns optimization. In step 1, “Image reconstruction” calculates Eq. (1) without 
αi . “Loss function” E is a mean squared error. “Updating” performs gradient descent. “Binarization” performs 
IB,i(x, y) = 1 if Ii(x, y) ≥ 0.5 otherwise IB,i(x, y) = 0.

Figure 9.   Comparison between the pattern optimization and conventional methods: An example of an 
optimized pattern is shown on the left side of the figure. The right side of the figure shows a comparison of 
reconstructed image quality. Image quality was compared with DGI23 and Hadamard transform22 implemented 
in an FPGA in previous studies. The size of the images was 128 × 128 pixels. The number of the encoding mask 
patterns were 512 and 1,024, respectively.
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compared as conventional methods. As can be seen in Fig. 9, the image quality with our encoding mask patterns 
optimization is drastically improved than that with the conventional methods.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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