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Background: Alzheimer’s disease (AD) is the most common age-related problem and
progresses in different stages, including mild cognitive impairment (early stage), mild
dementia (middle-stage), and severe dementia (late-stage). Recent studies showed
changes in functional network connectivity obtained from resting-state functional
magnetic resonance imaging (rs-fMRI) during the transition from healthy aging to AD.
By assuming that the brain interaction is static during the scanning time, most prior
studies are focused on static functional or functional network connectivity (sFNC).
Dynamic functional network connectivity (dFNC) explores temporal patterns of functional
connectivity and provides additional information to its static counterpart.

Method: We used longitudinal rs-fMRI from 1385 scans (from 910 subjects) at different
stages of AD (from normal to very mild AD or vmAD). We used group-independent
component analysis (group-ICA) and extracted 53 maximally independent components
(ICs) for the whole brain. Next, we used a sliding-window approach to estimate dFNC
from the extracted 53 ICs, then group them into 3 different brain states using a clustering
method. Then, we estimated a hidden Markov model (HMM) and the occupancy rate
(OCR) for each subject. Finally, we investigated the link between the clinical rate of each
subject with state-specific FNC, OCR, and HMM.

Results: All states showed significant disruption during progression normal brain to
vmAD one. Specifically, we found that subcortical network, auditory network, visual
network, sensorimotor network, and cerebellar network connectivity decrease in vmAD
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compared with those of a healthy brain. We also found reorganized patterns (i.e.,
both increases and decreases) in the cognitive control network and default mode
network connectivity by progression from normal to mild dementia. Similarly, we found
a reorganized pattern of between-network connectivity when the brain transits from
normal to mild dementia. However, the connectivity between visual and sensorimotor
network connectivity decreases in vmAD compared with that of a healthy brain. Finally,
we found a normal brain spends more time in a state with higher connectivity between
visual and sensorimotor networks.

Conclusion: Our results showed the temporal and spatial pattern of whole-brain FNC
differentiates AD form healthy control and suggested substantial disruptions across
multiple dynamic states. In more detail, our results suggested that the sensory network
is affected more than other brain network, and default mode network is one of the last
brain networks get affected by AD In addition, abnormal patterns of whole-brain dFNC
were identified in the early stage of AD, and some abnormalities were correlated with
the clinical score.

Keywords: Alzheimer’s disease, resting state fMR imaging, hidden Markov model, longitudinal study, dynamic
functional network connectivity

INTRODUCTION

Alzheimer’s disease (AD) is the most common age-related
dementia, typically affecting individuals over 65 years of
age (Masters et al., 2015). AD usually progresses slowly
in several stages, including mild (early stage), moderate
(middle stage), and severe (late stage) (Ryan and Rossor,
2011). To date, there is no way to cure AD, but some
medications can decelerate its progress (Yiannopoulou and
Papageorgiou, 2020). Therefore, predicting the progression
from a normal stage to mild cognitive impairment and
further to AD itself is an important step toward early
medical intervention.

Resting-state functional magnetic resonance imaging (rs-
fMRI) that indirectly measures neural processing in the brain
based on the blood oxygenation can be used to identify
spatially distributed networks in the brain. In recent years,
functional connectivity or its network analog functional network
connectivity (FNC), including dynamic (dFC/dFNC) and static
(sFC/sFNC), achieved from rs-fMRI time series has uncovered
a great deal of knowledge about the brain dysconnectivity in
various neurological disorder including schizophrenia (Abrol
et al., 2017; Sendi et al., 2020), major depression disorder (Zhi
et al., 2018), autism (Cerliani et al., 2015; de Lacy et al., 2017;
Mash et al., 2019), ADHD (Wang et al., 2018), and AD (Brier
et al., 2014). In particular for AD, previous studies reported a
reduction in the default-mode network FC in AD compared with
mild cognitive impairment (MCI) patients and healthy subjects
(Soman et al., 2020). Another study reported a difference in the
FC of sensorimotor network (SMN), visual network (VSN), and
default mode network of healthy control (HC) subjects and AD
patients (Zheng et al., 2017).

By assuming that FNC is invariant, or static over time, many
of the AD-related studies mentioned above have focused on

sFC/sFNC and ignored dFC/dFNC. Indeed, unlike conventional
static functional network connectivity (sFNC), which is obtained
from the correlation within an entire time series, dFNC refers
to the connectivity between any pair of brain networks within
sub-intervals of time series (Calhoun et al., 2014). In fact,
dFNC research suggests that cognitive deficits and clinical
symptoms associated with many neurological disorders do not
only depend on the strength of the connectivity between any
pair of brain regions but also on the variation of connectivity
strength of those regions over time (Calhoun et al., 2014;
Damaraju et al., 2014; Zhi et al., 2018; Zendehrouh et al.,
2020). In recent years, a few papers studied dFNC in AD.
For instance, we investigated whole-brain dFNC in AD and
subcortical ischemic vascular disease (SIVD) (Fu et al., 2019).
Another study explored the temporal properties of dFNC
associated with dementia in Parkinson’s disease (Fiorenzato et al.,
2019). However, the longitudinal dFNC changes from cognitive
normal to mildly then severely cognitively impaired has not been
extensively explored.

In the current study, we explored the temporal dynamics of
the whole-brain FNC from 1385 rs-fMRI scans of HC and very
mild AD (vmAD). We used a sliding window approach followed
by the k-means clustering method to identify a set of connectivity
states (Calhoun et al., 2014). Next, we calculated between-state
transition probability via hidden Markov model (HMM) and
the amount of the time each subject spends in a state, called
occupancy rate or OCR, to model the temporal properties of
dFNC. We investigated the correlation between HMM and OCR
features with the clinical dementia rating scale sum of boxes
(CDR-SOB) scores. In addition, we explored the link between
state-specific connectivity features with CDR-SOB. Finally, we
trained a support vector machine (SVM) to predict from HC
to vmAD based on the sFNC connectivity features and dFNC
features, including HMM and OCR.
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MATERIALS AND METHODS

Participants
In this study, the data we used are from the longitudinal
Open Access Series of Imaging Studies (OASIS)-3 cohort, which
was collected from several ongoing studies in the Washington
University Knight Alzheimer Disease Research Center over
15 years (LaMontagne et al., 2019). This data contains 1385 rs-
fMRI imaging and related clinical and demographic data at the
time of scanning (from 910 subjects) with age ranging from 42 to
95 years. For each subject, the imaging data, demographic, and
clinical dementia rating (CDR) scale were used in any stage of
cognitive functionality. All participant must have CDR ≤ 1 at
the time of the clinical core assessment and once the participant
reached CDR = 2 or CDR-SOB > 9, they were no longer
eligible for the study (LaMontagne et al., 2019). We evaluated
the cognitive stage of the participants at the time of the scanning
based on the CDR-SOB scores and organized them in 2 groups,
including healthy control or HC (CDR-SOB = 0), very mild AD
or vmAD (0.5 ≤ CDR-SOB ≤ 9) (O’Bryant et al., 2008). In total,
we have 1028 scan of HC, 357 scans of vmAD patients. The
demographic information is provided in Table 1.

Imaging Data Acquisition
Two Trio 3T with a 20-channel head coil was used to collect
imaging data (Siemens Medical Solutions United States, Inc).
High resolution T2∗-weighted functional images were obtained
by an echoplanar imaging or EP sequence with TE = 27 ms,
TR = 2.2 s, flip angle = 90◦;, slice thickness = 4 mm,
slice gap = 4 mm, matrix size = 64, and voxel size
of 1 mm × 1 mm × 1.25 mm. The duration of the
scanning was 6 min.

Data Preprocessing
The analytic pipeline used in this study is shown in Figure 1.
The following subsections describe the detail of this pipeline.
In the first step (Step 1 in Figure 1), the first five dummy
scans were discarded before preprocessing. We used statistical
parametric mapping (SPM121) default slice timing routines to
correct differences in image acquisition time between slices. The

1https://www.fil.ion.ucl.ac.uk/spm/

TABLE 1 | Demographic and clinical information.

HC

N 1028

Gender (M/F) 415/613

Age 69.83 ± 8.64

CDR-SOB 0 ± 0

vmAD

N 357

Gender (M/F) 215/142

Age 75.10 ± 7.85

CDR-SOB 2.68 ± 2.10

HC, healthy control; vmAD, very mild Alzheimer Disease; M, male; F, female; CDR-
SOB, clinical dementia rating scale sum of boxes.

reference slice was chosen as the slice acquired in the middle of
the sequence. Rigid body motion correction was then applied to
account for subject head movement, with 3-dimensional brain
translations and 3-dimensional rotations estimated. Next, the
imaging data underwent spatial normalization to the standard
Montreal Neurological Institute (MNI) space using the echo-
planar imaging (EPI) template and the default bounding
box provided by the SPM toolbox and was resampled to
3 × 3× 3 mm3. Finally, a Gaussian kernel with a full width
at half maximum (FWHM) of 6 mm was used to smooth
the fMRI images.

In this study, a set of robust network priors were used
to extracted comparable components across subjects from
the OASIS dataset. The network priors were extracted via
the NeuroMark pipeline (Du et al., 2020; Fu et al., 2020,
2021). This framework performed group ICA with model
order as 100 on two healthy controls datasets, human
connectome project (HCP2, 823 subjects after the subject
selection) and genomics superstruct project (GSP3, 1005 subjects
after the subject selection) for creating the network priors.
The extracted independent components (ICs) from the two
datasets were matched by comparing the corresponding group-
level spatial maps. If they show a higher spatial correlation
than a given threshold (=0.4), we consider that the IC pairs
were reproducible. The reproducible ICs pairs were further
evaluated by examining their spatial activations and low-
frequency fluctuations of their corresponding time-courses
(TCs). 53 pairs of ICs were identified as meaningful and
reproducible, arranging into 7 functional domains based on
their anatomic and functional prior knowledge. These ICNs
included subcortical network (SCN), auditory network (ADN),
sensorimotor network (SMN), visual network (VSN), cognitive
control network (CCN), default-mode network (DMN), and
cerebellar network (CBN). The less noisy ICNs captured
from the GSP dataset (Note that there were 53 ICNs from
HCP which had similar spatial patterns) were chosen as the
spatial network priors to back-reconstruct spatial maps and
TCs for each subject. Also, to remove the remaining noise
and artifact, the following post-processing procedures were
performed on the time-courses signal before calculating the
dynamic functional network connectivity (dFNC) between time-
courses of ICs: (1) detrending linear, quadratic, and cubic
trends; (2) conducting multiple regressions of the 6 realignment
parameters and their temporal derivatives; (3) despiking detected
outliers; and (4) low-pass filtering with a cut-off frequency of
0.15 Hz. Figure 2 shows these seven domains. Also, Table 2
shows all 53 ICNs extracted by the NeuroMark pipeline in
this study.

Functional Network Connectivity
The sFNC of each subject was calculated by computing the
Pearson correlation between any pair of ICNs time series. With
53 ICNs, it resulted in 1378 whole-brain correlation values for

2https://www.humanconnectome.org/study/hcp-young-adult/document/1200-
subjects-data-release
3https://dataverse.harvard.edu/dataverse/GSP
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FIGURE 1 | Analytic pipeline. Step1: The time-course signal of 53 ICNs have been identified using group-ICA in the Neuromak template. Step2: After identifying 53
ICNs, a taper sliding window was used to segment the time-course signals and then calculated the functional network connectivity (FNC). Each subject has 139
FNCs with a size of 53 × 53. Also, we calculated static FNC for the entire time of recording. Step3: After vectorizing the FNC matrixes, we have concatenated them,
and then a k-means clustering with correlation as distance metrics was used to group FNCs to three distinct clusters. Step4: Then, based on the state vector, we
calculated between-state transition probability or hidden Markov model (HMM) features and occupancy rate (OCR) for each subject. In total, nine HMM features and
three OCR were estimated from the state vector of each subject. Step5: To find a link between FNC features, including sFNC and dFNC feature with clinical
dementia rating scale sum of boxes (CDR-SOB), we used partial correlation by accounting for age, gender.

each subject. In addition, for each subject i = 1 . . . N, the
dynamic FNC (dFNC) of the whole brain was estimated via
a sliding window approach, as shown in Figure 1. A tapered
window obtained by convolving a rectangle (window size = 20
TRs = 44 s) with a Gaussian (σ = 3) was used to localize the
dataset at each time point. It is worth mentioning that previous
studies suggested that a window size between 30 and 60 s is
a reasonable choice for capturing the dFNC fluctuation (Preti
et al., 2017). Based on this past work, we used the 44 s as the
window size. A covariance matrix, based on Pearson correlation,
was calculated to measure the dFNC between ICs. The dFNC
estimates of each window for each subject were concatenated to
form a (C × C × T) array (where C = 53 denotes the number
of ICNs and T = 139), which represented the changes in brain
connectivity between ICNs as a function of time (Step 2 in
Figure 1; Calhoun et al., 2014).

Clustering and dFNC Latent Features
We used k-means clustering to partition dFNC window into a
set of separated clusters (states). Based on the elbow criterion
(the ratio of within to between cluster distance), we found that
the optimal number of clusters (i.e., k) is 3. We used correlation
based on Pearson correlation as a distance metric in the clustering
algorithm in 1000 iterations (Allen et al., 2014; Calhoun et al.,
2014) (Step 3 in Figure 1). The output of this step is 3 states for all
subjects and subject-specific state vector. The state vector shows
that the state of the whole-brain FNC of each subject at a specific
time. In the next step, we calculated the between-state transition
probability based on HMM. The transition probability, aij, is the

probability of the system to transition from state j at time t to
state i at time t+1.

aij = p(s (t + 1) = i|s (t) = j) (1)

In addition, we computed the OCR of dFNCs in each state
(Step 4 in Figure 1). In addition, for each subject, we averaged
all dFNC belongs to a state as her/his state-specific FNC. In
more detail, each subject has multiple dFNC in each state. Then,
in each state, we used the average of dFNC (i.e., the average
of 1378 connectivity features) of each subject as her/his state-
specific FNC.

Statistical Analysis
To assess the link between dFNC features, including state-
specific FNC, OCR, and HMM with CDR-SOB, we used partial
correlation by accounting for age and gender. We performed
statistical analysis on all 1378 whole-brain connectivity
features, 9 HMM features, and 3 OCR features, separately
(Step 5 in Figure 1). All p values have been adjusted by
the Benjamini-Hochberg correction method for multiple
comparisons (Benjamini and Hochberg, 1995). The number of
null hypothesis in state-specific FNC, OCR, and HMM were
1378, 3, and 9, respectively.

Dementia Progression Is Associated
With Functional Network Connectivity
In the next step, we explored whether functional network
connectivity, including sFNC and dFNC features, can predict
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FIGURE 2 | In this study, we adopted the NeuroMark pipeline to extract reliable intrinsic connectivity networks (ICNs, in total, 53 components) that are replicated
across independent datasets. All 53 independent components identified by group-ICA in the Neuromark template. We put them in seven networks, including
subcortical network (SCN), auditory network (AND), visual sensory network (VSN), sensorimotor network (SMN), cognitive control network (CCN), default mode
network (DMN), and cerebellar network (CBN).

the progression of AD. We put subjects into two different
groups. The first group contains those subjects who remained
in HC, whom we call them unconverted HC or uc-HC stage
within the next 5 years of the first scan, and the second
group contains those subjects which their cognitive functionality
changed from HC to vmAD (0.5 ≤ CDR-SOB ≤ 9), and we
call c-HC. The first group contains 85 subjects (48 females
and 37 males) with the mean age at 74.6478 and range
between 65 and 85. The second group contains 40 subjects
(18 females and 22 males) in which the mean age is 74.6878,
and the range of the age is between 64 and 85. We did not
observe a significant difference between the age and gender of
these two groups (age: Cohen’s d = 0.16, two-sample t test
t(123) = −0.90, p = 0.36; gender: Cohen’s d = 0.22, two-
sample t test t(123) = 1.19, p = 0.23). We trained a SVM
based on sFNC, OCR, and HMM features from the baseline
rs-fMRI (around 5 years prior to the conversion) to differentiate
these two groups.

One major problem in this classification is imbalanced
datasets. To deal with this problem, we have used a data
augmentation method called adaptive synthetic (ADASYN)
sampling approach. In this method, we adaptively generated
synthetic data for the minatory class based on the distribution
of both classes. ADASYN generates synthetic data for the part of
minority class that is harder to learn than those minority samples,
which are easier to learn. In this study, we have a dataset with
85 samples in major class and 40 samples in minor class. Using
ADASYN, we generated 45 samples of synthetic data for the
minor class to make the dataset balanced (He et al., 2008). We

trained an SVM with polynomial kernel function, as shown in
Eq. 2. to classify two classes (Cortes and Vapnic, 1995).

k (x1, x2) = (1+ x
′

1x2)
p (2)

where p is a positive integer value.
There are a few advantages of using SVM. (1) SVM works

well for high dimensional data. (2) SVM is effective when
the number of the sample is smaller than the number of
dimensions, which is a common problem for neuroimaging
data. (3) SVM can handle nonlinearity in the data using a
kernel trick. This provides an advantage over linear classifiers
like logistic regression. However, choosing the appropriate
kernel function is not easy. In addition, due to the limited
number of samples, it is not advisable to use a neural network
classifier. It is worth mentioning that an imbalanced dataset is
a challenging problem in SVM classification (Cervantes et al.,
2020). Our study used ADASYN to generate synthetic data of
the minatory class to elevate this problem. In more detail, we
used the ADASYN-based sample and a subset of the major
class (i.e., uc-HC, N = 45, the ADASYN sample size) and
trained a model and then we tested that model on real unseen
data from both uc-HC and c-HC groups. We iterate this 10
times. This number was chosen arbitrary. It worth mentioning
that changing the number of iterations would not change the
classification result. In each iteration, we used five-fold cross-
validation method in which we used 80% of the training data
to train a model and 20% of the data to validate that. The
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TABLE 2 | Component labels.

Component name Peak coordinate (mm)

1 SCN Caudate (69) 6.5 10.5 5.5

2 Subthalamus/hypothalamus (53) −2.5 −13.5 −1.5

3 Putamen (98) −26.5 1.5 −0.5

4 Caudate (99) 21.5 10.5 −3.5

5 Thalamus (45) −12.5 −18.5 11.5

6 ADN Superior temporal gyrus ([STG], 21) 62.5 −22.5 7.5

7 Middle temporal gyrus ([MTG], 56) −42.5 −6.5 10.5

8 SMN Postcentral gyrus ([PoCG], 3) 56.5 −4.5 28.5

9 Left postcentral gyrus ([L PoCG], 9) −38.5 −22.5 56.5

10 Paracentral lobule ([ParaCL], 2) 0.5 −22.5 65.5

11 Right postcentral gyrus ([R PoCG], 11) 38.5 −19.5 55.5

12 Superior parietal lobule ([SPL], 27) −18.5 −43.5 65.5

13 Paracentral lobule ([ParaCL], 54) −18.5 −9.5 56.5

14 Precentral gyrus ([PreCG], 66) −42.5 −7.5 46.5

15 Superior parietal lobule ([SPL], 80) 20.5 −63.5 58.5

16 VSN Postcentral gyrus ([PoCG], 72) −47.5 −27.5 43.5

17 Calcarine gyrus ([CalcarineG], 16) −12.5 −66.5 8.5

18 Middle occipital gyrus ([MOG], 5) −23.5 −93.5 −0.5

19 Middle temporal gyrus ([MTG], 62) 48.5 −60.5 10.5

20 Cuneus (15) 15.5 −91.5 22.5

21 Right middle occipital gyrus ([R MOG], 12) 38.5 −73.5 6.5

22 Fusiform gyrus (93) 29.5 −42.5 −12.5

23 Inferior occipital gyrus ([IOG], 20) −36.5 −76.5 −4.5

24 Lingual gyrus ([LingualG], 8) −8.5 −81.5 −4.5

25 Middle temporal gyrus ([MTG], 77) −44.5 −57.5 −7.5

26 CCN Inferior parietal lobule ([IPL], 68) 45.5 −61.5 43.5

27 Insula (33) −30.5 22.5 −3.5

28 Superior medial frontal gyrus ([SMFG], 43) −0.5 50.5 29.5

29 Inferior frontal gyrus ([IFG], 70) −48.5 34.5 −0.5

30 Right inferior frontal gyrus ([R IFG], 61) 53.5 22.5 13.5

31 Middle frontal gyrus ([MiFG], 55) −41.5 19.5 26.5

32 Inferior parietal lobule ([IPL], 63) −53.5 −49.5 43.5

33 Left inferior parietal lobue ([R IPL], 79) 44.5 −34.5 46.5

34 Supplementary motor area ([SMA], 84) −6.5 13.5 64.5

35 Superior frontal gyrus ([SFG], 96) −24.5 26.5 49.5

36 Middle frontal gyrus ([MiFG], 88) 30.5 41.5 28.5

37 Hippocampus ([HiPP], 48) 23.5 −9.5 −16.5

38 Left inferior parietal lobue ([L IPL], 81) 45.5 −61.5 43.5

39 Middle cingulate cortex ([MCC], 37) −15.5 20.5 37.5

40 Inferior frontal gyrus ([IFG], 67) 39.5 44.5 −0.5

41 Middle frontal gyrus ([MiFG], 38) −26.5 47.5 5.5

42 Hippocampus ([HiPP], 83) −24.5 −36.5 1.5

43 DMN Precuneus (32) −8.5 −66.5 35.5

44 Precuneus (40) −12.5 −54.5 14.5

45 Anterior cingulate cortex ([ACC], 23) −2.5 35.5 2.5

46 Posterior cingulate cortex ([PCC], 71) −5.5 −28.5 26.5

47 Anterior cingulate cortex ([ACC], 17) −9.5 46.5 −10.5

48 Precuneus (51) −0.5 −48.5 49.5

49 Posterior cingulate cortex ([PCC], 94) −2.5 54.5 31.5

50 CBN Cerebellum ([CB], 13) −30.5 −54.5 −42.5

51 Cerebellum ([CB], 18) −32.5 −79.5 −37.5

52 Cerebellum ([CB], 4) 20.5 −48.5 −40.5

53 Cerebellum ([CB], 7) 30.5 −63.5 −40.5
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hyperparameters of the SVM classifier were selected trough an
optimization process.

We calculated the classification accuracy, sensitivity,
specificity, and area under the receiver operating characteristic
curve (AUC) to assess the classification performance. Accuracy,
sensitivity, and specificity were quantified by:

Accurcy =
TP + TN

TP + FN + TN + FP
(3)

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)

where TP, FN, TN, and FP denoted the number of uc-HC
subjects correctly predicted, the number of c-HC subjects
classified as uc-HC subject, the number of uc-HC correctly
predicted, and the number of un-HC subjects classified as c-HC
subject, respectively.

RESULTS

Dynamic Functional Connectivity States
Figure 3 shows the reoccurring connectivity states identified
by the k-means clustering method. In all states, we observed
strong positive connectivity within SMN and VSN, ad CBN.
State 3 showed the strongest connectivity within SMN and
within VSN among all states. In addition, this state had the
highest connectivity between SMN and VSN. Also, this state
was separated from other states by showing the lowest negative
connectivity between SMN and VSN with the rest of the brain.
State 1 showed the lowest connectivity between SMN and VSN.
Finally, we measured the OCR of each subject in state1, state2,
and state 3. OCR represents the amount of time each subject
spends in each state. Results showed that subjects spent an
average of 23.78, 52.17, and 24.05% in state 1, state 2, and state
3, respectively.

The Correlation Between State-Specific
FNC and CDR-SOB
Figure 4 showed the partial correlation between state-specific
FNC and CDR-SOB while we controlled for age and gender.
The significant correlations (uncorrected p < 0.05) are shown in
red (positive correlation) and blue (negative correlation). Also,
a significant correlation that passes the multiple comparisons is
marked by asterisks.

In state 1, we observed a significant and negative correlation
between within-SCN, within-SMN, within-VSN connectivity,
and CDR-SOB. This means that this connectivity decreases
by progression from normal to mild dementia states. In
this state, we found a reorganized (i.e., both positive and
negative) patterns in the correlation between within-DMN
connectivity and within CCN-connectivity with CDR-SOB.
A similar reorganized correlation pattern was observed between

the between-network connection and CDR-SOB. Specifically,
a more reorganized pattern was observed in the correlation
between SCN connectivity with the rest of the brain.

In state 2, similar to state 1, we observed a negative
correlation between the connectivity of within-SCN, within-
SMN, within-VSN, within-CBN connectivity with CDR-SOB. We
also observed both positive and negative correlations between the
connectivity of CCN and DMN and CDR-SOB. Compared with
the other states, this state showed a more significant correlation
of within-CCN connectivity and CDR-SOB, in which many
of them were positive. Also, within-DMN connectivity showed
more negative connectivity compared with that of other states.
This state also showed a positive correlation between connectivity
between SMN and CBN and CDR-SOB. Also, we observed
both positive and negative correlations between CDR-SOB and
between-network connectivity in state 2.

State 3 showed a significant and negative correlation
between the within-SMN, within-VSN, within-DMN, within-
CCN, and within-CBN connectivity and CDR-SOB. The amount
of significant correlation between within-SMN, within-VSN,
and between SMN and VSN connectivity with CDR-SOB
was more than those of the other states. Also, this state
showed a significant positive correlation between VSN and CBN
connection and CDR-SOB. Overall, we observed a reorganized
pattern in the correlation between CDR-SOB and between-
network connection in this state.

The Correlation Between Temporal
Properties of dFNC and CDR-SOB
We calculated the partial correlation between CDR-SOB and
temporal features of dFNC (i.e., OCR and HMM) by controlling
the age and gender. We found a positive correlation between
OCR of state 1 and CDR-SOB (r = 0.07, corrected p = 0.009)
and a negative correlation between OCR of state 3 and CDR-SOB
(r = −0.14, corrected p = 2e−7). Also, we observed a negative
correlation between CDR-SOB and a11, i.e., the transition from
state 1 to state 1 (r = 0.07, corrected p = 0.02), and a positive
correlation between CDR-SOB and a33, i.e., the transition within
state 3 (r =−0.11, corrected p = 0.0001).

Both Healthy and Patient Brain Follow
Similar State Pattern
Since the number of HC scan is more than the number of patient
ones, we applied the clustering method to their dFNC of HC and
patients, separately. The results are shown in Figure 5. This figure
shows that our approach captured a similar brain state in both
groups. We used the Pearson correlation between states’ FNC
to assess the similarity between them. The correlation between
state 1 of HC with state 1 of the patient group, between state
2 of HC with state 2 of the patient group, and between state 3
of HC with state 3 of the patient group were 0.9903 (N = 1378,
p < 0.001), 0.9825 (N = 1378, p < 0.001), and 0.9921 (N = 1378,
p < 0.001), respectively (Figures 5A,B). In addition, the OCR
followed a similar pattern with the results when we concatenated
all subjects. State2 shows the highest OCR among all three states
in both groups. HC subjects have higher OCR in state 1 than
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FIGURE 3 | Dynamic functional connectivity states results. The three identified dFNC states using the k-means clustering method. We found strong connectivity
within-ADN, within-SMN, and within-VSN in all states. We found strong connectivity between SMN and VSN in state3. Also, this state showed negative connectivity
between sensory networks, including ADN, SMN, and VSN, with the rest of the brain. We found all subjects spend 23.78, 52.17, and 24.05% in state 1, state 2, and
state 3, respectively. The color bar shows the strength of the connectivity. SCN, Subcortical network; ADN, auditory network; SMN, sensorimotor network; VSN,
visual network; CCN, cognitive control network; DMN, default-mode network; and CBN, cerebellar network.
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FIGURE 4 | Correlation between FNC of each state and clinical score. A significant negative correlation between within-SCN, within-SMN, within-VSN, and
within-CBN connectivity and the clinical dementia rating scale sum of boxes (CDR-SOB) scores. A disrupted pattern (i.e., both positive and negative) correlation was
found between within-CCN and within DMN with CDR-SOB. A similar disrupted pattern was observed between CDR-SOB and between-networks connectivity.
However, we consistently observed negative connectivity between CDR-SOB and the connectivity among sensory networks. The color bar shows the strength of the
connectivity. SCN, subcortical network; ADN, auditory network; SMN, sensorimotor network; VSN, visual network; CCN, cognitive control network; DMN,
default-mode network; and CBN, cerebellar network. The significant correlation that passes the multiple comparisons is marked by asterisks.

patients (p < 0.01), while patients have higher OCR in state 3
than that of HC subjects (p < 0.01) (Figures 5C,D). These results
proved that the HC subject’s dFNC did not dominate the state
pattern. In addition, to reference the states easier in this paper,
we put a name on each state. Since both healthy subjects and
patients spend more than 50% of their scanning time in state 2,
we called this state a baseline. Since vmAD patients spend more
time in state1, we called this state the vmAD-related state, and
finally, we call state 3, which healthy subjects spend more than
in this state than state 2, as an HC-related state. Only in state 3,
we observed a significant link between CDR-SOB and FNC after
FDR correction (shown by asterisks). We observed a decrease in

sensory network FNC by AD’s progression. Also, we observed a
reorganized pattern in the CCN FNC pattern.

Changing the Number of States Does
Not Change the Results
To test whether the number of clusters (or states) would change
the results or not, we applied the same clustering method for
k = 5, k = 7, and k = 10. Figures 6A–C show the results for k = 5,
k = 7, and k = 10, respectively. We observed similar state patterns
with different k values. State 1 (k = 3) is similar to state 1(k = 5),
state 2(k = 7) and state 5(k = 10). State 2 (k = 3) is similar to state
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FIGURE 5 | Dynamic functional network connectivity in healthy control and patients. (A) The three identified dFNC states using the k-means clustering method in
healthy control (HC). (B) Occupancy rate (OCR) of HC in each state. HCs have the highest OCR in state 2 (corrected p < 0.001). OCR of state 3 is higher than the
OCR of state 1 in HC subjects (corrected p < 0.01). (C) The three identified dFNC states using the k-means clustering method in patients (vmAD). (D) Occupancy
rate (OCR) of HC in each state. vmAD subjects have the highest OCR in state 2 (corrected p < 0.001). OCR of state 1 is higher than OCR of state 2 in patients
(corrected p < 0.01). (E) Correlation between FNC of each state and clinical score in the only patient group. SCN, subcortical network; ADN, auditory network;
SMN, sensorimotor network; VSN, visual network; CCN, cognitive control network; DMN, default-mode network; and CBN, cerebellar network. The significant
correlation that passes the multiple comparisons is marked by asterisks.

2(k = 5), state 1 (k = 7), and state 8 (k = 10). State3 (k = 3) is similar
to state 3(k = 5), state 5 (k = 7), and state7 (k = 10). Increasing k
above the optimized value of k = 3 yields states whose similarity
to those in the optimized value weakens as k grows. However,
the two states (states 1 and 3) in the optimized clustering whose
OCR is significantly linked to CDR-SOB are highly replicable
up to k = 7 and whose occupancy has a replicable significant
relationship to CDR-SOB. Table 3 shows the correlation between
CDR-SOB with OCR of clustering with different k values.

Dementia Progression Associated With
Functional Network Connectivity
Using baseline FNC features, including sFNC, HMM, and OCR,
from whole-brain FNC, we successfully predicted the conversion

from the normal state to vmAD by classifying those subjects
converted to the mildly impaired stage (i.e., c-HC) from those
stayed unchanged within 5 years, i.e., uc-HC. The average
accuracy, sensitivity, specificity, and AUC in this classification
was 75, 72, 78, and 81%, respectively.

DISCUSSION

In this study, we explored the dynamic of whole-brain FNC of
HC (CDR-SOB = 0) and vmAD (0.5 ≤ CDR-SOB ≤ 9) subjects
from the longitudinal rs-fMRI OASIS-3 (LaMontagne et al.,
2019). Using a data-driven approach, we extracted 53 ICs for the
whole brain and used a sliding window approach followed by

Frontiers in Neural Circuits | www.frontiersin.org 9 January 2021 | Volume 14 | Article 593263

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-14-593263 January 18, 2021 Time: 14:37 # 10

Sendi et al. A Longitudinal Study of dFNC in AD Progression

State 1(%19.68) State 2(%34.60) State 3(%20.82) State 4(%6.89)

State 5(%18.01)

SCN
ADN
SMN
VSN

CCN

DMN
CBN

SC
N

AD
N

SM
N

VS
N

CC
N

DM
N

CB
N

SC
N

AD
N

SM
N

VS
N

CC
N

DM
N

CB
N

SC
N

AD
N

SM
N

VS
N

CC
N

DM
N

CB
N

SC
N

AD
N

SM
N

VS
N

CC
N

DM
N

CB
N

SCN
ADN
SMN
VSN

CCN

DMN
CBN

SC
N

AD
N

SM
N

VS
N

CC
N

DM
N

CB
N

0.6
0.4
0.2
0

-0.2
-0.4
-0.6

State 1(%28.96) State 2(%14.90) State 3(%5.46) State 4(%12.36)

State 5(%14.80) State 6(%15.32) State 7(%7.93)

SCN
ADN
SMN
VSN

CCN

DMN
CBN

SC
N

AD
N

SM
N

VS
N

CC
N

DM
N

CB
N

SC
N

AD
N

SM
N

VS
N

CC
N

DM
N

CB
N

SC
N

AD
N

SM
N

VS
N

CC
N

DM
N

CB
N

SC
N

AD
N

SM
N

VS
N

CC
N

DM
N

CB
N

SCN
ADN
SMN
VSN

CCN

DMN
CBN

SC
N

AD
N

SM
N

VS
N

CC
N

DM
N

CB
N

SC
N

AD
N

SM
N

VS
N

CC
N

DM
N

CB
N

SC
N

AD
N

SM
N

VS
N

CC
N

DM
N

CB
N

0.6
0.4
0.2
0

-0.2
-0.4
-0.6

State 1(%2.14) State 2(%11.02) State 3(%9.27) State 4(%11.02)

State 5(%9.40) State 6(%8.42) State 7(%9.02) State 8(%26.27)

SCN
ADN
SMN
VSN

CCN

DMN
CBN

SC
N

AD
N

SM
N

VS
N

CC
N

DM
N

CB
N

SC
N

AD
N

SM
N

VS
N

CC
N

DM
N

CB
N

SC
N

AD
N

SM
N

VS
N

CC
N

DM
N

CB
N

SC
N

AD
N

SM
N

VS
N

CC
N

DM
N

CB
N

SCN
ADN
SMN
VSN

CCN

DMN
CBN

SC
N

AD
N

SM
N

VS
N

CC
N

DM
N

CB
N

SC
N

AD
N

SM
N

VS
N

CC
N

DM
N

CB
N

SC
N

AD
N

SM
N

VS
N

CC
N

DM
N

CB
N

SC
N

AD
N

SM
N

VS
N

CC
N

DM
N

CB
N

0.6
0.4
0.2
0

-0.2
-0.4
-0.6

State 9(%5.31) State 10(%8.10)

A

B

C

FIGURE 6 | Dynamic functional connectivity states result with different k values. (A) The dFNC states identified using the k-means clustering method with k = 5.
(B) The dFNC states identified using the k-means clustering method with k = 7. (C) The dFNC states identified using the k-means clustering method with k = 10.
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TABLE 3 | The link between occupancy rate of each state and CDR-SOB.

State1 State2 State3 State4 State5 State6 State7 State8 State9 State10

K = 3 0.07 0.02 −0.14 NA NA NA NA NA NA NA

(0.013) (0.09) (6e-7)

K = 5 0.088 −0.014 −0.083 0.033 −0.017 NA NA NA NA NA

(0.001) (0.580) (0.001) (0.026) 0.513

K = 7 −3e-4 0.100 −0.013 −0.036 −0.075 0.043 −0.053 NA NA NA

(0.991) (0.001) (0.722) (0.241) (0.017) (0.188) (0.106)

K = 10 −7.8e-4 −0.030 −0.073 0.060 0.090 −0.009 −0.057 −0.010 −0.040 0.054

(0.771) (0.368) (0.030) (0.080) (0.008) (0.771) (0.082) (0.771) (0.219) (0.087)

The bold values are the significant correlation after multiple comparisons. All corrected p values are in the parentheses.

a clustering method to study dFNC of this dataset. We found
that the connectivity between VSN and SMN is dynamic by
a transition from positive connectivity in state 3 to moderate
positive connectivity in state 2 and negative connectivity in
state 1. In addition, the connectivity between SMN and VSN
with the rest of the brain changes from negative connectivity
in state 3 to other to state with more positive connectivity.
Besides SMN and VSN, we found a dynamical pattern in CCN
connectivity. Overall, we found the whole-brain FNC is highly
dynamic. This result argues the previous AD-related literature
that mainly ignored the dynamic behavior of brain connectivity.
Although a few studies explored the dFNC recently (Schumacher
et al., 2019; Gu et al., 2020), the current study uses Neuromark as
a replicable platform to extract data-driven ICs from relatively
large longitudinal data. This replicable platform can generate
ICs and replicate that across the different datasets. This would
help reproduce similar brain states for FNC across different
datasets, which is very important when studying dynamics
(Iraji et al., 2020).

We found within-SMN FC decreased by the transition from
a HC to a vmAD. This pattern was observed in all 3 states.
Previous studies showed a decrease in SMN FC is shown in AD
patients compared with that of HC subjects (Agosta et al., 2010;
Damoiseaux et al., 2012; Wang P. et al., 2015; Li et al., 2020).
In more detail, we found the FC within the postcentral gyrus
decrease in vmAD than the HC brain. Postcentral gyrus has a
key role in somatic sensation, including pain and temperature
(DiGuiseppi and Tadi, 2019). Also, a previous study showed
an impairment of pain and temperature sensation in mild
dementia (Fletcher et al., 2015). Therefore, dysconnectivity in
postcentral gyrus can potentially explain the impairment of
somatic sensation in the early stage of dementia and suggest a
prospective study.

In addition, we observed that the VSN FC, in the particular
fusiform gyrus, decreases when the brain progress from the
healthy state to mild dementia. As previous studies showed, the
fusiform gyrus is involved in face recognition, and alteration in
the connectivity between this brain region and other subregions
of VSN causes impairment in face recognition (Fur et al., 2011;
Cai et al., 2015). Functional dysconnectivity between fusiform
and the rest of the VSN potentially can explain the impairment of
face recognition in the early stage of AD progression (Uhlmann
et al., 1991). Also, results indicated reduced FC among the brain

sensory networks, i.e., ADN, SMN, and VSN, by progression
from HC state to vmAD. Information processing integration of
multisensory signals is a hallmark of self-awareness. For instance,
(Ehrsson, 2007) showed that the matching between visual
perception and proprioceptive signals is necessary for preserving
the self-consciousness. Disconnection among sensory networks
in mild dementia patients than that of healthy subjects can
potentially explain the underlying mechanism of self-awareness
discrepancy in AD patients. The current findings suggest future
studies for exploring a causal link between dysconnectivity in the
sensory network and lack of self-awareness in AD patients.

We also observed a disrupted temporal and spatial pattern in
the connectivity between CBN and other brain networks. In all
states, we found a decrease in the connectivity between CBN and
SCN by advancement from the HC brain to vmAD. However,
the connectivity between CBN and SMN, and between CBN and
VSN are higher in vmAD than the HC subjects. This finding
is consistent with a previous study that showed a reorganized
pattern in the connectivity between cerebellar subregions and
DMN, VSN, SMN (Zheng et al., 2017). However, we did not
detect a significant pattern in the correlation between the clinical
rate and the connectivity between CBN and DMN.

In addition, we found a disrupted pattern in DMN
connectivity by having reduced connectivity in state 3, and
both increased and reduced connectivity in state 1 and state
2 for vmAD than the normal brain. Based on sFC, previous
studies reported both increase (Tao et al., 2017) and decrease
(Binnewijzend et al., 2012) in whole-DMN connectivity of the AD
subject. Another study reported no significant difference in DMN
connectivity between AD patients with HC (Grieder et al., 2018).
Although a small sample size might affect the statistical power,
as previously shown in a study of major depression (Yan et al.,
2019), this inconsistent result partially could be due to focusing
on static FC, which is obtained from the correlation within an
entire time series. Similarly, we observed a disrupted spatial and
temporal pattern in CCN connectivity. In addition, we found a
reorganized pattern in the connectivity between CCN and other
networks such as SCN, ADN, SMN, VSN, DMN, and CBN.
A recent study showed a reorganized pattern in the connectivity
between inferior parietal lobule, as a part of CCN, with default
mode, salience, executive control, and SMNs (Wang Z. et al.,
2015). Our new finding provides new knowledge about the
reorganized pattern between CNN and the rest of the brain. The
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decrease in the CCN FC might explain the loss in the functional
integrity of the CCN network, and the increased FC showed that
vmAD patients potentially utilize additional brain subregions to
compensate for the impairment of cognitive function. We also
found that the FC within SCN, including caudate, thalamus, and
putamen, decreased in vmAD patients compared with that of
normal subjects. This result is consistent with a previous study
that showed subjects with the risk of AD showed less connectivity
in caudate and thalamus (Li W. et al., 2014).

Next, we calculated the correlation between clinical rate and
OCR and HMM. We found HC subjects spend more time in
state 3, which showed the highest positive connectivity among
sensory networks, i.e., VSN, SMN, and ADN, is less in vmAD
patients than the normal subjects. Also, we found the dwell time
of state1, which showed the least connectivity among sensory
networks, is higher for the patients with mild dementia. This
finding provides further evidence of the effect of disease on the
dysregulating temporal properties of FNC. A recent study showed
that AD subjects spend more time in a sparsely connected state
in which the motor network isolated from the rest of the brain
(Schumacher et al., 2019). Our result is consistent with the study
mentioned above by showing that the subjects with mild severity
in the early stage of AD spend more time in state 1, which shows
sparse connectivity among brain networks. However, another
part of our result that shows normal brain spend more time in
state 3, in which SMN is isolated from most parts of the brain
except VSN, contradicts the result of the aforementioned study.
In addition, spending more time in a state with lower connectivity
between SMN and VSN and less time in a state with stronger
connectivity between SMN and VSN by subject in the early stage
of AD emphasizes more on the role of this connectivity by the
transition from the normal stage to the early stage of AD. Also,
our result is consistent with another study from our group on a
different dataset that showed that AD patients spend more time
in the state with lower connectivity and spend less time in a state
with higher connectivity (Du et al., 2019).

Prior work has demonstrated the regional patterns of AD
pathology and their overlap with DMN regions (Desgranges
et al., 2011). Therefore, we expected DMN to be impacted,
as demonstrated in prior studies. However, we found that
associations between primary sensory/motor networks were most
correlative to symptom severity. Sensory and motor networks
are considered relatively spared from AD pathology, at least
until later stages of the disease. These exciting findings may
suggest that although relatively preserved and potentially due
to high signals in these regions, regions involved in cross-
modal sensory/motor integration are damaged. This information
provides a sensitive measure of neural damage in AD (potentially
more sensitive than primary degeneration regions). Our result
might suggest that DMN is the last brain network that is affected
by AD. Our result might also explain the previous study’s
finding that motor function changes might predate the cognitive
impairments and dementia onset (Verghese et al., 2007; Wesson
et al., 2011). However, a prospective study is needed to find
which specific sensory or motor function changes sign early AD.
Also, our new result about dysconnectivity in the somatosensory
network might explain why physical exercise would prevent AD

(De la Rosa et al., 2020) by increasing FNC among sensory
networks (Demirakca et al., 2016).

Neurofeedback is a form of real-time biofeedback regulating
brain activity and promoting brain function and behavioral
performance (Omejc et al., 2019). In this technique, the neural
signals are recorded from the brain. A feedback mechanism
is then used to control the neural signal features through a
feedback loop in the form of audio, video, or a combination
of them. This closed-loop therapy has been widely used for
major depressive disorder (Lee et al., 2019), attention deficit
hyperactivity disorder (Enriquez-Geppert et al., 2019), and
autism (Eroglu and Ekici, 2020) and got attention for treating
AD in recent years. A recent study used the amount of delta,
theta, alpha, and beta activity from EEG signal as a control signal
in neurofeedback to improve cognitive function in AD (Luijmes
et al., 2016). We introduced the sensory network’s connectivity as
a potential control marker in the neurofeedback in the current
study. More specifically, our result suggests a possible benefit
of administering the neurofeedback during the vmAD-related
state and switching the brain state from vmAD-related to HC-
related state. Although many technical limitations of real-time
implanting neurofeedback system integrated with dFNC exist
(Monti et al., 2017; Watanabe et al., 2017). Our results suggest a
future benefit of dFNC states in neurofeedback in AD treatment.

Finally, we show that both dFNC and sFNC can be used to
predict the conversion from healthy to vmAD based on their
baseline recording. Previous literature proposed a few models to
predict conversion from MCI to AD (Risacher et al., 2009; Li H.
et al., 2014; Abrol et al., 2020). For example, one study used 75
state MCI, i.e., who did not convert to AD, and 51 progressive
MCI, i.e., who changed to AD within 3 years, modeled a SVM
and could classify them with 79.37% accuracy based on the brain
connectivity features (Zheng et al., 2019). Another study used
structural and genetic data for prediction from converted normal
subjects to mild cognitive impairment from the unconverted
normal subject within 5 years and could predict the conversion
from normal to mild cognitive impairment with AUC of 85%
(Albert et al., 2018). However, the model for the conversion from
the normal brain to mild impairment state based on their baseline
recording has not extensively reported. The current study shows
a potential for FNC in predicting from healthy aging to mild
impairment stage.

Limitations and Future Study
There are some limitations to this work. The choice of
window size is an implicit assumption about the dynamic
behavior in that a short window captures more rapid
fluctuations, whereas a longer window does more smoothing.
Future work can be accomplished to evaluate the range
of dynamics more comprehensively (Faghiri et al., 2020).
In addition, we used SVM to compute the classification
between individuals who converted to vmAD, and those
did not convert. Other more advanced methods like neural
network-based classification can potentially increase the
prediction accuracy. However, applying neural network-based
classification is almost impossible due to the limited number
of samples in the longitudinal data used in this classification.
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CONCLUSION

In work reported here, we extend this existing body of
knowledge into the dynamic realm, investigating how time-
varying properties of whole-brain FNC changes by the transition
from healthy aging to vmAD. We found a state-specific
reorganized pattern in the whole-brain FNC of vmAD patients.
We observed a decreased connectivity among sensory networks,
including SMN, VSN, and ADN, in mild dementia state. This
provides a piece of new knowledge about the sensory network
dysconnectivity in the early stage of AD with mild symptom
severity. This potentially marked that sensory network is one
of the brain networks that got affected more than the other
brain network in the early stage of AD. In addition, we found
a reorganized pattern, i.e., both increase and decrease in DMN
and CCN connectivity. A similar changed pattern was observed
in between-networks connectivity. We also found that mild
dementia is linked to the temporal pattern on FNC by increasing
the amount of the time staying in a sparsely connected state with
lower functional connectivity among sensory networks. These
results emphasized that not only the transition from the normal
state to mild dementia changes the connectivity strength, but also
it dysregulates the temporal properties of FNC.
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