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Abstract: Five new thiohydantoin derivatives (1–5) were isolated from the rhizomes of Lepidium
meyenii Walp. NMR (1H and 13C NMR, 1H−1H COSY, HSQC, and HMBC), HRESIMS, and ECD were
employed for the structure elucidation of new compounds. Significantly, the structure of compound
1 was the first example of thiohydantoins with thioxohexahydroimidazo [1,5-a] pyridine moiety.
Additionally, compounds 2 and 3 possess rare disulfide bonds. Except for compound 4, all isolates
were assessed for neuroprotective activities in corticosterone (CORT)-stimulated PC12 cell damage.
Among them, compound (−)-3 exhibited moderate neuroprotective activity (cell viability: 68.63%,
20 µM) compared to the positive control desipramine (DIM) (cell viability: 88.49%, 10 µM).

Keywords: Lepidium meyenii; thiohydantoins; thioxohexahydroimidazo [1,5-a] pyridine; neuroprotec-
tive activities

1. Introduction

Hydantoin, imidazolidine-2,4-dione, is a five-membered heterocycle that is one of the
oxidized forms of imidazolidine with a cyclic urea core. The hydantoin scaffold has been
enhanced in clinical use, for example, phenytoin, nitrofurantoin, and ethotoin. Thiohydan-
toin, an isosteric analogue of hydantoin, similarly possesses versatile biological activities,
such as fungicidal, herbicidal [1], immunomodulating [2], and anticancer activities [3].
Based on enzalutamide, Xu et al. designed and synthesized a tetrahydroisoquinoline
thiohydantoin scaffold. Several new analogues displayed improved antagonistic effect
against the androgen receptor (AR) while maintaining the higher selective toxicity toward
LNCaP cells (AR-rich) versus DU145 cells (AR-deficient) compared to enzalutamide [4].
However, (thio)hydantoin derivatives were rarely isolated from nature before 2017.

Lepidium meyenii Walp. (Brassicaceae), known as “Maca”, has been used as a tradi-
tional health care food for over 2000 years in South America. Modern pharmacological
studies displayed its effects including strengthening body, improving fertility and sexual
behavior [5,6], antioxidant [7], as well as anti-osteoporosis [8]. Recently, the potential
neuroprotective activity of Maca has attracted a number of researchers [9–11]. Research has
shown that extracts of Maca possessed effective neuroprotective activities in the 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced zebrafish model [12].

The main chemical constituents of Maca are glucosinolates [13–15], macaenes,
macamides [16–20], alkaloids [21–24], flavonols [25], phytosterols [14], polyscaccharides [26],
and fatty acids. In our previous research, a series of pyrrole alkaloids [27] and thiohydan-
toin derivatives with cytotoxic and antimicrobial activities were found from Maca [28,29].
Recently, we consecutively isolated four pairs of unprecedented macathiohydantoin dimers,
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while (±) lepithiohyantoin B and (–) lepithiohyantoin D protected PC12 cells in a dose-
dependent manner [30]. Notably, thiohydantoin and hydantoin derivatives isolated from
the roots of Armoracia rusticana (Brassicaceae) exhibited potent nerve growth factor stimu-
lation activities [31].

In the present work, we continued to investigate the constituents containing thiohy-
dantoin moiety from Maca and five novel thiohydantoins, macathiohydantoins L−O (1–4)
and (+)-Meyeniin D (5), were obtained from the rhizomes of Maca (Figure 1), of which
compound 1 possesses thioxohexahydroimidazo [1,5-a] pyridine moiety. Additionally,
compounds 2 and 3 possess rare disulfide bonds. Furthermore, their neuroprotective
activities in PC12 cells induced by corticosterone (CORT) were evaluated.
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Figure 1. Structures of compounds 1–5.

2. Results and Discussion
2.1. Structure Determination of Macathiohydantoin L (1)

Macathiohydantoin L (1) was isolated as yellow oil. The HRESIMS data gave an [M −
H]− ion at m/z 275.0866, which was consistent with a molecular formula of C14H16N2O2S
and implied 8 indices of hydrogen deficiency. The 13C NMR data of 1 displayed charac-
terized signals of two carbonyl groups (δC 179.2, 193.6), one monosubstituted phenyl ring
(δC 135.8, 128.7 × 2, 128.5 × 2, 127.9) accounting for six degrees of unsaturation, and the
remaining two ones indicated the presence of two rings in 1. Comparing the 1D NMR
data (supplementary materials) of macathiohydantoin D [29] and 1, the presence of five
methylenes (δC 18.4, 32.5, 24.7, 41.1, 44.7) were observed in 1 rather than four methylenes
in macathiohydantoin D. The 1H−1H COSY correlations of H2-5-H2-6-H2-7-H2-8 and the
HMBC correlations (Figure 2) of H2-8 with C-1, C-4, C-6, and C-7; and of δH 2.18 (1H, d,
(J = 13.2, 2.4 Hz) H-5α) with C-4, C-6, and C-7 proved compound 1 was a thiohydantoin
derivative with the thioxohexahydroimidazo [1,5-a] pyridine moiety.
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The specific rotation value [α]26
D -7.07 (c 0.130, MeOH) of 1 suggested that it could

be an enantiomer mixture, which was further substantiated by a chiral analysis. In order
to determine the absolute configuration of enantiomers (+)-1 and (–)-1, electronic circular
dichroism (ECD) calculations were carried out. The predicted ECD spectrum of (4S)-1
agreed well with the experimental CD spectrum of (+)-1, leading to the unambiguous
assignment of the absolute configuration of 4S for (+)-1 and 4R for (–)-1, respectively
(Figure 3).

2.2. Structure Determination of Macathiohydantoin M (2)

Macathiohydantoin M (2) was isolated as colorless oil. The molecular formula of 2 was
assigned as C14H16N2OS3 by HRESIMS data ([M + Na]+, m/z 347.0318, calcd 347.0317) with
eight degrees of unsaturation. The 1H NMR spectrum (Table 1) of 2 displayed signals of five
aromatic protons at δH 7.52 (2H, d, (J = 7.2 Hz), H-3a and H-7a), δH 7.26 (m, H-5a), and δH
7.30 (m, H-4a and H-6a) for monosubstituted phenyl moiety and one singlet methyl at δH
2.11 (s, H3-9). Additionally, four quaternary carbons (including two carbonyl groups) and
four methylenes were assigned based on the 13C-DEPT spectra and the HSQC correlations.
The aforementioned information showed that the structure of 2 was similar with that of
macathiohydantoin D [29]. Simultaneously, the observed HMBC correlations (Figure 2) of
H2-7 with C-1, C-4, C-5, and C-6; H2-5 with C-3, C-4, C-6, and C-7; and of H2-1a to C-1, C-3,
C-2a, and C-3a, together with the 1H–1H COSY correlations of H2-5/H2-6/H2-7, further
confirmed the above deduction. However, detailed comparison of their 13C NMR data
displayed that the chemical shift of C-4 obviously shifted high-field in 2 (δC 80.3 for 2, δC
92.5 for macathiohydantoin D). Considering two additional sulfur atoms and one singlet
methyl in the molecular formula of 2, a methyl disulfide bond was established and located
at C-4.

Similarly, 2 was found to be also a pair of enantiomers through chiral analysis. The
subsequent chiral HPLC resolution of 2 gave the anticipated enantiomers (–)-2 and (+)-2,
whose experimental CD curves were opposite. Thus, as depicted in Figure 3, the absolute
configurations of (–)-2 and (+)-2 were deduced to be 4R and 4S by comparing with the
calculated ECD curve of 4S-2.
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Table 1. 1H NMR, 13C NMR, and DEPT spectroscopic data of compounds 1–5 in CDCl3.

1 a 2 a 3 a 4 b 5 a

δH δC δH δC δH δC δH δC δH δC

1 179.2s 184.6 s 184.6 s 186.2 s 182.8 s
3 173.6 s 173.1 s 173.1 s 170.2 s 169.4 s
4 83.1 s 80.3 s 80.4 s 97.2 s 93.8 s

5
2.18, d
(14.0)

1.47, m
32.5 t 2.15, m 31.6 t 2.17, m

2.37,m 31.6t 2.19, m
1.75, m 32.4 t

3.21, d
(12.0)

3.06, d
(12.0)

38.4 t

6 1.97 m
1.81 m 18.4 t 2.35, m

2.23, m 25.7 t 2.23, m
2.17, m 25.7 t 2.36, m

2.19, m 24.9 t

7 1.82, m
1.50, m 24.7 t 4.10, m

3.67, m 47.4 t 4.09, m
3.66, m 47.4 t

4.05, dt (10.8, 8.4)
3.59, ddd

(10.8, 9.0, 3.0)
48.0 t 5.60, q

(6.4) 61.0 d

8

4.68, dd
(13.3,4.7)
3.30, dd
(13.2,2.4)

41.1 t

9 2.11, s 23.2 q 2.15, s 23.3 q 1.73, d
(6.4) 24.5 q

1a

5.05, d
(14.5)

5.00, d
(14.5)

44.7 t

5.15, d
(14.5)

4.91, d
(14.5)

45.4 t

5.10, d
(14.5)

4.89, d
(14.5)

45.4 t 4.98, d(14.4)
4.91, d (14.4) 44.8 t

4.98, d
(14.5)

4.87, d
(14.5)

45.5 t

2a 135.8 s 135.5 s 136.9 s 137.3 s 135.3 s

3a 7.44, d
(7.3) 128.7 d 7.52, d

(7.2) 128.8 d 7.09, m 114.0 d 6.93, s 115.5 d 7.43, d
(7.2) 129.0 d

4a 7.30, m 128.5 d 7.30, m 128.4 d 159.6 s 155.7 s 7.32, m 128.9 d

5a 7.29, m 127.9 d 7.26, m 127.9 d 6.81, d
(6.0) 113.6 d 6.75, d (7.8) 115.0 d 7.32, m 128.4 d

6a 7.30, m 128.5 d 7.30, m 128.4 d 7.22, t
(8.1) 129.9 d 7.17, t (7.8) 129.9 d 7.32, m 128.9 d

7a 7.44, d
(7.3) 128.7 d 7.52, d

(7.2) 128.8 d 7.09, m 121.1 d 7.00, d (7.8) 121.0 d 7.43, d
(7.2) 129.0 d

OMe 2.81, s 55.2 q 3.13, s 51.9 q
a Measured at 600/150 MHz; b Measured at 800/200 MHz.

2.3. Structure Determination of Macathiohydantoin N (3)

Macathiohydantoin N (3) exhibited a molecular formula of C15H18N2O2S3, as deter-
mined by HRESIMS at m/z 355.0600 [M + H]+ (calcd 355.0603). Inspection of the NMR data
(Table 1) indicated a high similarity between 2 and 3, except for an additional methoxyl and
the replacement of monosubstituted phenyl by disubstituted phenyl in 2. Further evidence
was established from the HMBC correlations (Figure 2) of H3-OMe to C-4a and H2-1a to
C-1, C-3, C-2a, C-3a.

Similarly, by comparison of experimental CD curves between (+)-3 and (+)-2, the
absolute configurations of (–)-3 and (+)-3 were determined as 4R and 4S, respectively.

2.4. Structure Determination of Macathiohydantoin O (4)

Macathiohydantoin O (4) was isolated as colorless oil with the molecular formula of
C14H16N2O3S as deduced by HRESIMS data ([M − H]−, m/z 291.0818, calcd 291.0809).
Compound 4 was also identified as a thiohydantoin derivative based on its 1D NMR data,
which were similar with those of macathiohydantoin E [29] with the only difference in
the methoxyl at C-4 in 4 instead of the hydroxyl in macathiohydantoin E. Furthermore,
the HMBC correlation from H3-OMe to C-4 confirmed that methoxyl was located at C-4.
Due to the specific rotation value of 4 being [α]26

D +30.93 (c 0.120, MeOH) similar with
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(+)-macathiohydantoin E [+49.00 (c 0.007, MeOH)], the absolute configuration of (+)-4 was
directly deduced to be 4S.

2.5. Structure Determination of (+)-Meyeniin D (5)

(+)-Meyeniin D (5) as colorless powder was determined to be C13H14N2O2S2 based
on the HRESIMS data observed at m/z 293.0426 [M − H]−, (calcd for C13H13N2O2S2,
293.0424). Its 1D NMR spectroscopic data were similar with (+)-meyeniins B [32] except
that H-4 in (+)-meyeniins B was replaced by a hydroxy group. The inference was further
proved by the HMBC correlations of δH 1.73 (3H, d, (J = 6.4 Hz), H-9) with C-7, H2-5 with
C-7, C-4, and C-3, and H2-1a with C-1, C-3, C-2a, and C-3a. The absolute configuration of 5
was determined as (4S, 7S) by ECD calculations (Figure 3).

2.6. Neuroprotective Activities of Selected Compounds

Except for compound 4, all isolates were assessed for their neuroprotective activities
in corticosterone (CORT)-stimulated poorly differentiated PC12 cells. Compound(–)-3
exhibited the most potent neuroprotective activity (cell viability: 68.63%, 20 µM). Inter-
estingly, the compounds 1–3 with 4S-configuration showed higher activities compared to
their enantiomers (Table 2).

Table 2. Neuroprotective activities of selected compounds.

Compound Concentration (µmol) Cell Viability (%)

DIM a 10 88.49 ± 1.49
(+)-1 20 60.37 ± 0.29
(−)-1 20 62.59 ± 0.36
(+)-2 20 65.85 ± 1.35
(−)-2 20 67.64 ± 2.88
(+)-3 20 65.60 ± 1.18
(−)-3 20 68.63 ± 1.12

5 20 63.32 ± 1.10
a Positive control substance. Results are the means of three independent experiments, and the data are expressed
as mean ± SD.

3. Materials and Methods
3.1. General Experimental Procedures

Optical rotations were obtained with a Rudolph Autopol VI polarimeter in MeOH. A
Shimadzu UV-2700 spectrometer was used to obtain UV spectra. 1H and 13C NMR spectra
were acquired on Bruker AV-600 and AV-800 instruments (Bruker, Zurich, Switzerland) us-
ing tetramethylsilane (TMS) as an internal standard for chemical shifts in CDCl3. Chemical
shifts (δ) were expressed in ppm and referenced to the TMS resonance. High-resolution
electrospray ionization mass spectrometry (HRESIMS) data were performed on an UPLC
system (1260, Agilent) coupled to a quadrupole time-of-flight mass spectrometer (Agilent
6540 Q-TOF, Agilent Technologies, Foster City, CA, USA). Infrared spectra were recorded
on a Bruker Tensor-27 instrument by using KBr pellets. An Agilent 1100 series instrument
equipped with an Agilent ZORBAX SB-C18 column (5 µm, 9.4 mm× 250 mm) was used for
high-performance liquid chromatography (HPLC) analysis. Chiral chromatography using
a CHIRALCEL AD-H column (5 µm, 4.6 mm × 150 mm) was used to resolve enantiomers.

Silica gel (200–300 mesh, Qingdao Marine Chemical, Inc.), Lichroprep RP-18 (40–63 µm,
Merck), and Sephadex LH-20 (20–150 µm, Pharmacia, Sweden) were used for column chro-
matography. Fractions were monitored by TLC (GF254, Qingdao Marine Chemical Ltd.,
Qingdao, China) and by heating silica gel plates sprayed with 10% H2SO4 in ethanol.
Methanol, dichloromethane, ethylacetate, acetone, and petroleum ether were purchased
from Yunnan Chemical Reagent Co. (Yunann, China). All other materials were of the
highest grade available.
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3.2. Plant Material

Rhizomes of Maca (Lepidium meyenii Walp.) purchased in September 2019 from a
Luo-shiwan Traditional Chinese Medicine Market in Kunming were collected from Lijiang
of Yunnan, China. Maca was identified by Prof. Qiu Minghua, who works at Kunming
Institute of Botany, Chinese Academy of Sciences. The specimen was kept in the State Key
Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of
Botany, Chinese Academy of Sciences, Kunming of China.

3.3. Plant Material Extraction and Isolation

The air-dried and powered maca rhizomes (37 kg) were extracted three times with
acetone at room temperature and evaporated to remove solutions to yield the crude extract.
The aqueous residue was extracted with petroleum ether (PE, I) and ethyl acetate (EtOAc,
II), respectively.

The PE part (267 g) was subjected to a silica gel column with PE/ EtOAc (50:1→1:1,
v/v) to yield seven fractions (Fr. I-1–Fr. I-7). Fr. I-2 (15 g) was further subjected to an RP-C18
column with MeOH/H2O (40:60→100:0, v/v) to afford four subfractions (Fr. I-2-1–Fr. I-2-4).
Fr. I-2-3 (65 mg) was separated by a Sephadex LH-20 column (MeOH) to afford compounds
2 (11.9 mg) and 1 (2.2 mg). Similarly, Fr. I-3 (22 g) was also separated with a RP-18
column with MeOH/H2O (40:60→100:0, v/v) to afford four subfractions (Fr. I-3-1–Fr. I-3-
4). Fr. I-3-4 was subjected to a Sephadex LH-20 column (MeOH) to afford four subfractions
(Fr. I-3-4-1–Fr. I-3-4-4). Semi-preparative HPLC afforded compounds 3 (3.5 mg) in Fr.
I-3-4-3, and compound 4 (0.8 mg), 5 (1.6 mg) were isolated from Fr. I-4-2 in the same way.

Compounds 1-3 were respectively separated by chiral analytic column to get (+)-1
(1.9 mg, tR = 9.3 min) and (–)-1 (0.9 mg, tR = 10.5 min) (AD-H, n-hexane/isopropanol = 92:8,
v/v, flow rate = 1.0 mL/min); (+)-2 (1.8 mg, tR = 17.0 min) and (–)-2 (1.8 mg, tR = 20.1 min) (AD-
H, n-hexane/isopropanol = 92:8, v/v, flow rate = 1.0 mL/min); (+)-3 (1.5 mg, tR = 15.0 min) and
(–)-3 (1 mg, tR = 18.7 min) (AD-H, n-hexane/isopropanol = 92:8, v/v, flow rate = 1.0 mL/min).

3.3.1. Macathiohydantoin L (1)

Yellow oil (MeOH); [α]26
D − 7.07 (c 0.130, MeOH); {(+)-1: [α]16

D + 25.43 (c 0.190, MeOH);
CD (MeOH) ∆ε215 − 0.21, ∆ε250 + 9.70, ∆ε272 − 3.30, ∆ε291 − 0.68; (–)-1: [α]16

D − 16.02
(c 0.090, MeOH); CD (MeOH) ∆ε215 + 0.97, ∆ε250 − 0.48, ∆ε271 + 0.64, ∆ε303 + 0.18};
UV (MeOH) λmax (log ε): 283 (4.69), 261 (4.72), 275 (4.68), and 233 (4.40) nm; 1H NMR
and 13C NMR data: see Table 1; IR (KBr) νmax 3832, 2926, 2854, 1751, 1641, 1481, 1439, and
1361 cm−1; HRESIMS m/z 275.0866 [M − H] − (calcd for C14H15N2O2S, 275.0860).

3.3.2. Macathiohydantoin M (2)

Colorless oil (MeOH); [α]26
D + 8.89 (c 0.140, MeOH); {(+)-2: [α]26

D + 24.04 (c 0.190,
MeOH); CD (MeOH) ∆ε 201 + 15.79, ∆ε 257 − 24.69, ∆ε 280 + 4.32, ∆ε 303 + 5.59; (–)-2:
[α]26

D − 10.63 (c 0.160, MeOH); CD (MeOH) ∆ε201 − 9.33, ∆ε257 + 19.86, ∆ε280 − 3.29,
∆ε303 − 4.37}; UV (MeOH) λmax (log ε): 283 (4.16), 262 (4.14), 271 (4.13), and 230 (3.72)
nm; 1H NMR and 13C NMR data: see Table 1; IR (KBr) νmax 2924, 2854, 1746, 1605, 1586,
1419, 1372, and 1242 cm−1; HRESIMS m/z 347.0318 [M + Na]+ (calcd for C14H16N2OS3Na,
347.0317).

3.3.3. Macathiohydantoin N (3)

Colorless oil (MeOH); [α]26
D + 4.92 (c 0.130, MeOH); {(+)-3: [α]24

D + 37.38 (c 0.080,
MeOH); CD (MeOH) ∆ε201 + 15.32, ∆ε257 − 15.34, ∆ε280 + 2.78, ∆ε303 + 3.65; (–)-3:
[α]25

D − 38.44 (c 0.050, MeOH); CD (MeOH) ∆ε201 − 12.91, ∆ε257 + 16.33, ∆ε280 − 2.87,
∆ε303 − 3.78}; UV (MeOH) λmax (log ε): 279 (4.27), 237 (4.02), and 196 (4.84) nm; 1H NMR
and 13C NMR data: see Table 1; IR (KBr) νmax 2924, 2852, 1747, 1602, 1587, 1417, 1342, and
1239 cm−1; HRESIMS m/z 355.0600 [M + H]+ (calcd for C15H19N2O2S3, 355.0603).
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3.3.4. Macathiohydantoin O (4)

Colorless oil (MeOH); [α]26
D + 30.93 (c 0.120, MeOH); UV (MeOH) λmax (log ε): 271

(3.50), 234 (3.20), and 197 (3.92) nm; 1H NMR and 13C NMR data: see Table 1; IR (KBr)
νmax 3429, 2919, 2850, 1754, 1591, 1423, and 1259 cm−1; HRESIMS m/z 291.0818 [M − H] −

(calcd for C14H15N2O3S, 291.0809).

3.3.5. (+)-Meyeniin D (5)

Colorless oil (MeOH); [α]26
D + 108.38 (c 0.08, MeOH); CD (MeOH) ∆ε201 + 9.54,

∆ε241 − 10.74, ∆ε260 − 4.82, ∆ε278 − 0.22; UV (MeOH) λmax (log ε): 272 (3.96), 231 (3.61),
and 196 (4.24) nm; 1H NMR and 13C NMR data: see Table 1; IR (KBr) νmax 2926, 2853,
1756, 1606, 1414, 1383, and 1194 cm−1; HRESIMS m/z 293.0426 [M − H] − (calcd for
C13H13N2O2S2, 293.0424).

3.4. Cell Culture and Cell Viability Assays

Poorly differentiated PC12 cells were maintained in Dulbecco’s modified eagle medium
(DMEM) supplemented with 10% fetal bovine serum (FBS), penicillin (100 U/mL), strep-
tomycin (100 µg/mL), and incubated at 5% CO2 and 37 ◦C. Poorly differentiated PC12
cells were divided into the following groups: untreated, CORT (150 µmol/L), CORT
(150 µmol/L) plus DIM (10 µmol/L), CORT (150 µmol/L) plus test compounds (20 µmol/L).
Briefly, poorly differentiated PC12 cells were seeded into 96-well culture plates at a density
of 1*104 cells/well. After 24 h culturing, the wells were added compounds as previously
described groups. Then, 48 h later, MTS solution was added to each well. The absorbance
was measured at 492 nm using a Thermo Multiskan FC.

4. Conclusions

In summary, five new thiohydantoin derivatives (1-5) were isolated from the rhizomes
of L. meyenii. Specifically, compound 1 possesses thioxohexahydroimidazo [1,5-a] pyridine
moiety. Additionally, compounds 2 and 3 possess the rare disulfide bonds, and compound
(–)-3 exhibited moderate neuroprotective activity compared with desipramine (DIM) as
a positive control. Our research not only enriches the structural types of compounds
in Maca but also provides a material basis for Maca as a potential health food to treat
neurodegenerative diseases.

Supplementary Materials: The following are available online. 1D and 2D NMR spectra of all isolated
compounds. Detailed information for each material is given in the Supplementary Material.
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