© 2013 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org

Glycoproteomic Analysis of the Secretome of Human Endothelial Cells*

Xiaoke Yin‡, Marshall Bern§, Qiuru Xing‡, Jenny Ho¶, Rosa Viner and Manuel Mayr‡**

Previous proteomics studies have partially unraveled the complexity of endothelial protein secretion but have not investigated glycosylation, a key modification of secreted and membrane proteins for cell communication. In this study, human umbilical vein endothelial cells were kept in serum-free medium before activation by phorbol-12-myristate-13 acetate, a commonly used secretagogue that induces exocytosis of endothelial vesicles. In addition to 123 secreted proteins, the secretome was particularly rich in membrane proteins. Glycopeptides were enriched by zwitterionic hydrophilic interaction liquid chromatography resins and were either treated with PNGase F and H₂¹⁸O or directly analyzed using a recently developed workflow combining higher-energy C-trap dissociation (HCD) with electron-transfer dissociation (ETD) for a hybrid linear ion trap-orbitrap mass spectrometer. After deglycosylation with PNGase F in the presence of H₂¹⁸O, 123 unique peptides displayed ¹⁸O-deamidation of asparagine, corresponding to 86 proteins with a total of 121 glycosylation sites. Direct glycopeptide analysis via HCD-ETD identified 131 glycopeptides from 59 proteins and 118 glycosylation sites, of which 41 were known, 51 were predicted, and 26 were novel. Two methods were compared: alternating HCD-ETD and HCD-product-dependent ETD. The former detected predominantly high-intensity, multiply charged glycopeptides, whereas the latter preferentially selected precursors with complex/hybrid glycans for fragmentation. Validation was performed by means of glycoprotein enrichment and analysis of the input, the flow-through, and the bound fraction. This study represents the most comprehensive characterization of endothelial protein secretion to date and demonstrates the potential of new HCD-ETD workflows for determining the glycosylation status of complex biological samples. Molecular & Cellular Proteomics 12: 10.1074/mcp.M112.024018, 956-978, 2013.

Cardiovascular disease manifests predominantly as myocardial ischemia, heart failure, stroke, aortic aneurysm, and peripheral vascular disease and leads to the majority of deaths and disabilities worldwide. Endothelial cells (ECs) constitute the inner lining of all blood vessels and form the interface between the circulation and the vascular wall (1). The endothelial monolayer is pivotal for maintaining vascular homeostasis through a balance of endothelium-derived factors (2, 3). ECs are preferred targets of cardiovascular risk factors such as hypercholesterolemia, diabetes, hypertension, and smoking (1, 4). Repetitive injury is associated with a varying degree of endothelial dysfunction. Alterations in its anticoagulant and anti-inflammatory properties leave the vasculature susceptible to disease (5) and play a key role in the initiation and progression of cardiovascular disease (6).

Previous proteomics studies (7-13), including one by our group (8), have investigated the secretome of unstimulated human umbilical vein ECs (HUVECs), the most widely used ECs in cardiovascular research. Only two studies have explored the secretome of HUVECs upon activation by shear stress (10) or with statin treatment (13) thus far. One study used human microvascular ECs (9), which represent a distinct population of ECs from small vessels. Yet many factors secreted by ECs were not identified, probably because of their low abundance. In this study, we used a secretagogue, phorbol ester phorbol-12-myristate-13-acetate (PMA) (14, 15), to induce maximal protein release from serum-starved HUVECs over 45 min. In addition, we applied three different proteomic strategies for the analysis of glycoproteins/glycopeptides to further enrich secreted proteins and characterize their glycosylation sites.

EXPERIMENTAL PROCEDURES

EC Culture—HUVECs (Lonza Group Ltd., Basel, Switzerland) were cultured on 0.1% gelatin-coated flasks in M199 medium supplemented with 1 ng/ml endothelial cell growth factor (Sigma), 3 μ g/ml endothelial growth supplement from bovine neural tissue (Sigma), 10 U/ml heparin, 1.25 μ g/ml thymidine, 10% fetal bovine serum (A15–108, PAA Laboratories, Velizy-Villacoublay, France), and 100 μ g/ml penicillin and streptomycin in a humidified incubator supplemented with 5% CO₂ at 37 °C. The cells were subcultured every 2 to 3 days at a ratio of 1:4 (16).

Conditioned Medium Collection—HUVECs were cultured in complete medium until confluent. Then, they were washed and incubated in M199 medium for 30 min twice before stimulation with 50 nm PMA (Sigma) in M199 medium for 45 min. The control group was incubated with M199 medium in the absence of PMA for 45 min. Conditioned media were collected and stored at -80 °C for further analysis.

Immunofluorescence Staining-HUVECs were cultured in Nunc chamber slides (Sigma-Aldrich) for 3 days. HUVECs were stimulated

From ‡The King's British Heart Foundation Centre, King's College London, London SE5 9NU, UK; §Protein Metrics, San Carlos, CA 94070; ¶Thermo Fisher Scientific, Hemel Hempstead, HP2 7GE, UK; ||Thermo Fisher Scientific, San Jose, CA 95134

[%] Author's Choice—Final version full access.

Received September 12, 2012, and in revised form, January 18, 2013

Published, MCP Papers in Press, January 23, 2013, DOI 10.1074/mcp.M112.024018

with 50 nM PMA in M199 medium for 45 min or incubated with M199 medium for 45 min. The cells were fixed with 4% formaldehyde in PBS for 10 min, permeabilized with 0.1% Triton X-100 in PBS for 5 min, and blocked in 5% fetal bovine serum in PBS for 30 min at 37 °C. Following 1 h of incubation with the primary antibodies, VE-cadherin (ab33168, Abcam, Cambridge, UK), and von Willebrand factor (vWF) (sc-8068, Santa Cruz Biotechnology, Santa Cruz, CA) at 37 °C, an Alexa Fluor[®] 594 conjugated donkey anti-rabbit IgG and an Alexa Fluor[®] 488 conjugated donkey anti-goat IgG, respectively, were added, and the cells were incubated at 37 °C for 30 min. Nuclei were counterstained with 4',6-diamidino-2-phenylindole (D9542, Sigma) for 5 min. The slide was mounted in fluorescence mounting medium (DAKO, Denmark A/S, Glostrup, Denmark) and examined with an AxioPlan 2 fluorescence microscope (Carl Zeiss, Thornwood, NY) (17).

Proteomics Profiling of the Secretome–Conditioned media were concentrated with an Amicon spin column (3kD MWCO, EDO Millipore Corp., Billerica, MA) and separated via 4%–12% Bis-Tris SDS-PAGE (Invitrogen). Proteins were visualized via silver staining (PlusOne silver staining kit for proteins, GE Healthcare). Gel bands were digested with modified trypsin (Promega Corp., Madison, WI) overnight on a ProGest digestion robot (Digilab Inc., Marlborough, MA) and analyzed via reverse-phase nano-flow HPLC (PepMap C18, 3 μ m, 100 Å, 25 cm \times 75 μ m inner diameter column, Thermo Scientific) interfaced to an LTQ Orbitrap XL MS (Thermo Scientific) (18).

Deglycosylation—Concentrated media were mixed with deglycosylation buffer (150 mM NaCl, 50 mM sodium acetate, 10 mM EDTA, proteinase inhibitors, pH 6.8) supplemented with 0.05U PNGase F (Sigma), chondroitinase ABC (C3667, Sigma), and keratanase (G6920, Sigma) and incubated at 37 °C overnight (19).

Immunoblotting—Concentrated or deglycosylated media were separated via 4%–12% Bis-Tris gel (Invitrogen). Proteins were transferred on a nitrocellulose membrane and blocked with 5% bovine serum albumin in PBS. Membranes were incubated with primary antibody overnight at 4 °C. Secondary antibodies were incubated for 1 h at room temperature. After the addition of ECL (GE Healthcare), the film was developed using a Compact X4 Automatic Processor (Xograph Healthcare Ltd., Stonehouse, UK). The following primary antibodies were used: agrin (sc-25528, Santa Cruz Biotechnology), biglycan (ab54855, Abcam), connective tissue growth factor (sc-25440, Santa Cruz Biotechnology), fibronectin (sc-56391, Santa Cruz Biotechnology), and lymphatic vessel endothelial hyaluronic acid receptor 1 (AF2089, R&D Systems).

Difference Gel Electrophoresis-Conditioned media from HUVECs treated with or without PMA were concentrated using an Amicon spin column (3kD MWCO, Millipore) and the ReadyPrep 2D clean-up kit (Bio-Rad). The pellet was resuspended in difference gel electrophoresis lysis buffer (30 mM Tris, 8 M urea, 4% w/v CHAPS, protease inhibitors, pH 8.5). For each secretome sample, 15 μ g of proteins were labeled with Cy3 or Cy5. A dye swap was performed to exclude preferential labeling. Cellular extracts of HUVECs were labeled with Cy2. Cy2-, Cy3-, and Cy5-labeled samples were separated via isoelectric focusing on immobilized pH gradient dry strips (18 cm, pH 3-10 NL. GE Healthcare) with 30 KVH. The strips were equilibrated with 10 mg/ml DTT in equilibration buffer (6 M urea, 2% w/v SDS, 30% v/v glycerol, 50 mM Tris, pH 8.8) for 15 min followed by 48 mg/ml iodoacetamide in equilibration buffer for 15 min before separation via SDS-PAGE at 100 W for 4 h using an Ettan DALTsix vertical electrophoresis system (GE Healthcare) (20-22). Gels were scanned on an Ettan difference gel electrophoresis imager (GE Healthcare). Images were overlaid with ImageQuant TL software (GE Healthcare). Common spots present in both the cellular proteome and the secretome were excised, digested with trypsin, and identified using nano-flow

HPLC-MS/MS. Detailed protocols are available on our research group's website.

Glycopeptide Enrichment—Conditioned media were desalted via the use of Zeba spin columns (Thermo Scientific). Proteins were then reduced by 5 mM DTT and alkylated with 25 mM iodoacetamide. After acetone precipitation overnight, the pellet was resuspended in 100 mM triethylammonium bicarbonate (pH 8.5, Sigma) and digested with modified trypsin (Promega) at 37 °C overnight. Peptides were labeled at a ratio of 100 μ g peptides/0.8 mg Tandem Mass Tag Zero (TMT⁰) (Thermo Scientific) according to the manufacturer's instruction. Labeled peptides were further enriched for glycopeptides using zwitterionic hydrophilic interaction liquid chromatography resin (Merck) (23).

LC/MS of Intact Glycopeptides-The glycopeptide enriched fraction was separated using the EASY-nLC[™] nano-HPLC system (Thermo Scientific) with a Magic C18 spray tip 15 cm \times 75 μ m inner diameter column (Bruker-Michrom, Auburn, CA). Gradient elution was performed with 4% to 30% acetonitrile in 0.1% formic acid over 60 min at a flow rate of 300 nl/min. The samples were analyzed with an Orbitrap Elite hybrid MS with electron-transfer dissociation (ETD) (Thermo Scientific). The following MS and MS/MS settings were used: Fourier transform: MSn automatic gain control target = 5E4; MS/ MS = 1 μ scans, max ion time = 200 ms; MS = 300-1800 m/z, resolution = 60,000 at m/z 400, MS target = 1E6; dynamic exclusion = repeat count 1, duration 30 s, exclusion duration 90 s; higherenergy C-trap dissociation (HCD): collision energy = 35%, resolution = 15,000; MSn target ion trap = 1E4, 2 μ scans, max ion time = 150 ms; ETD anion automatic gain control target = 2E5, charge-dependent ETD reaction time enabled. For alternating HCD-ETD MS/ MS, the top 10 ions were analyzed. For HCD-product-dependent ETD, the top 10 ions were analyzed via HCD, and product-dependent ETD acquisition was triggered by product (oxonium) ions (m/z163.0812 for Hex; m/z 204.0864 for HexNAc; m/z 138.0554 for Hex-NAc fragment ion) (24).

Deglycosylation with PNGase F and $H_2^{18}O$ —Zwitterionic hydrophilic interaction liquid chromatography resin enriched glycopeptides were resuspended in 50 mM ammonium bicarbonate in $H_2^{18}O$ (97 atom % ¹⁸O, Sigma) and deglycosylated with PNGase F (Sigma) for 4 h at 37 °C. The samples were separated via reverse-phase nanoflow HPLC (PepMap C18, 3 μ m, 100 Å, 25 cm \times 75 μ m inner diameter column, Thermo Scientific) before analysis on an LTQ Orbitrap XL MS (Thermo Scientific).

Glycoprotein Enrichment and LC/MS—ConA¹ lectin resins (Thermo Scientific) were used to enrich glycoproteins from concentrated conditioned media according to the manufacturer's protocol. The input, glycoprotein-enriched fraction, and flow-through samples were subjected to trypsin digestion. The in-solution digests were separated on a Thermo Scientific Dionex UltiMate 3000 Rapid Separation LC (RSLC) system using a PepMap C18 column (3 μ m, 100 Å, 50 cm \times 75 μ m inner diameter column, Thermo Scientific). The rapid separation LC system was interfaced to a Q Exactive MS (Thermo Scientific), and samples were analyzed using a top-10 HCD method.

Database Search and Data analysis—The following parameters were used for different experiments.

(i) Gel-LC-MS/MS: Peak lists were generated by Mascot daemon (version 2.3.0, Matrix Science Ltd., London, UK) using extract_ msn_com.exe and searched against the UniProt/Swiss-Prot mamma-

¹ The abbreviations used are: ConA, concanavalin A; EC, endothelial cell; ETD, electron-transfer dissociation; GlcNAc, N-acetylglucosamine; HCD, higher-energy C-trap dissociation; Hex, hexose; HexNAc, N-acetylhexosamine; HUVEC, human umbilical vein endothelial cell; PMA, phorbol-12-myristate-13-acetate; PNGase F, peptide: N-glycosidase F; TMT⁰, Tandem Mass Tag Zero; vWF, von Willebrand factor.

lian database (version 2012.03, 65,780 entries) using Mascot (version 2.3.01, Matrix Science) with peptide tolerance = 10 ppm, MS/MS tolerance = 0.8 Da, carbamidomethylation of cysteine as a fixed modification, oxidation of methionine as a variable modification, and a maximum of two missed cleavage sites. The search results were loaded into Scaffold software (version 3.6.2, Proteome Software Software, Inc., Portland, OR). A protein probability greater than 99%, a peptide probability greater than 95%, and a minimum number of two peptides per protein were applied as filters to generate the protein list. Bovine contaminant proteins are listed separately.

(ii) PNGase F + H_2^{18} O experiment: Thermo Scientific Proteome Discoverer software version 1.3 was used to search against the UniProt/Swiss-Prot mammalian database (version 2012.03) using Mascot (version 2.3.01, Matrix Science) with a peptide tolerance of 10 ppm; an MS/MS tolerance of 0.8 Da; carbamidomethylation of cysteine as a fixed modification; oxidation of methionine, TMT⁰ label on lysine and peptide N-terminus, and deamidation (spontaneous deamidation in ordinary water) and O¹⁸-deamidation (deglycosylation by PNGase F in H_2^{-18} O) of asparagine as variable modifications; and a maximum of two missed cleavage sites. Proteome Discoverer produced a custom database containing 136 target proteins based on this search.

(iii) Orbitrap Elite MS: Raw files were searched against the 136protein database (along with reversed proteins as decoys) using Byonic[™] (25) with a peptide tolerance of 10 ppm; an MS/MS tolerance of 20 ppm for HCD and 0.6 Da for ETD; the carbamidomethylated cysteine, TMT⁰ label on lysine and peptide N-terminus as fixed modifications; and oxidation of methionine, deamidation of asparagine and glutamine, and phosphorylation of serine and threonine as variable modifications. Byonic[™] allowed one N-glycan modification on the N-X(not P)-S/T consensus motif per peptide, with mass and composition chosen from its "common human" glycan database containing 350 glycan masses up to 6000 Da. Glycan modifications were verified by the presence of corresponding glycan fragment ions, such as the HexNAc oxonium ion at 204.087 Da in HCD spectra. Peptide sequences were identified by Byonic[™] from the ETD spectra and verified manually.

(iv) Q Exactive MS: Raw files were searched against the UniProt/ Swiss-Prot human database (version 57.13, 20,266 entries) using Proteome Discoverer (version 1.3, Thermo Scientific) with Mascot (version 2.3.0, Matrix Science) and a peptide tolerance of 10 ppm, an MS/MS tolerance of 10 mmu, carbamidomethylation of cysteine as a fixed modification, oxidation of methionine as a variable modification, and a maximum of two missed cleavage sites.

RESULTS

The Secretome of Activated ECs—HUVECs were stimulated with PMA, a commonly used secretagogue that induces exocytosis of endothelial vesicles. As previously reported (26), the morphology of ECs changes from spindle-shaped to round upon PMA activation, and the rod-shaped Weibel-Palade bodies, unique storage vesicles within ECs containing vWF and many other secreted proteins, fuse with the cell membrane (Fig. 1A). In total, the secretomes of 17 primary ECs were analyzed via gel-LC-MS/MS, with or without deglycosylation. Apart from 123 secreted proteins, the conditioned medium of PMA-stimulated ECs was particularly rich in surface antigens and receptors, including many established endothelial markers (Table I). All identified proteins and peptides are listed in supplemental Tables S1 and S2, respectively. The distribution of the frequencies and the cumulated distribution

Fig. 1. PMA treatment to stimulate EC secretion. Treatment of HUVECs with PMA, a commonly used secretagogue, resulted in a characteristic morphological change indicative of activation. A, immunofluorescence staining of vWF (green) and VE-cadherin (red) shows the exocytotic effect of PMA. B, PMA increased protein secretion in the conditioned media as confirmed via immunoblotting. C, relative to previous studies, more than twice as many secreted and plasma membrane proteins were identified. D, overlay of intracellular and secreted proteins by means of difference gel electrophoresis. In the left-hand panel, proteins in conditioned media of HUVECs are stained in green (+PMA) and red (-PMA), and cellular proteins are stained in blue. Results were reproduced with different biological replicates using reverse-labeling (right-hand panel: red, +PMA; green, -PMA). The protein corresponding to von Willebrand antigen 2 is highlighted with a box. Common proteins in the secretome and the cellular proteome are numbered in supplemental Fig. S2 and listed in supplemental Table S3.

of the number of samples in which proteins were identified are shown in supplemental Fig. S1. MS datasets of three biological replicates have been deposited in PRIDE (accession numbers 26908–27003).

Immunoblots confirmed that proteins such as fibronectin and biglycan were constitutively secreted (Fig. 1*B*). Others such as agrin and lymphatic vessel endothelial hyaluronic acid receptor 1 were released upon PMA stimulation, providing an

Extracellular and plasma merr	brane proteins ident	ified in the H	UVEC-conditic	oned media afte	r PMA stimulation		
		UniProt					
Protein name	UniProt ID	accession number	Gene name	Cellula	r component	Glycoprotein	EC marker
Calcium ion-binding proteins							
Annexin A1	ANXA1 HUMAN	P04083	ANXA1		Plasma membrane		
Annexin A2 ^a	ANXA2 HUMAN	P07355	ANXA2	Extracellular	Plasma membrane		
Annexin A3	ANXA3_HUMAN	P12429	ANXA3		Plasma membrane		
Calreticulin	CALR HUMAN	P27797	CALR	Extracellular		Glycoprotein	
Calumenin	CALU HUMAN	043852	CALU	Extracellular		Glycoprotein	
Calpain-1 catalytic subunit	CAN1_HUMAN	P07384	CAPN1		Plasma membrane	-	
Calpain-2 catalytic subunit	CAN2_HUMAN	P17655	CAPN2		Plasma membrane		
Calpain small subunit 1	CPNS1 HUMAN	P04632	CAPNS1		Plasma membrane		
Calsvntenin-1	CSTN1 HUMAN	094985	CLSTN1		Plasma membrane	Glycoprotein	
Calsyntenin-3	CSTN3 HUMAN	Q9BQT9	CLSTN3		Plasma membrane	Glycoprotein	
Desmoglein-1	DSG1 HUMAN	Q02413	DSG1		Plasma membrane	Glycoprotein	
Nucleobindin-2	NUCB2_HUMAN	P80303	NUCB2	Extracellular		-	
Carbohydrate and glycan metabolism							
Alpha-amylase 1	AMY1_HUMAN	P04745	AMY1C	Extracellular		Glycoprotein	
Exostosin-like 2	EXTL2_HUMAN	Q9UBQ6	EXTL2	Extracellular		Glycoprotein	
Polypeptide N-acetylgalactosaminyltransferase 1	GALT1_HUMAN	Q10472	GALNT1	Extracellular		Glycoprotein	
Sialate O-acetylesterase	SIAE_HUMAN	Q9HAT2	SIAE	Extracellular		Glycoprotein	
UDP-N-acetylhexosamine pyrophosphorylase	UAP1_HUMAN	Q16222	UAP1		Plasma membrane		
Coagulation and related proteins							
Amyloid-like protein 2	APLP2_HUMAN	Q06481	APLP2		Plasma membrane	Glycoprotein	
Multimerin-1	MMRN1_HUMAN	Q13201	MMRN1	Extracellular		Glycoprotein	
Plasminogen activator inhibitor 1	PAI1_HUMAN	P05121	SERPINE1	Extracellular		Glycoprotein	
Plasminogen activator inhibitor 2	PAI2_HUMAN	P05120	SERPINB2	Extracellular		Glycoprotein	
Tissue factor pathway inhibitor	TFPI1_HUMAN	P10646	TFPI	Extracellular		Glycoprotein	
Tissue factor pathway inhibitor 2	TFPI2_HUMAN	P48307	TFPI2	Extracellular		Glycoprotein	
Tissue-type plasminogen activator	TPA_HUMAN	P00750	PLAT	Extracellular		Glycoprotein	
von Willebrand factor	VWF_HUMAN	P04275	VWF	Extracellular		Glycoprotein	EC marker
Extracellular matrix components and associated proteins							
Agrin	AGRIN_HUMAN	O00468	AGRN	Extracellular		Glycoprotein	
Collagen alpha-2(IV) chain	CO4A2_HUMAN	P08572	COL4A2	Extracellular		Glycoprotein	
Collagen alpha-1(VI) chain	CO6A1_HUMAN	P12109	COL6A1	Extracellular		Glycoprotein	
Collagen alpha-1(XII) chain	COCA1_HUMAN	Q99715	COL12A1	Extracellular		Glycoprotein	
Collagen alpha-1(XVIII) chain	COIA1_HUMAN	P39060	COL18A1	Extracellular		Glycoprotein	
EGF-containing fibulin-like extracellular matrix protein 1	FBLN3_HUMAN	Q12805	EFEMP1	Extracellular		Glycoprotein	
Fibrillin-1	FBN1_HUMAN	P35555	FBN1	Extracellular		Glycoprotein	
Fibrillin-2	FBN2_HUMAN	P35556	FBN2	Extracellular		Glycoprotein	
Fibronectin	FINC_HUMAN	P02751	FN1	Extracellular		Glycoprotein	
Hyaluronan and proteoglycan link protein 3	HPLN3_HUMAN	Q96S86	HAPLN3	Extracellular			
Laminin subunit alpha-4	LAMA4_HUMAN	Q16363	LAMA4	Extracellular		Glycoprotein	
Laminin subunit beta-1	LAMB1_HUMAN	P07942	LAMB1	Extracellular		Glycoprotein	
Laminin subunit gamma-1	LAMC1_HUMAN	P11047	LAMC1	Extracellular		Glycoprotein	
Lysyl oxidase homolog 2	LOXL2_HUMAN	Q9Y4K0	LOXL2	Extracellular		Glycoprotein	
Multimerin-2	MMRN2_HUMAN	Q9H8L6	MMRN2	Extracellular		Glycoprotein	

TABLE I

9	6	0
J	o	v

Glycoproteomics of the Endothelial Secretome

	TABLI	E I—continue	q				
Protein name	UniProt ID	UniProt accession number	Gene name	Cellula	r component	Glycoprotein	EC marker
Nidogen-1 Nidogen-2	NID1_HUMAN NID2_HUMAN	P14543 Q14112	NID1 NID2	Extracellular Extracellular		Glycoprotein Glycoprotein	
Prolyl 3-hydroxylase 1 Basement membrane-specific heparan sulfate	P3H1_HUMAN PGBM_HUMAN	Q32P28 P98160	LEPRE1 HSPG2	Extracellular Extracellular		Glycoprotein Glycoprotein	
proteoglycan core protein Biglycan	PGS1 HUMAN	P21810	BGN	Extracellular		Glycoprotein	
Peroxidasin homolog	PXDN_HUMAN	Q92626	PXDN	Extracellular		Glycoprotein	
SPARC	SPRC_HUMAN	P09486	SPARC	Extracellular		Glycoprotein	
Target of Nesh-SH3		Q7Z7G0	ABI3BP	Extracellular		Glycoprotein	
Thrombospondin-1	TSP1 HUMAN	P07996	THBS1	Extracellular	Plasma membrane	Glycoprotein	
Growth factors and related proteins	I					-	
C-type lectin domain family 11 member A	CLC11_HUMAN	Q9Y240	CLEC11A	Extracellular		Glycoprotein	
Cysteine-rich motor neuron 1 protein	CRIM1_HUMAN	Q9NZV1	CRIM1	Extracellular	Plasma membrane	Glycoprotein	
Connective tissue growth factor	CIGF_HUMAN	6/262.4	CIGF OVDE1	Extracellular		Giycoprotein	
Protein OTHOT, INSUMPTING GROWIN LACTOR DITIONING protein 10		220000		EXITACEIIUIAI			
Dickkopf-related protein 3	DKK3_HUMAN	Q9UBP4	DKK3	Extracellular		Glycoprotein	
Follistatin-related protein 1	FSTL1_HUMAN	Q12841	FSTL1	Extracellular		Glycoprotein	
Hepatoma-derived growth factor	HDGF_HUMAN	P51858	HDGF	Extracellular			
Insulin-like growth factor-binding protein 2	IBP2_HUMAN	P18065	IGFBP2	Extracellular		Glycoprotein	
Insulin-like growth factor-binding protein 7	IBP7_HUMAN	Q16270	IGFBP7	Extracellular		Glycoprotein	
Latent-transforming growth factor beta-binding protein 1	LTBP1_HUMAN	Q14766	LTBP1	Extracellular		Glycoprotein	
Latent-transforming growth factor beta-binding protein 2	LTBP2_HUMAN	Q14767	LTBP2	Extracellular	·	Glycoprotein	
Neuronal growth regulator 1	NEGR1_HUMAN	Q7Z3B1	NEGR1		Plasma membrane	Glycoprotein	
Immunity- and inflammation-related proteins				- - - -	ī		
Amyloid beta A4 protein		7906/	APP 2011	Extracellular	Plasma membrane	Giycoprotein	
Beta-2-microglobulin	B2MG_HUMAN	P61769	B2M 04 OTMIT	Extracellular		Glycoprotein	
Complement U 1q tumor necrosis tactor-related protein 5 Complement factor H	CEAH HIMAN	USBXJU POREO3	CELUINFS	Extracellular Evtracellular		Glyconrotain	
Interleukin-25, UPF0556 protein C19orf10	CS010 HUMAN	Q969H8	C19orf10	Extracellular			
Granulins	GRN_HUMAN	P28799	GRN	Extracellular		Glycoprotein	
Interferon-induced transmembrane protein 1	IFM1_HUMAN	P13164	IFITM1		Plasma membrane		
Galectin-1 ^a	LEG1_HUMAN	P09382	LGALS1	Extracellular			
Galectin-3	LEG3_HUMAN	P17931	LGALS3	Extracellular			
Macrophage migration inhibitory factor ^a	MIF_HUMAN	P14174	MIF	Extracellular			
NKG2D ligand 2	N2DL2_HUMAN	Q9BZM5	ULBP2	Extracellular	Plasma membrane	Glycoprotein	
Pentraxin-related protein PTX3	PTX3_HUMAN	P26022	PTX3	Extracellular		Glycoprotein	
Protein S100-A7	S10A7_HUMAN	P31151	S100A7	Extracellular			
Protein S100-A8	S10A8_HUMAN	P05109	S100A8	Extracellular	Plasma membrane		
Tubulointerstitial nephritis antigen-like		Q9GZM7	TINAGL1	Extracellular		Glycoprotein	
Nuclease-sensitive element-binding protein 1	YBOX1_HUMAN	P6/809	YBX1	Extracellular			
Zinc-aipna-z-giycoprotein	ZAZG_HUIVIAIN	P/20311	AZGFI	Extracellular		Giycoproteiri	

	TABL	E continue	þé				
Protein name	UniProt ID	UniProt accession number	Gene name	Cellula	r component	Glycoprotein	EC marker
Membrane antigens and receptors HLA class I histocompatibility antigen, A-24 alpha chain HLA class I histocompatibility antigen, A-30 alpha chain HLA class I histocompatibility antigen, Cw-12 alpha chain	1a24_HUMAN 1a30_HUMAN 1C12_HUMAN	P05534 P16188 P30508	HLA-A HLA-A HLA-C		Plasma membrane Plasma membrane Plasma membrane	Glycoprotein Glycoprotein Glycoprotein	
Alpha-2-macroglobulin receptor-associated protein Basal cell adhesion molecule Complement component C1q receptor Cadherin-13 Cadherin-2	AMRP_HUMAN BCAM_HUMAN C1QR1_HUMAN CAD13_HUMAN CADH2 HUMAN	P30533 P50895 Q9NPY3 P55290 P19022	LRPAP1 BCAM CD93 CDH13 CDH2	Extracellular	Plasma membrane Plasma membrane Plasma membrane Plasma membrane Plasma membrane	Glycoprotein Glycoprotein Glycoprotein Glycoprotein	EC marker
Cadherin-5 CD109 antigen CD166 antigen CD44 antigen CD59 divcoprotein	CADH5_HUMAN CD109_HUMAN CD166_HUMAN CD44_HUMAN CD59_HUMAN	Р33151 QбҮНК3 Q13740 P16070 P13987	CDH5 CD109 ALCAM CD44 CD59	Extracellular	Plasma membrane Plasma membrane Plasma membrane Plasma membrane Plasma membrane	Glycoprotein Glycoprotein Glycoprotein Glycoprotein Glycoprotein	EC marker
CD9 antigen C-type lectin domain family 14 member A Dystroglycan Endoglin	CD9_HUMAN CLC14_HUMAN DAG1_HUMAN EGLN_HUMAN	P21926 Q86T13 Q14118 P17813	CD9 CLEC14A DAG1 ENG	Extracellular	Plasma membrane Plasma membrane Plasma membrane Plasma membrane	Glycoprotein Glycoprotein Glycoprotein Glycoprotein	EC marker
Endothelial protein C receptor Ephrin type-B receptor 4 Endothelial cell-selective adhesion molecule Leucine-rich repeat transmembrane protein FLRT2 Guanine nucleotide-binding protein subunit beta-2-like 1 ^ª HLA class I histocompatibility antigen, alpha chain E Intercellular adhesion molecule 1 Intercellular adhesion molecule 2	EPCR_HUMAN EPHB4_HUMAN ESAM_HUMAN FLRT2_HUMAN GBLP_HUMAN HLAE_HUMAN ICAM1_HUMAN ICAM2_HUMAN	Q9UNN8 P54760 Q96AP7 043155 P63244 P13747 P05362 P13598 P13598	PROCR EPHB4 ESAM FLRT2 GNB2L1 HLA-E ICAM1 ICAM2	Extracellular	Plasma membrane Plasma membrane Plasma membrane Plasma membrane Plasma membrane Plasma membrane	Glycoprotein Glycoprotein Glycoprotein Glycoprotein Glycoprotein Glycoprotein	EC marker EC marker EC marker EC marker
Integrin alpha-2 Integrin alpha-5 Integrin alpha-6 Integrin beta-1 Protein jagged-1 Protein jagged-2 Junctional adhesion molecule A BTB/POZ domain-containing protein KCTD12	ITA2_HUMAN ITA5_HUMAN ITA6_HUMAN ITB1_HUMAN JAG1_HUMAN JAG1_HUMAN JAM1_HUMAN KCD12_HUMAN	P17301 P08648 P23229 P05556 P78504 Q9Y219 Q9Y624 Q96CX2	ITGA2 ITGA5 ITGA5 ITGB1 JAG1 JAG2 F11R KCTD12		Plasma membrane Plasma membrane Plasma membrane Plasma membrane Plasma membrane Plasma membrane Plasma membrane	Glycoprotein Glycoprotein Glycoprotein Glycoprotein Glycoprotein Glycoprotein	EC marker
Kinectin Lysosome-associated membrane glycoprotein 1 Low-density lipoprotein receptor Low-density lipoprotein receptor-related protein 5 Lymphatic vessel endothelial hyaluronic acid receptor 1 Hepatocyte growth factor receptor Cation-independent mannose-6-phosphate receptor C-type mannose receptor 2	KTN1_HUMAN LAMP1_HUMAN LDLR_HUMAN LPF5_HUMAN LYVE1_HUMAN MET_HUMAN MPR1_HUMAN MRC2_HUMAN	Q86UP2 P11279 P01130 O75197 Q9Y5Y7 P08581 P11717 P11717 Q9UBG0	KTN1 LAMP1 LDLR LPP5 LYVE1 ME7 MRC2 MRC2	Extracellular	Plasma membrane Plasma membrane Plasma membrane Plasma membrane Plasma membrane Plasma membrane Plasma membrane	Glycoprotein Glycoprotein Glycoprotein Glycoprotein Glycoprotein Glycoprotein Glycoprotein	EC marker

Glycoproteomics of the Endothelial Secretome

TADIC	

		UniProt					
Protein name	UniProt ID	accession	Gene name	Cellula	r component	Glycoprotein	EC marker
		number					
Cell surface glycoprotein MUC18	MUC18_HUMAN	P43121	MCAM		Plasma membrane	Glycoprotein	EC marker
Neuroligin-1	NLGN1_HUMAN	Q8N2Q7	NLGN1		Plasma membrane	Glycoprotein	
Neuronal cell adhesion molecule	NRCAM_HUMAN	Q92823	NRCAM		Plasma membrane	Glycoprotein	
Neuropilin-1	NRP1_HUMAN	014786	NRP1	Extracellular	Plasma membrane	Glycoprotein	
Neuropilin-2	NRP2_HUMAN	O60462	NRP2		Plasma membrane	Glycoprotein	
Neurotrimin	NTRI_HUMAN	Q9P121	NTM		Plasma membrane	Glycoprotein	
Protocadherin-10	PCD10_HUMAN	Q9P2E7	PCDH10		Plasma membrane	Glycoprotein	
Protocadherin-12	PCD12_HUMAN	Q9NPG4	PCDH12		Plasma membrane	Glycoprotein	
Protocadherin gamma-A11	PCDGB_HUMAN	Q9Y5H2	PCDHGA11		Plasma membrane	Glycoprotein	
Protocadherin gamma-A12	PCDGC_HUMAN	O60330	PCDHGA12		Plasma membrane	Glycoprotein	
Protocadherin gamma-B7	PCDGJ_HUMAN	Q9Y5F8	PCDHGB7		Plasma membrane	Glycoprotein	
Protocadherin-1	PCDH1_HUMAN	Q08174	PCDH1		Plasma membrane	Glycoprotein	
Protocadherin-9	PCDH9_HUMAN	Q9HC56	PCDH9		Plasma membrane	Glycoprotein	
Programmed cell death 1 ligand 2	PD1L2_HUMAN	Q9BQ51	PDCD1LG2	Extracellular	Plasma membrane	Glycoprotein	
Platelet endothelial cell adhesion molecule	PECA1_HUMAN	P16284	PECAM1		Plasma membrane	Glycoprotein	EC marker
Plexin-D1	PLXD1_HUMAN	Q9Y4D7	PLXND1		Plasma membrane	Glycoprotein	
Inactive tyrosine-protein kinase 7	PTK7_HUMAN	Q13308	PTK7		Plasma membrane	Glycoprotein	
Receptor-type tyrosine-protein phosphatase delta	PTPRD_HUMAN	P23468	PTPRD		Plasma membrane	Glycoprotein	
Receptor-type tyrosine-protein phosphatase F	PTPRF_HUMAN	P10586	PTPRF		Plasma membrane	Glycoprotein	
Receptor-type tyrosine-protein phosphatase kappa	PTPRK_HUMAN	Q15262	PTPRK		Plasma membrane	Glycoprotein	
Poliovirus receptor	PVR_HUMAN	P15151	PVR	Extracellular	Plasma membrane	Glycoprotein	
Poliovirus receptor-related protein 2	PVRL2_HUMAN	Q92692	PVRL2		Plasma membrane	Glycoprotein	EC marker
Roundabout homolog 1	ROBO1_HUMAN	Q9Y6N7	ROB01		Plasma membrane	Glycoprotein	
Roundabout homolog 4	ROBO4_HUMAN	Q8WZ75	ROBO4		Plasma membrane	Glycoprotein	
Syndecan-4	SDC4_HUMAN	P31431	SDC4	Extracellular	Plasma membrane	Glycoprotein	
Semaphorin-4D	SEM4D_HUMAN	Q92854	SEMA4D		Plasma membrane	Glycoprotein	
Semaphorin-6B	SEM6B_HUMAN	Q9H3T3	SEMA6B		Plasma membrane	Glycoprotein	
Tyrosine-protein phosphatase non-receptor type	SHPS1_HUMAN	P78324	SIRPA		Plasma membrane	Glycoprotein	
substrate 1							
Stabilin-1	STAB1_HUMAN	Q9NY15	STAB1		Plasma membrane	Glycoprotein	EC marker
Transferrin receptor protein 1	TFR1_HUMAN	P02786	TFRC	Extracellular	Plasma membrane	Glycoprotein	
Tyrosine-protein kinase receptor Tie-1	TIE1_HUMAN	P35590	TIE1		Plasma membrane	Glycoprotein	
Tyrosine-protein kinase receptor UFO	UFO_HUMAN	P30530	AXL	Extracellular	Plasma membrane	Glycoprotein	
Vascular endothelial growth factor receptor 2	VGFR2_HUMAN	P35968	KDR	Extracellular	Plasma membrane	Glycoprotein	EC marker
Vascular endothelial growth factor receptor 3	VGFR3_HUMAN	P35916	FLT4	Extracellular	Plasma membrane	Glycoprotein	EC marker
Very low-density lipoprotein receptor	VLDLR_HUMAN	P98155	VLDLR		Plasma membrane	Glycoprotein	
Miscellaneous membrane proteins							
Brain acid soluble protein 1	BASP1_HUMAN	P80723	BASP1		Plasma membrane		
DnaJ homolog subfamily B member 4	DNJB4_HUMAN	Q9UDY4	DNAJB4		Plasma membrane		
RNA-binding protein EWS	EWS_HUMAN	Q01844	EWSR1		Plasma membrane		
Nck-associated protein 1	NCKP1_HUMAN	Q9Y2A7	NCKAP1		Plasma membrane		
Na(+)/H(+) exchange regulatory cofactor NHE-RF2	NHRF2_HUMAN	Q15599	SLC9A3R2		Plasma membrane		
Polymerase I and transcript release factor	PTRF_HUMAN	Q6NZI2	PTRF		Plasma membrane		
Serum deprivation-response protein	SDPR_HUMAN	095810	SDPR		Plasma membrane		
Sushi repeat-containing protein SRPX2	SRPX2_HUMAN	O60687	SRPX2	Extracellular			
Erythrocyte band 7 integral membrane protein	STOM_HUMAN	P27105	STOM		Plasma membrane		

	Tabl	E continue	þe				
Protein name	UniProt ID	UniProt accession number	Gene name	Cellula	r component	Glycoprotein	EC marker
Miscellaneous secreted proteins							
Peptidyl-glycine alpha-amidating monooxygenase		P19021	PAM	Extracellular		Glycoprotein	
Endothelin-1	FDN1 HIJMAN	P05305	FDN1	Extracellular		aly copi otolin	
Endothelial cell-specific molecule 1	ESM1_HUMAN	Q9NQ30	ESM1	Extracellular		Glvcoprotein	
Protein FAM3C	FAM3C HUMAN	Q92520	WNT16	Extracellular		-	
Epididymal secretory protein E1	NPC2_HUMAN	P61916	NPC2	Extracellular		Glycoprotein	
Programmed cell death protein 10	PDC10_HUMAN	Q9BUL8	PDCD10		Plasma membrane		
Prolactin-inducible protein	PIP_HUMAN	P12273	PIP	Extracellular		Glycoprotein	
Sulfhydryl oxidase 1	QSOX1_HUMAN	O00391	QSOX1	Extracellular		Glycoprotein	
Secretoglobin family 1D member 2	SG1D2_HUMAN	095969	SCGB1D2	Extracellular			
Thursdoxin ^a		P10599		Extracellular			
Protease inhibitors		L02020		EXITACEIIUIAI			
Cystatin-C	CYTC_HUMAN	P01034	CST3	Extracellular		Glycoprotein	
Leukocyte elastase inhibitor	ILEU_HUMAN	P30740	SERPINB1	Extracellular			
Inter-alpha-trypsin inhibitor heavy chain H2	ITIH2_HUMAN	P19823	ITIH2	Extracellular		Glycoprotein	
Serpin B9	SPB9_HUMAN	P50453	SERPINB9	Extracellular			
Metalloproteinase inhibitor 1	TIMP1_HUMAN	P01033	TIMP1	Extracellular		Glycoprotein	
Metalloproteinase inhibitor 2	TIMP2_HUMAN	P16035	TIMP2	Extracellular			
Proteases			L			0	C
Anglotensin-converting enzyme Disintearin and metallonroteinese domain-containing		014679		Extracellular	Plasma membrane Plasma membrane	Glycoprotein Glycoprotein	EC marker
Distriction and metallophotomase acmain containing protein 10		1 01 0				any copi otoni	
Aminopeptidase B	AMPB HUMAN	Q9H4A4	RNPEP	Extracellular			
Aminopeptidase N	AMPN_HUMAN	P15144	ANPEP		Plasma membrane	Glycoprotein	
Bone morphogenetic protein 1	BMP1_HUMAN	P13497	BMP1	Extracellular		Glycoprotein	
Cathepsin B	CATB_HUMAN	P07858	CTSB	Extracellular		Glycoprotein	
Cathepsin D	CATD_HUMAN	P07339	CTSD	Extracellular		Glycoprotein	
Cathepsin Z	CATZ_HUMAN	Q9UBR2	CTSZ	Extracellular		Glycoprotein	
Carboxypeptidase Q	CBPQ_HUMAN	Q9Y646	СРО	Extracellular		Glycoprotein	
Dipeptidyl peptidase 2	DPP2_HUMAN	Q9UHL4	DPP7	Extracellular	ī	Glycoprotein	
Ulpeptiayi peptiaase 3 Esdanlaamia intisuutum aminaaamidaaa 1		00N700			Plasma memorane		
Erruopiasimo renouni armiopepricase i Furin		PUGGER		EXILACEINIAL	Plasma memhrane	Glycoprotein	
Gamma-diritamvi hvdrolase	GGH HIIMAN	0.92820	CGH	Extracellular		Glycoprotein	
Serine protease HTRA1	HTRA1 HUMAN	Q92743	HTRA1	Extracellular			
Insulin-degrading enzyme	IDE HUMAN	P14735	IDE	Extracellular	Plasma membrane		
Interstitial collagenase	MMP1_HUMAN	P03956	MMP1	Extracellular		Glycoprotein	
Stromelysin-2	MMP10_HUMAN	P09238	MMP10	Extracellular			
Matrix metalloproteinase-14	MMP14_HUMAN	P50281	MMP14		Plasma membrane		
72 kDa type IV collagenase	MMP2_HUMAN	P08253	MMP2	Extracellular		Glycoprotein	
Lysosomal Pro-X carboxypeptidase	PCP_HUMAN	P42785	PRCP		Plasma membrane	Glycoprotein	
Serine protease 23	PRS23_HUMAN	O95084	PRSS23	Extracellular		Glycoprotein	
Ubiquitin carboxyl-terminal hydrolase 14	UBP14_HUMAN	P54578	USP14		Plasma membrane		

	TABL	E continue	þe				
Protein name	UniProt ID	UniProt accession number	Gene name	Cellula	r component	Glycoprotein	EC marker
Signal transduction proteins Adenylyl cyclase-associated protein 1 Cell division control protein 42 homolog Contactin-associated protein-like 3 Adapter molecule crk	CAP1_HUMAN CDC42_HUMAN CNTP3_HUMAN CRK_HUMAN	Q01518 P60953 Q9BZ76 P46108	CAP1 CDC42 CNTNAP3 CRK	Extracellular	Plasma membrane Plasma membrane Plasma membrane Plasma membrane	Glycoprotein	
Ras GTPase-activating protein-binding protein 1 Growth arrest-specific protein 6 Interferon-induced guanylate-binding protein 1	G3BP1_HUMAN GAS6_HUMAN GBP1_HUMAN	Q13283 Q14393 P32455	G3BP1 GAS6 GBP1	Extracellular Extracellular	Plasma membrane	Glycoprotein	
Guanine nucleotide-binding protein G(i) subunit alpha-2 Glypican-1 Hedgehog-interacting protein Histidine triad nucleotide-binding protein 1ª	GNAI2_HUMAN GPC1_HUMAN HHIP_HUMAN HINT1_HUMAN	P04899 P35052 Q96QV1 P49773	GNAI2 GPC1 HHIP HINT1	Extracellular Extracellular	Plasma membrane Plasma membrane Plasma membrane Plasma membrane	Glycoprotein Glycoprotein	
Integrin-linked protein kinase Ras GTPase-activating-like protein IQGAP1 cAMP-dependent protein kinase type II-alpha regulatory	ILK_HUMAN IQGA1_HUMAN KAP2_HUMAN	Q13418 P46940 P13861	ILK IQGAP1 PRKAR2A		Plasma membrane Plasma membrane Plasma membrane		
Ras-related protein Rab-18 Ras-related protein Rab-5C Ras-related C3 botulinum toxin substrate 1 Ras-related protein Ral-A	Rab18_Human Rab5c_Human Rac1_Human Bala Human	Q9NP72 P51148 P63000 P11233	RAB18 RAB5C RAC1 RALA		Plasma membrane Plasma membrane Plasma membrane Plasma membrane		
Ras-related protein Rap-1b GTPase NRas Ras-related protein Rab-11A Pho-related GTP-binding protein RhoC	RAP1B_HUMAN RASN_HUMAN RB11A_HUMAN	P61224 P01111 P62491 P08134	RAP1B NRAS RAB11A RHOC		Plasma membrane Plasma membrane Plasma membrane		
Rito-related of F-binding protein Anoc Rho-associated protein Kinase 2 Ras-related protein R-Ras2 Protein S100-A10 ^a Switch-associated protein 70 MCDND coefficients common 51	ROCCTUMAN ROC2-HUMAN RRAS2-HUMAN S1046-HUMAN S1046-HUMAN SWP70-HUMAN	P06134 075116 P62070 P06703 P60903 Q9UH65	ROCK2 RRAS2 S100A6 SWAP70 SWAP70		Plasma memorane Plasma membrane Plasma membrane Plasma membrane Plasma membrane		
necuo-activating enzyme E1 regulatory subumit Transport-related proteins AP-2 complex subunit alpha-1 ADP-ribosylation factor 1 ADP-ribosylation factor 1 ADP-ribosylation factor-like protein 3 Beta-arrestin-1 Chloride intracellular channel protein 1 Chloride intracellular channel protein 4	ULA1_FUUMAN AP2A2_HUMAN ARF1_HUMAN ARF6_HUMAN ARF6_HUMAN ARF3_HUMAN ARF81_HUMAN CLIC1_HUMAN CLIC1_HUMAN	Q15564 095782 094973 P84077 P62330 P36405 P49407 P49407 Q9Y696 Q9Y696	NAEL AP2A2 ARF1 ARF6 ARF6 ARF8 ARF81 CLIC4 CLIC4		Plasma membrane Plasma membrane Plasma membrane Plasma membrane Plasma membrane Plasma membrane Plasma membrane		
Clusterin Coatomer subunit beta EH domain-containing protein 1 EH domain-containing protein 2	CLUS_HUMAN COPB_HUMAN EHD1_HUMAN EHD2_HUMAN	P10909 P53618 Q9H4M9 Q9NZN4	CLU COPB1 EHD1 EHD2	Extracellular	Plasma membrane Plasma membrane Plasma membrane	Glycoprotein	
Palmitoyl-protein thioesterase 1 Protein S100-A13	PPT1_HUMAN S10AD_HUMAN	P50897 Q99584	PPT1 S100A13	Extracellular Extracellular		Glycoprotein	

	IABL	E I-continue	a			
Protein name	UniProt ID	UniProt accession number	Gene name	Cellular component	Glycoprotein EC	C marker
Solute carrier family 12 member 2 Proactivator polypeptide	S12A2_HUMAN SAP_HUMAN	P55011 P07602	SLC12A2 PSAP	Plasma membrane Extracellular	Glycoprotein	
Syntaxin-binding protein 1	STXB1_HUMAN	P61764	STXBP1	Plasma membrane		
Syntaxin-binding protein 3	STXB3_HUMAN	O00186	STXBP3	Plasma membrane		
Transmembrane emp24 domain-containing protein 10	TMEDA_HUMAN	P49755	TMED10	Plasma membrane	Glycoprotein	
Vesicle-associated membrane protein-associated	VAPA_HUMAN	Q9P0L0	VAPA	Plasma membrane		
protein A						
hese proteins were also identified in the cellular proteome	according to the diff	erence gel el	ectrophoresis	analysis presented in the supplemer	ntal data.	

1

Glycoproteomics of the	Endothelial Secretome
------------------------	-----------------------

Fig. 2. **Glycoproteomics.** *A*, glycopeptide identification workflow. Comparison of direct and indirect glycopeptide detection using HCD-ETD and ¹⁸O-deamidation after PNGase F + $H_2^{-18}O$ treatment, respectively: identified unique glycopeptides (*B*), unique glycosylation sites (*C*), and unique glycoproteins (*D*).

explanation for why previously unidentified proteins (8, 10) were found in the present analysis (Fig. 1*C*). An overlay between secreted (Cy3 and Cy 5; green and red color) and cellular (Cy 2; blue color) proteins is shown in Fig. 1*D*. Common spots were numbered (supplemental Fig. S2) and identified via LC-MS/MS (supplemental Table S3). Certain proteins, such as von Willebrand antigen 2 (a propeptide of vWF, AA 23–763), were clearly more abundant in the secretome of PMA-treated HUVECs.

The Endothelial Glycoproteome—Among the 1252 identified proteins were 253 extracellular or plasma membrane proteins (approximately 20%) related to cell adhesion, blood coagulation, hemostasis, signaling transduction, and protein transportation, of which 166 were known glycoproteins (Table I). To further characterize this subproteome, we employed a glycoproteomics approach. Secreted proteins were precipitated and digested with trypsin, and tryptic peptides were labeled with TMT⁰ to increase their charge state prior to enrichment by means of zwitterionic hydrophilic interaction liquid chromatography purification (24). For glycosite identification, an indirect and a direct strategy were pursued (Fig. 2*A*): (i) digestion with PNGase F in the presence of ¹⁸O water to label the conversion of asparagine to aspartic acid upon the removal of N-glycans, and (ii) alternating HCD and ETD (HCD- alt-ETD) or HCD-product-dependent ETD (HCD-pd-ETD) fragmentation on an Orbitrap Elite MS (24).

There was little overlap in the numbers of glycopeptides (Fig. 2*B*) and glycosylation sites (Fig. 2*C*) identified via the direct (HCD-ETD) and the indirect (PNGase F + H₂¹⁸O) methods. Better agreement was observed at the protein level (Fig. 2*D*). With the indirect (PNGase F + H₂¹⁸O) method, 27 peptides were identified with N[+2.99] modification at non-consensus sequence, out of 1139 total identified peptides with N[+2.99]. This anomaly rate of 2.4% (27/1139) combines the rate of false identifications and the rate of chance deamidations in ¹⁸O water that were not in the consensus sequence of glycosylation (*i.e.* N-X(not P)-S/T). All glycopeptides identified are listed in Table II and supplemental Table S4. Three spectra (full MS, HCD, and ETD) from a neuronal cell adhesion molecule (UniProt accession number Q92823) (AA - ₂₂₂FNHTQ-TIQQK₂₃₁) are presented in Fig. 3.

For the same samples, HCD-pd-ETD revealed 28 known, 25 potential, and 16 novel glycosylation sites based on 209 identified spectra; HCD-alt-ETD revealed 20 known, 32 potential, and 14 novel glycosylation sites from 110 identified spectra. The HCD-alt-ETD method selected mostly precursors with higher intensities, higher charge, and smaller m/z(Fig. 4A). Several large glycopeptides were detected via only HCD-alt-ETD, and more low-abundant glycopeptides were detected via HCD-pd-ETD. There was limited overlap in the identified glycopeptides but better agreement in the protein level (Fig. 4B). Among the 319 total glycopeptides identified in the conditioned media, 31 were attached with a trimannosyl core (-HexNAc₂Hex₃) or truncated core (-HexNAc₂Hex), 50 with high mannose (-HexNAc₂Hex₄₋₉), and 238 with complex/ hybrid glycans. Notably, HCD-pd-ETD detected almost twice as many complex/hybrid glycoforms as HCD-alt-ETD (Fig.4C).

Validation of Glycoproteins—To validate the glycosylation status, we performed additional analysis before and after glycoprotein enrichment with affinity resins of ConA lectin (n = 4) using a Q Exactive MS (Thermo Scientific). We then compared the number of identified spectra in the glycoprotein-enriched fraction, the flow-through, and the input (supplemental Table S5). For most glycoproteins, a higher spectral count was observed in the glycoprotein-enriched fraction than in the original input and/or the flow-through. Representative examples (fibronectin, neuronal cell adhesion molecule, tyrosine-protein-kinase-like 7, and vWF) are shown in Fig. 5A. Non-glycosylated proteins, such as annexin A2 and alphaenolase, were more abundant in the flow-through. Glycoproteins identified in all three methods are highlighted in Fig. 5B.

Confirmation of Predicted Glycosylation Sites—The hemostatic protein vWF is the main protein stored within Weibel-Palade bodies (27). After secretagogue stimulation, Weibel-Palade bodies undergo exocytosis, releasing vWF filaments. vWF is one of the few known proteins containing the ABO blood group signature, which is formed by different glycans. Although the released glycan composition of this protein has been investigated extensively (28, 29), experimental evidence for many putative glycosylation sites is still missing. The coverage obtained for vWF in our proteomics analysis is shown in Fig. 6A. The precursor protein consists of homologous units such as the VWF type A, C, and D domains and a C-terminal cystine know (CTCK). The vWF propeptide (D1-D2, AA 23– 763) is separated from the remaining domains of mature vWF (AA 764–2813) via furin-mediated proteolytic cleavage. We confirmed 6 N-glycosylation sites. Notably, three N-glycosylation sites were located within the propeptide (AA 23–763). Examples of ETD spectra are shown in Fig. 6*B*.

DISCUSSION

This study represents a significant advance over the existing proteomics literature on ECs. Unlike other cell types, ECs do not tolerate prolonged serum starvation, and their susceptibility to cell death upon serum withdrawal poses a major challenge for proteomic workflows targeting their secretome. We performed secretome analysis after 45 min of PMA stimulation combined with enrichment strategies for glycoproteins and glycopeptides. Glycopeptides were analyzed via three complementary MS techniques: the detection of ¹⁸O asparagine deamidation after digestion with PNGase F in H₂¹⁸O, HCD-alt-ETD, and HCD-pd-ETD using an Orbitrap Elite MS.

The Endothelial Secretome-The secretagogue PMA minimized EC death by allowing a shorter incubation period under serum-free conditions while increasing coverage in the proteomic analysis by inducing the exocytosis of intracellular storage vesicles (14) such as Weibel-Palade bodies. These unique storage vesicles in ECs play a major role in hemostasis and cell-to-cell communication. Using this approach, many more proteins were identified than in any previous proteomics study on ECs, including known endothelial surface markers such as endoglin (CD105), integrin beta-1 (CD29), tyrosineprotein kinase receptor Tie-1, and junctional adhesion molecule A; secreted growth factors (i.e. C-type lectin domain family 11 member A); co-receptors (i.e. neuropilin-1 (co-receptor for VEGF-A)); proteases(i.e. furin); and inflammatory mediators (i.e. macrophage migration inhibitory factor), to name just a few. Short-term PMA treatment does not release microparticles (30), as shedding events make it difficult to discern intracellular from secreted/membrane proteins. In a direct comparison of the cellular proteome and the secretome utilizing difference gel electrophoresis, 70 out of 96 proteins analyzed were present in both samples, representing <10% of the visible protein spots in the secretome.

Biological Importance of Glycosylation—Glycosylation is key for the stability and solubility of secreted and membrane proteins. It is the most complex post-translational modification (31) and mediates extracellular matrix network assembly, cell–cell interactions, and cell–matrix interactions. Unlike polynucleotides and polypeptides, which have a linear struc-

		Glycopeptides identified via the HCD-ETD	method					
Protein name	UniProt ID	Peptide	Glycosite	Type	Glycans	Observed <i>m/z</i>	N	Mass ppm)
Afamin	AFAM_HUMAN	\$DIENFN(+1702.582)'STQK	N33	Known	Hex8HexNAc2	843.359	4	-5.8
Aminopeptidase N	AMPN_HUMAN	\$kLN(+892.318)YTLSQGHRVVLR	N128	Known	Hex3HexNAc2	781.916	4	-2.8
		\$NAN(+2042.720)"SSPVAsTTPSASATTNPASATTLDQSk	N42	Novel	Hex4HexNAc4NeuAc2	1095.276	5	-0.3
Alpha-N-acetylglucosaminidase	ANAG_HUMAN	\$SVYN(+1257.450)cSGEAcRGhNRSPLVR	N503	Potential	Hex4HexNAc3	954.927	4	1.1
Angiopoietin-2	ANGP2_HUMAN	\$kIVTATVN(+568.212)NSVLQk	N240	Potential	Hex1 HexNAc2	689.645	4	-0.3
		\$SGhTTNGIYTLTFPN(+1038.375)STEEIk	N304	Potential	Hex3HexNAc2dHex1	763.565	5	-1.4
Attractin	ATRN_HUMAN	\$DLDMFIN(+1241.455)ASk	N1198	Known	Hex3HexNAc3dHex1	948.450	ო	6.7
		\$GcScFSDWQGPGcSVPVPAN(+1095.397)QSFWTR	N325	Potential	Hex3HexNAc3	1077.708	4	-2.1
		\$GcScFSDWQGPGcSVPVPAN(+892.317)QSFWTREEYSnLk	N325	Potential	Hex3HexNAc2	1040.061	5	-2.4
Cadherin-2	CADH2_HUMAN	\$EQIARFHLRAHAVDInGNQVENPIDIVINVIDMNDNRPEFLHQVWN (+1751.624)GTVPEGSk	N273	Known	Hex4HexNAc4NeuAc1	930.011	6	2.8
Cadherin-5	CADH5_HUMAN	\$EN(+1054.370)'ISEYHLTAVIVDk	N112	Known	Hex4HexNAc2	815.146	4	0.7
		<pre>\$ELDREVYPWYN(+1241.455)LTVEAk</pre>	N442	Known	Hex3HexNAc3dHex1	954.972	4	10.0
CD109 antigen	CD109_HUMAN	\$LNLYLDSVN(+1038.375) ETQFcVNIPAVR	N1355	Novel	Hex3HexNAc2dHex1	938.447	4	1.5
I		\$kkN(+1540.529)ITk	N279	Potential	Hex7HexNAc2	793.410	4	-0.9
		\$QN(+1848.640)`STMFSLTPENSWTPk	N513	Novel	Hex8HexNAc2dHex1	1072.719	4	1.0
CD59 alvcoprotein	CD59 HUMAN	\$TAVN(+1954.704)°csSDFDAcLITk	N43	Known	Hex4HexNAc5NeuAc1	1077.708	4	9.1
Complement factor I	CFAL HUMAN	\$FI NN(+1054 370)GTcTAFGk	N103	Known	Hex4HexNAc2	939,094	с.	-4.0
			NA9A	Potential	Heve Hev NAc6dHev1Nei Ac3	1207 501	~	2.4
CAP-Glv domain-containing	CLIP1 HUMAN	\$GFN(+1257 450)*4SAk	N1263	Novel	HextHexNAc3	802.359	r 07.	-14
linker protein 1						000.400	0	ţ
		\$GEN(+1784.635)ASAk	N1263	Novel	Hex6HexNAc4	970.437	ო	10.7
		\$EPSATPPISN(+2188.741)LTk	N187	Novel	Hex11HexNAc2	999.192	4	-6.9
		\$ANEN(+1200.428)^ASFLQKSIEDMTVK	N971	Novel	Hex4HexNAc2dHex1	980.724	4	2.6
		\$ANEN(+1216.423)^ASFLQKSIEDMTVK	N971	Novel	Hex5HexNAc2	985.232	4	11.0
		\$ANEN(+1257.449)ASFLQKSIEDMTVK	N971	Novel	Hex4HexNAc3	989.489	4	8.2
		\$ANEN(+1444.534)ASFLQKSIEDMTVk	N971	Novel	Hex3HexNAc4dHex1	1036.764	4	9.3
Ephrin type-A receptor 2	EPHA2_HUMAN	\$TASVSIN(+892.317)QTEPPKVRLEGR	N435	Known	Hex3HexNAc2	856.694	4	-0.4
Fibrous sheath-interacting	FSIP2_HUMAN	\$IGWEYESTN(+1751.624)ISR	N1423	Novel	Hex4HexNAc4NeuAc1	858.373	4	0.8
		\$TITFSAN(+1362.481)VSSHEhTYK	N1675	Novel	Hex5HexNAc2dHex1	912.923	4	3.0
		\$GGIN(+892.318)ISGQGSIISAQVSPTR	N215	Novel	Hex3HexNAc2	1020.509	ო	1.5
		\$ENSN(+1200.428)FSQLALSNEILLGHKEK	N2216	Novel	Hex4HexNAc2dHex1	708.363	9	6.3
		\$mPIEN(+1444.534)LSSIQQk	N2824	Novel	Hex3HexNAc4dHex1	825.398	4	0.8
		\$YN(+2204.772)k	N427	Novel	Hex5HexNAc4NeuAc2	1026.779	ო	7.7
N-acetylglucosamine-6-sulfatase	GNS_HUMAN	\$LVkRLEFTGELN(+2018.708)`NTYIFYTSDnGYHTGQFSLPIDkR	N317	Known	Hex6HexNAc3dHex1NeuAc1	696.027	10	-9.6
		\$GPGIkPN(+1540.529)QTSk	N362	Potential	Hex7HexNAc2	835.657	4	-0.8
Golgin subfamily A member 4	GOGA4_HUMAN	I \$ELEhVN(+1735.630)*LSVk	N1612	Novel	Hex3HexNAc4dHex1NeuAc1	848.139	4	-3.9
		\$kELEHVN(+1038.375)LSVk	N1612	Novel	Hex3HexNAc2dHex1	752.648	4	0.8
		\$kelehvn(+1524.534)LSVk	N1612	Novel	Hex6HexNAc2dHex1	874.186	4	-1.6
		\$SLQENKN(+1257.450)QSk	N585	Novel	Hex4HexNAc3	777.391	4	10.2
		<pre>\$TRILELESSLEKSLQENKN(+1216.423)QSk</pre>	N585	Novel	Hex5HexNAc2	938.686	5	-2.3
Intercellular adhesion molecule 2	ICAM2_HUMAN	<pre>\$GSLEVN(+2028.741)cSTTcNQPEVGGLETSLDk</pre>	N47	Known	Hex5HexNAc6	1039.861	5	5.1
		\$HYLVSN(+568.212)ISHDTVLQcHFTcSGk	N82	Known	Hex1 HexNAc2	905.687	4	-0.6
ICOS ligand	ICOSL_HUMAN	\$IARTPSVNIGccIENVLLQQN(+2457.877)LTVGSQTGNDIGER	N225	Potential	Hex8HexNAc5dHex1	724.219	6	-5.4
		\$IARTPSVNIGccIENVLLQQN(+2594.937)'LTVGSQTGNDIGER	N225	Potential	Hex4HexNAc6dHex1NeuAc2	667.906	10	0.1
Interleukin-6 receptor subunit	IL6RB_HUMAN	\$SHLQN(+568.212)YTVNATkLTVNLTNDRYLATLTVRNLVGk	N379	Known	Hex1HexNAc2	725.691	7	6.5

Interleukin-6 receptor subunit beta

o	ດ	o
Э	о	o

ITA3_HUMAN

Integrin alpha-3

UniProt ID

Protein name

àlyc	opro (L	ote	on •	nic	2 5	ە: ە	ft ∞	he ∞	E	Ene •	do •	othe	elia o	I S	Se		ete	nc	1e	6.	Ż		2	.4	.6	.5	8.	<u>م</u>	4.		0.	Ø.	ci	4	.5	0.		c,	2	4.	0.	2	.3	6	
	dM∂ (ppi	6	00	œ	-2	8	0	-4	0-	0-	0-	9	-	ŝ	0-	9	-	-2	-2	0-	ī	e	-	4	0	c	0	0	-	œ	-5	5	Ī	9	e	4	e	0	0	-	ī	0	0-	Ī	c
	N	5	5	4	с т	5	4	8	с С	e	е С	10	4	4	4	4	4	4	4	\$	4	4	4	\$	e	3	5	5	4	4	5	4	9	\$	8	9	4	4	4	4	4	4	4	4	
	Observeo <i>m/z</i>	1015.568	877.848	733.814	1028.554	864.223	888.710	1139.528	643.303	921.421	975.436	734.661	861.641	898.156	934.41	989.440	989.690	989.690	1031.190	1025.696	1025.949	1062.211	1062.466	1098.476	872.711	926.395	1048.506	905.408	918.718	762.369	1106.316	984.727	987.504	1040.946	886.225	1140.772	1065.992	1065.999	1076.245	1070.250	1070.251	1074.251	1144.769	1139.021	
	Glycans	Hex1HexNAc2	Hex4HexNAc4	Hex1 HexNAc2	Hex3HexNAc2	Hex5HexNAc2dHex1	Hex3HexNAc4dHex1	Hex6HexNAc3	Hex3HexNAc2	Hex6HexNAc2	Hex7HexNAc2	Hex4HexNAc4NeuAc2	Hex5HexNAc4dHex1NeuAc1	Hex5HexNAc4NeuAc2	Hex5HexNAc4dHex1NeuAc2	Hex6HexNAc5NeuAc2	Hex6HexNAc5dHex2NeuAc1	Hex6HexNAc5dHex4	Hex6HexNAc5dHex1NeuAc2	Hex6HexNAc5dHex1 NeuAc2	Hex8HexNAc7	Hex6HexNAc5NeuAc3	Hex8HexNAc7dHex1	Hex6HexNAc5dHex1 NeuAc3	Hex8HexNAc2	Hex9HexNAc2	Hex4HexNAc2	Hex3HexNAc3	Hex4HexNAc2	Hex4HexNAc2	Hex3HexNAc6dHex1NeuAc2	Hex5HexNAc2dHex1	Hex3HexNAc2	Hex4HexNAc4NeuAc1	Hex4HexNAc4NeuAc2	Hex5HexNAc6dHex1	Hex7HexNAc3NeuAc1	Hex5HexNAc4dHex1NeuAc1	Hex6HexNAc4NeuAc1	Hex5HexNAc4dHex2NeuGc1	Hex6HexNAc4dHex2	Hex7HexNAc4dHex2	Hex5HexNAc4dHex1NeuAc2	Hex5HexNAc4dHex1NeuAc2	
	Type	Known	Known	Novel	Potential	Potential	Potential	Potential	Potential	Known	Known	Known	Known	Known	Known	Known	Known	Known	Known	Known	Known	Known	Known	Known	Known	Known	Known	Known	Known	Potential	Potential	Novel	Potential	Potential	Potential	Potential	Novel	Novel	Novel	Novel	Novel	Novel	Novel	Novel	
	Glycosite	N379	N390	N818	N656	N926	797	N104	N104	N103	N103	N241	N249	N249	N249	N249	N249	N249	N249	N249	N249	N249	N249	N249	N322	N322	N229	N390	N882	N144	797	N289	N497	N405	086N	086N	N143	N143	N143	N143	N143	N143	N143	N143	
TABLE II—continued	Peptide	\$SHLON(+568.212)YTVNATKLTVNLTNDRYLATLTVRNLVGK	\$LTVN(+1460.529)LTNDRYLATLTVRNLVGk	\$QN(+568.212)cSQHESSPDIsHFER	\$DVRkLLLSIN(+892.317)VTNTR	\$AHcVWLEcPIPDAPVVTN(+1362.481)VTVk	\$kNkNVTN(+1444.534)^RSk	\$IWN(+1581.555)VTRRDSALYRcEVVARNDR	\$IWN(+892.318)*VTR	\$GHTLTLN(+1378.476)FTR	\$GHTLTLN(+1540.529)FTR	<pre>\$YNVSGTNGTcLLASMGLQLN(+2042.720)"LTYERkDNT TVTRI1INIPNL</pre>	\$kDN(+2059.735)TTVTR	\$kDN(+2204.772)TTVTR	\$kDN(+2350.830)TTVTR	\$kDN(+2569.905)TTVTR	\$kDN(+2570.925)TTVTR	\$kDN(+2571.946)TTVTR	\$kDN(+2715.963)~TTVTR	\$kDN(+2715.963)TTVTR	\$kDN(+2717.978)TTVTR	\$kDN(+2861.000)TTVTR	\$kDN(+2864.036)TTVTR	\$kDN(+3007.058)TTVTR	\$AAN(+1702.581)GSLR	\$AAN(+1864.634)GSLR	\$EkPEAGTYSVNNGN(+1054.370)DTcLLATmGLQLNITQDK	\$QVVEN(+1095.397)'MTRAHFPLDVQWNDLDYMDSR	\$GAYTQVIFLARN(+1054.370)NTIVNELVR	\$AEN(+1054.370)QTAPGEVPALSNLR	<pre>\$DPGAAVPGAANASAQQPRTPILLIRDN(+2432.884)R</pre>	\$AN(+1362.481)DSNPNEESkkTDk	\$GFkDHFTFcQQLN(+892.317)ISIcPLSQTAARFQVIVYnPLGRk	\$TLLRN(+1751.624) SsGcEARRDEYR	\$VIVQPDQN(+2042.720)"FTGLIAGVVSISTALLLLLGFFLWLkkRk	\$VIVQPDQN(+2174.799)*FTGLIAGVVSISTALLLLLGFFLWLkkR	\$AFQLWSN(+2034.703)VTPLTFTk	\$AFQLWSN(+2059.735)VTPLTFTk	\$AFQLWSN(+2075.730)\7TPLTFTk	\$AFQLWSN(+2075.730)VTPLTFTk	\$AFQLWSN(+2076.750)VTPLTFTk	\$AFQLWSN(+2092.745)VTPLTFTk	\$AFQLWSN(+2350.830)"VTPLTFTk	\$AFQLWSN(+2350.830)VTPLTFTk	

Junctional adhesion molecule JakeT-HMAN SWMR-H1561: SEGNTFRESAL/TREEWARINF NIG Potential Headbeat Uprotronal adhesion molecule JAKPT-HUMAN SGMT(11)K1-1502-SGS)FRESAL/TREEWARINF NIG Fromin Headbeat Spectrone associated LAMPT-HUMAN SGMT(11)K1-1502-SGS)FRESAL/TREEWARINF NIG Fromin Headbeat Spectrone associated LAMPT-HUMAN SGMT(11)K1-1502-SGS)FRESAL/TREEWARINF NIG Fromin Headbeat Stremal adhesion LAMPT-HUMAN SGMT(12)K1-1502-SGS)FRESAL NIG Fromin Headbeat Stremal adhesion LAMPT-HUMAN SGMT+2504-SGS)TTTT Kount Headbeat Headbeat Stremal adhesion SGMT+2504-SGSTTTT SGMT+2504-SGSTTTT Kount Headbeat Stremal adhesion SGMT+2504-SGSTTTT SGMT+2504-SGSTTTT Kount Headbeat Stremal adhesion SGMT+2504-SGSTTTT SGMT+2704-SGSTTTT Kount Headbeat Stremal adhesion SGMT+2704-SGSTTTT SGMT+2704-SGSTTTTT Kount Headbeat Stremal adhesion SGMT+2704-SGSTTTTTT SGMT+2704-		
Justicity Institution SWN1+80,VTE NUI3 Round in the Advance of the	N104 Poter	tial Hex6HexNAc3
Usesciente LMPT_LHUMA SGITTLINET-153.4.7.5.11 MID3 Crown HexTelende membrane gycopodini SMIPL_LHUME-153.4.2.5.7.3 MID1 Crown HexTelende membrane gycopodini SMILLINE-153.6.3.5.6.7.1 MID Crown HexTelende SMILLINE-153.6.3.5.1 SMILLINE-153.6.3.5.7.1 MID3 Crown HexTelende SMILLINE-153.6.3.5.7.1 SMILLINE-153.6.3.5.7.1 MID3 Crown HexTelende SMILLINE-153.6.3.5.7.1 SMILLINE-153.6.3.5.7.1 MID3 Crown HexTelende SMILLINE-153.6.3.5.7.1 SMILLINE-153.6.3.5.7.1 MID3 Krown HexTelende SMILLINE-153.6.3.5.7.1 SMILLINE-153.6.3.5.7.1 MID3 HexTelende Krown HexTelende SMILLINE-153.6.3.5.7.1 SMILLINE-153.6.3.5.7.1 SMILLINE-150.6.5.7.1 MID3 HexTelende Krown HexTelende SMILLINE-150.6.6.6.7.7.6.7.7.6.9.7.7.7.9.97177 MID3 Krown HexTelende Krown HexTelende SMILLINE-150.6.6.7.7.6.7.7.6.97177 MID3 Krown HexTelende Krown HexTelende <td>N104 Poter</td> <td>tial Hex3HexNAc2</td>	N104 Poter	tial Hex3HexNAc2
Timelinane gyvoprotein 1 Schriff.LIN/H-150.250FTR Nuts Koom Head-Haor TVTRL.IMMPIL.ASMGGLQLN(+:20.42773)TVTR N133 Koom Head-Haor TVTRL.IMMPIL.ASMGGLQLN(+:20.42773)TVTR N239 Koom Head-Haor TVTRL.IMMPIL.ASMGLQLN(+:20.42775) SUN(+:230.2371TVTR N239 Koom Head-Haor SUN(+:275.683.071TVTR SUN(+:275.683.071TVTR N239 Koom Head-Haor SUN(+:277.563.071TVTR SUN(+:277.563.071TVTR N239 Koom Head-Haor SUN(+:277.563.071TVTR <	N103 Knc	wn Hex6HexNAc2
Tyrnel Lussenine NYMSSCINGTLLSMGLQLN(+: 2042;720)LTYER/DNT R241 Koom Resched Tyrnel LunkPik SUDN(+: 2042;720)TTYTR) R240 Koom Resched SUDN(+: 2042;720)TTYTR) SUDN(+: 2042;720)TTYTR) R240 Koom Resched SUDN(+: 2042;715,480)TTYTR SUDN(+: 2715,480)TTYTR R240 Koom Resched SUDN(+: 2715,480)TTYTR SUDN(+: 2715,480)TTYTR R240 Koom Resched SUDN(+: 2715,470)TTYTR SUDN(+: 2715,470)TTYTR R240 Koom Resched SUDN(+: 2715,470)TTYTR SUDN(+: 2715,470)TTYTR R240 Koom Resched SUDN(+: 2715,470)TTYTR R240 R240 Room Resched Room Resched <td>N103 Knc</td> <td>wn Hex7HexNAc2</td>	N103 Knc	wn Hex7HexNAc2
SkDN(+ 2053 735)TTVTR SkDN(+ 2570 232)TTVTR SkDN(+ 2570 232)TTVTR SkDN(+ 2570 232)TTVTR SkDN(+ 2571 236)TTVTR SkDN(+ 2571 236)TTVTR SkDN(+ 2711 236)TTVTR SkDN(+ 2614 200)TTVTR SkDN(+ 2614 200)TTTTR SkDN(+ 2614 200)TTTR	N241 Kno	wn Hex4HexNAc4NeuAc2
StDN(+:2504.72)TUVB StDN(+:2513.830)TUVB StDM(+:2513.830)TUVB Koom HesSHebS StDN(+:2570.83)TUVB StDN(+:2570.83)TUVB Koom HesSHebS Koom HesSHebS StDN(+:2715.96)TUVB StDN(+:2715.96)TUVB Koom HesSHebS Koom HesSHebS StDN(+:2715.96)TUVB StDN(+:2715.96)TUVB Koom HesSHebS Koom HesSHebS StDN(+:2715.96)TUVB StDN(+:2715.96)TUVB StDN(+:2715.96)TUVB Koom HesSHebS StDN(+:2715.96)TUVB StDN(+:2715.96)TUVB StDN(+:2715.96)TUVB Koom HesSHebS StDN(+:2715.96)TUVB StDN(+:2715.96)TUVB Koom HesSHebS Koom HesSHebS StDN(+:2715.96)TUVB StDN(+:2715.96)SUTUR NO NO HesSHebS Koom HesSHebS StDN(+:2715.95)SUTUR StDN(+:2715.95)SUTUR StDN(+:2715.95)SUTUR NO HesSHebS StDN(+:2715.95)SUTUR StDN(+:2715.95)SUTUR NU NO HesSHebS Mortur StDN(+:2715.95)SUTUR NU NO HesSHeBS Mortur StDN(+:2715.	N249 Kno	wn Hex5HexNAc4dHex1NeuAc1
skolvt - 250.830/TVTR skolvt - 257.1368/TVTR skolvt - 257.1368/TVTR skolvt - 257.1368/TVTR skolvt - 257.1368/TTVTR skolvt - 277.538/TTVTR skolvt - 276.538/TTVTR skolvt - 276.538/TTVTR skolvt - 276.538/TTVTR skolvt - 276.538/TT skolvt - 277.538/TTVTR skolvt - 276.538/TTVTR skolvt - 276.238/TTVTR skolvt - 276.237/DTALATACLOLVTDOk N249 Known Hes/Her/ Hes/Her/ N224 Lywer TAL LAMP2_HUMAN Skolvt - 266.138/TTVTR skolvt - 166.437/DTCLLATACLOLVTDOk N224 Known Hes/Her/ Hes/Her/ N224 Lywer TAL LAMP2_HUMAN Skolvt - 166.437/DTCLLATACLOLVTDOk N224 Known Hes/Her/ Hes/Her/ N224 Lywer TAL LAMP2_HUMAN Skolvt - 166.437/DTCLLATMCLOLVTDOK N224 Known Hes/Her/ Hes/Her/ N224 Lywer And TAL Skolvt - 166.437/DTCLLATMCLULUDOK N224 Known Hes/Her/ Hes/Her/ Lyssex Lywer And TAL Skolvt - 166.437/DTCLLATMCLULUTDOK N224 Known Hes/Her/ Hes/Her/ Lyssex Lywer And TAL Skolvt - 166.437/DTCLLATMCLULUTDOK N22	N249 Kno	wn Hex5HexNAc4NeuAc2
Skonv, 2550 805/TIVTR Kown Hex6Hex0 Skonv, 2570 805/TIVTR Kown Hex6Hex0 Skonv, 2715 801/TIVTR Kown Hex6Hex0 Skonv, 2715 801/TIVTR Kown Hex6Hex0 Skonv, 2715 801/TIVTR Kown Hex6Hex0 Dotein-Jy	N249 Kno	wn Hex5HexNAc4dHex1NeuAc2
Sk0N(+:257:0.96)TTVR Sk0N(+:277:96)TTVR Sk0N(+:277:96)TTVR Sk0N(+:277:96)TTVR Sk0N(+:277:96)TTVR Sk0N(+:277:96)TTVR Sk0N(+:277:96)TTVR Sk0N(+:277:96)TTVR Sk0N(+:265:00)TTR Sk0N(+:265:00)TTR Sk0N(+:265:00)TR Sk0N	N249 Knc	wn Hex6HexNAc5NeuAc2
SkON(+:2751-946)TUVTR W249 Krown HexeHean SkON(+:2755-963)TUVTR SkON(+:2755-963)TUVTR W249 Krown HexeHean SkON(+:2755-963)TUVTR SkON(+:2755-963)TUVTR N249 Krown HexeHean SkON(+:2755-961)CDT SkON(+:2755-961)CDT N249 Krown HexeHean SkON(+:2755-961)CDT SkON(+:286-100)TUTR N249 Krown HexeHean SkON(+:286-100)TUTR SkON(+:286-100)TUTR N249 Krown HexeHean SkON(+:286-100)TUTR SkON(+:286-100)TUTR N249 Krown HexeHean SkON(+:286-100)TUTR SkON(+:1964-307)WTRAHFPLDVOWDLDYIDK N229 Krown HexeHean Uydssonnal alpha-glucosidas L/VC_LJUMAN SkOV(+:1964-370)WTRAHFPLDVOWDLDYIDK N229 Krown HexeHean Vagaluonic acid LMP2_JUMAN ScOVEN(+:1964-370)WTRAHFPLDVOWDLDYIDK N229 Krown HexeHean Wallarcin cacid LVC/LUMAN ScOVEN(+:1964-370)WTRAHFPLDVOWDLDK N229 Krown HexeHean Updatronic cacid cacidat LVC/LUMAN ScOVEN(+:1964-370)WTRAHFPLDV	N249 Knc	wn Hex6HexNAc5dHex2NeuAc1
SkON(+7215,982)TUTR SkON(+2715,982)TUTR SkON(+2715,982)TUTR SkON(+2261,000)TUTR SkON(+2861,000)TUTR SkON(+1050,370)TATR SkON(+1050,370)TATR SkON(+1050,370)TATR SkON(+1050,370)TATR SkON(+1050,370)TATR SkON(+1050,370)TATR SkON(+1050,370)TATR SkON(+1050,370)TATR SkON(+1050,370)TATR SkON(+1050,370)TATR SkON(+1050,370)TATR SkON(+1050,370)TATR SkON(+1050,370)TATR SkON(+1050,370)TATR SkON(+1050,370)TATR SkON(+1050,370)TATR SkON(+1050,370)TATR SkON(+1050,270)TATR SkON(+1050,270)TATR SkON(+1050,270)TATR SkON(+1050,270)TATR SkON(+2072,330)TATR SkON(+2072,330)TATR SkON(+2072,330)TATR SkON(+2072,330)TATR SkON(+2072,330)TATR SkON(+2072,330)TATR SkON(+2072,330)TATR SkON(+2072,330)TATR SkON(+2072,330)TATR SkON(+2072,330)TR S	N249 Knc	wn Hex6HexNAc5dHex4
SkDN(+777.953)TVTR Krown HaxBehok SkDN(+2777.953)TVTR Krown HaxBehok SkDN(+2775.91050)T SkDN(+1964.634)GSLR N1249 Krown SkDN(+1864.634)GSLR SAN(+1864.634)GSLR N322 Krown SkDN(+27750NUKBN DS N249 Krown SkDN(+27750NUKBN N322 Krown HaxBehok Kandi Lysosomal alpha-glucosidase LYOX_LUMAN ScVTCNILATIGLATINCID.K N322 Krown Kandi ScATCOVICHARN(+1054.370)DTLLATIGLALITICD.K N322 Krown HaxHak Potential LYOX_LUMAN ScATCOVICHARNILS.K N322 Krown HaxHak Potential LYOX_LUMAN ScATCOVICHARALSUL N329 Krown	N249 Knc	wn Hex6HexNAc5dHex1NeuAc2
ShON(+2717.978)TTVTR Koown HackHeath ShON(+281.00)TTVTR ShON(+281.00)TVTR N249 Krown HackHeath ShON(+281.00)TVTR ShON(+281.00)TVTR N0249 Krown HackHeath ShON(+281.00)TVTR ShON(+1864.05)TVTR N0249 Krown HackHeath ShON(+3007.058)TTVTR ShON(+1905.391)SLR N222 Krown HackHeath ShON(+1864.624)GSLR SAN(+1702.581)SSLR N322 Krown HackHeath ShON(+1864.624)GSLR LAMP2_HUMAN ScAVTOVF1484.105.370)DTALATIGLUTTODK N322 Krown HackHeath Vaciantial alpha-glucosidase LVAG_HUMAN SCAVEN(+105.370)DTAGENALINELVR N330 Krown HackHeath Vociantial alpha-glucosidase	N249 Kno	wn Hex6HexNAc5dHex1NeuAc2
SkDN(+ 2861.000)TTVFR Known N239 Known N249 Known NaxBhab SkDN(+ 2861.000)TVFR SkDN(+ 2861.000)TVFR N239 Known N249 Known NaxBhab SkDN(+ 2861.030)TVFR SkDN(+ 1702.581)GSLR N232 Known N232 Known NaxBhab SkDN(+ 3702.581)GSLR NAN(+ 1702.581)GSLR N232 Known N232 Known NaxBhab SkDN(+ 3007.681)TVFR SkDN(+ 1054.370)DTdLLATmGLQLNITQLK N232 Known NaxBhab SkDN(+ 300.581)TVFR SkDN(+ 1054.370)DTdLLATmGLQLNITQLK N232 Known HaxHab Vsposomal alpha-glucosidase LYOX_HUMAN ScNTGVIFLARNLR N232 Known HaxHab Votalin-lysine 6-oxidase LYOX_HUMAN ScNTGVIFLARNLR N232 Known HaxHab Uptosomia alpha-mannosidase LYOX_HUMAN ScNTGVIFLARNLR N332 Known HaxHab Uptosomia alpha-mannosidase LYOX_HUMAN ScNTGVIFLARNLR N332 Known HaxHab Uptosomia alpha-mannosidase LYOX_HUMAN ScNTGVIFLARNLR N332 Known HaxHab Uptosomia alpha-mannosidase LYOX_HUMAN ScNTGVIFLARNLR N337 Novel HaxHab Uptosomia alpha-mannosidase	N249 Knc	wn Hex8HexNAc7
SkON(+ 2864.056)TTVTR SkON(+ 3007.058)TTVTR N249 Known HascHean SkON(+ 7307.058)TTVTR N249 Known HascHean SAN(+ 1705.351)SLTR SAN(+ 1705.351)SLTR N322 Known HascHean Lysosome-associated LAMP2_HUMAN SERFEAGTYSVINGN(+ 1054.370)DTcLLATmGLQLNITDDK N229 Known HascHean Lysosomal alphra-glucosidase LVAG_HUMAN SGAYTOVIELARI N390 Known HascHean Notation LVAG_HUMAN SGAYTOVIELARI(+ 1054.370)DTcLLATmGLQLNITDDK N232 Known HascHean Notation LVAG_HUMAN SGAYTOVIELARI(+ 1054.370)DTcLLATmGLQLNITDDK N239 Known HascHean Notation LVAG_HUMAN SGAYTOVIELARI(+ 1054.370)DTcLLATmGLQLNITDDK N239 Known HascHean Notation LVAG_HUMAN SQUVEN(H-1054.370)DTcLLATmGLQLNITDDK N239 Known HascHean Notation LVAG_HUMAN SQUVEN(H-1054.370)DTcLLATmGLQLNITDDK N239 Known HascHean Notation RATCLAUNA SQUVEN(H-1054.370)DTCLLATmGLQLNITDDK N390 Known HascHean Notation RATCLAUNA SQUVEN(H-1054.370)DTCLLATMGLQLNITDDK N390 Novel HascHean Natreactor LVAC_HUMAN SATCLAUNE/1054.370)DT	N249 Kno	wn Hex6HexNAc5NeuAc3
SkDN(+ 3007,058)TTVTR N249 Known HaxHexh SANN(+ 1702,581)GSLR NN322 Known HaxHexh SANN(+ 1684,634)GSLR NN322 Known HaxHexh Nambrane glycoprotein 2 LYAG_HUMAN SERFEATTYSINIGN(+ 1064, 370)DTALLATInGLAUITIGDK N239 Known HaxHexh Protein-lysine 6-oxidase LYOZ_HUMAN SERVEATTSINIGN(+ 1064, 370)DTALLATINGLANNELDY N329 Known HaxHexh Vordin HaxHer SEATOVIELARIA N329 Known HaxHexh HaxHexh Vordin HaxHer SEANPEATTSINIC N329 Known HaxHexh Vordin HaxHer SEANPEATARIA NN144 Potential HaxHexh Naluronic acid receptor MACELUUMAN SECKDHFTFCOLN(+ 1064, 370)SICPLSGTAARFCW/VhCPLGRK N097 Potential HaxHexh Naluronic acid receptor MACELUUMAN SGCKANFDK SG	N249 Kno	wn Hex8HexNAc7dHex1
SAAN(+1702.531)GSLR N322 Known HexHerk Lysosome-associated LAMP2_HUMAN \$AAN(+1702.531)GSLR N322 Known HexHerk SAAN(+1702.531)GSLR SAAN(+164.1054.370)DTdLLATmGLQLNITQDK N322 Known HexHerk Iysosomal alpha-glucosidase L/YGL_HUMAN \$CVVEN(+1054.370)DTdLLATmGLQLNITQDK N239 Known HexHerk Protein-lysine 6-oxidase LYOZ_HUMAN \$CVVEN(+1054.370)DTdLLATmGLQLNITQDK N239 Known HexHerk Protein-lysine 6-oxidase LYOZ_HUMAN \$CVVEN(LARN(+1054.370)DTdLLATmGLQLNITQDK N390 Known HexHerk Norticital Houton SACN/FLARN(+1054.370)DTdLLATmGLQLNITQDK N382 Known HexHerk Upmphatic vessel endothelial LYOZ_HUMAN SACN/FLARN(+1054.370)DTdLLATmGLQLNITQDK N390 Known HexHerk Nyauronic acid receptor LYOZ_HUMAN SACN/FLARN(+1054.370)DTdLLATmGLQLNITQDK N390 Known HexHerk Nyauronic acid receptor LYOZ_HUMAN SACN/FLARN(+1054.370)DTdLLATMERCR N397 Pointial HexHerk Nyauronic acid receptor MCFLJUMAN<	N249 Knc	wn Hex6HexNAc5dHex1NeuAc3
Jysosome-associated membrane gycoprotein 2 Lysosomal alpha-glucosidase LAMP2_HUMAN StAN(+1864.634)GSLR N322 Known Hex4Hex/ Hex4Hex/ hex4Hex/ Nov Lysosomal alpha-glucosidase LYAG_HUMAN SQVYEN(+1054.370)DTCLLATIMGLQLNITQDk N229 Known Hex3Hex/ Hex4Hex/ SGAYTQVFLARN(+1054.370)DTCLLATIMGLQLNITDDk N229 Known Hex3Hex/ Hex4Hex/ Nove Protein-lysine 6-oxidase LYOX_HUMAN SQVYEN(+1054.370)NTNALLYR N330 Known Hex3Hex/ Hex4Hex/ Nove Hex3Hex/ Hex4Hex/ SGAYTQVFLARN(+1054.370)NTNLLVR N330 Known Hex3Hex/ Hex4Hex/ Nove Hex3Hex/ Hex3Hex/ Nove Hex3Hex/ Hex3H	N322 Kno	wn Hex8HexNAc2
Lysosome-associated LAMP2_HUMAN SEKPEAGTYSVNIGN(+1054.370)DTGLLAT/mGLQLNITQDK N29 Known Hex4Hexh Iysosome-associated LYAG_HUMAN SCVVEN(+1055.397)MTRAHFPLDVQWNDLDYMDSR N390 Known Hex3Hexh Iysosomal alpha-glucosidase LYOZ_HUMAN SCAYTOVIELATN(+1054.370)MTRAHFPLDVQWNDLDYMDSR N382 Known Hex3Hexh Protein-lysine 6-oxidase LYOZ_HUMAN SCAYTOVIELATN(+1054.370)MTNELVR N382 Known Hex3Hexh SAAYTOVIELATNUS SCAYTOVIELATN(+1054.370)MTNELVR N382 Known Hex3Hexh Protein-lysine 6-oxidase LYOZ_HUMAN SCAYTOVIELATNELMEN(+2432.884)R N37 Potential Hex3Hexh Lymphatic vessel endothelia LYVE1_HUMAN SAEN(+1382.481)DSNPNEESkt/TDK N397 Potential Hex3Hexh Lysosomal alpha-mannosidase MET_HUMAN STLLRN(+1751.624)'SSGCEARRDEYR N497 Potential Hex3Hexh Hepatocyte growth factor MET_HUMAN STLLRN(+1751.624)'SSGCEARRDEYR N497 Potential Hex3Hexh Interstitial collagenase MMP1_HUMAN STLLRN(+1751.624)'SSGCEARRDEYR N405 Potential Hex3Hexh Interstitial collagenase MMP1_HUMAN STLLRN(+1751.624)'SSGCEARRDEYR N405 Potential Hex3Hexh Interstitial collagena	N322 Kno	wn Hex9HexNAc2
LyAG_HUMAN \$QVVEN(+1095.397)/MTRAHFPLDVQWNDLDYMDSR N390 Known Hex3HexN Protein-lysine 6-oxidase LYOZ_HUMAN \$QVYTOVIFLARN(+1054.370)/TIVNELVR N822 Known Hex3HexN Protein-lysine 6-oxidase LYOZ_HUMAN \$QAYTOVIFLARN(+1054.370)/TIVNELVR N822 Known Hex3HexN Protein-lysine 6-oxidase LYOZ_HUMAN \$QAYTOVIFLARN(+1054.370)/TIVNELVR N822 Known Hex3HexN Protein-lysine 6-oxidase LYVE1_HUMAN \$GAYTOVIFLARN(+1054.370)/TIVNELVR N144 Potential Hex3HexN Lymphatic vessel endothelial LYVE1_HUMAN \$GFCMHFTFCQQLN(+892.317)/SICPLSQTAAFFQV/VYnPLGRK N093 Potential Hex3HexN Valuationic acid receptor MA281_HUMAN \$GFCMHFTFCQQLN(+892.317)/SICPLSQTAAFFQV/VYnPLGRK N095 Potential Hex3HexN Interstitial collagenase MET_HUMAN \$GFCMHFTFCQQLN(+892.317)/SICPLSQTAAFFQW/VYnPLGRK N093 Potential Hex3HexN Interstitial collagenase MMP1_HUMAN \$GTLMSN(+2035.030)/TPLTFK N093 Potential Hex3HexN Interstitial collagenase MMP1_HUMAN \$AFQLWSN(+2075.730)/TPLTFK N045 Hex5HexN N0vel Hex5HexN <td>N229 Kno</td> <td>wn Hex4HexNAc2</td>	N229 Kno	wn Hex4HexNAc2
Protein-lysine 6-oxidase LYOX_HUMAN \$GAYTQVIFLARN(+1054.370)NTNUELVR NB82 Known Hex4HexN Protein-lysine 6-oxidase LYOX_HUMAN \$AEN(+1054.370)QTAPGEVPALSNLR N144 Potential Hex4HexN Lymphatic vessel endothelial LYVE1_HUMAN \$AFeN(+1054.370)QTAPGEVPALSNLR N37 Potential Hex3HexN Lymphatic vessel endothelial LYVE1_HUMAN \$AFeN(+1054.370)QTAPGEVPALSNLR N37 Potential Hex3HexN Lympaulonic acid receptor 1 Lympaulonic acid receptor 1 Ma281_HUMAN \$GFKDHFFFCcQLN(+892.317)SIcPLSQTAAFFQVIVYnPLGRK N37 Potential Hex3HexN Lysocomal alpha-mannosidase MA281_HUMAN \$TLLRN(+1751.824)'S5GEARRDE'RR N330 Potential Hex3HexN Novel MA281_HUMAN \$TLLRN(+1751.824)'S5GEARRDE'RR N330 Potential Hex3HexN Neceptor MTUUMAN \$TLLRN(+1751.824)'S5GEARRDE'RR N330 Potential Hex3HexN Novel MA281_HUMAN \$TLLRN(+1751.824)'S5GEARRDE'RR N330 Potential Hex3HexN Novel MA281_HUMAN \$TLLRN(+1751.824)'S5GEARRDE'RR N330 Potential Hex3HexN Novel	N390 Knc	wn Hex3HexNAc3
Protein-lysine 6-oxidase LYOX_HUMAN \$AEN(+1054.370)GTAPGEVPALSNLR N144 Potential Hex4HexN Lymbnatic vessel endothelial LYVE1_HUMAN \$SPIGAAVPGAANASAQOPRTPILLIRDN(+2432.884)R N97 Potential Hex3HexN Lymbnatic vessel endothelial LYVE1_HUMAN \$SN(+1362.481)DSNPNEESkkTDk N289 Novel Hex3HexN Lymbnatic vessel endothelial LYVE1_HUMAN \$SGFkDHFTFcQQLN(+892.317)ISIcPLSQTARFQVIVYnPLGRk N397 Potential Hex3HexN Lysosomal alpha-mannosidase MET_HUMAN \$GFkDHFTFcQQLN(+892.317)ISIcPLSQTARFQVIVYnPLGRk N309 Potential Hex4HexN Neceptor MET_HUMAN \$GFkDHFTFcQQLN(+892.317)ISIcPLSQTARFQVIVYnPLGRk N309 Potential Hex4HexN Neceptor MET_HUMAN \$GFkDHFTFcQQLN(+2042.720)TFLFTK N307 Potential Hex5HexN Interstifial collagenase MMP1_HUMAN \$GFkQLWSN(+2055.730)TPLTFTK N330 Potential Hex5HexN SAFQLWSN(+2056.7350)TPLTFTK N143 Novel Hex5HexN Novel Hex5HexN Interstifial collagenase MMP1_HUMAN \$GFQLWSN(+2055.7350)TPLTFTK N143 Novel Hex7HexN SAFQLWSN(+2055.	N882 Kno	wn Hex4HexNAc2
Lymphatic vessel endothelial UYVE1_HUMAN SDPGAAVPGAANASAOOPRTPILLIRDN(+2432.884)R N97 Potential Hex3HexN Lymphatic vessel endothelial LYVE1_HUMAN \$AN(+1362.481)DSNPNEESkkTDk N289 Novel Hex3HexN Lysosomal alpha-mannosidase MA2B1_HUMAN \$GFkDHFTFcOQLN(+892.317)ISIcPLSQTAAFFQVIVYnPLGFk N497 Potential Hex3HexN Lysosomal alpha-mannosidase MET_HUMAN \$GFkDHFTFcOQLN(+2432.384)R N497 Potential Hex3HexN Nados SGFkDHFTFcOQLN(+2432.384)R N289 Potential Hex3HexN Nados Ma2B1_HUMAN \$GFkDHFTFcOQLN(+2432.730)'FTCLIAGFTLWLKRR N405 Potential Hex3HexN Interstitial collagenase MT_HUMAN \$TLRN(+1751.824)'SGGCEARRDEYR N330 Potential Hex3HexN Interstitial collagenase MMP1_HUMAN \$SFCLWSN(+2033.735)'/TPLTFTK N330 Potential Hex3HexN SAFGLWSN(+2055.730)'/TPLTFTK N143 Novel Hex5HexN Novel Hex5HexN SAFGLWSN(+2055.730)'/TPLTFTK N143 Novel Hex5HexN Novel Hex5HexN SAFGLWSN(+2055.730)'/TPLTFTK SAFGLWSN(+2055.730)'/TPLTFTK N143	N144 Poter	tial Hex4HexNAc2
Lymphatic vessel endothelial LYVE1_HUMAN \$AN(+1362.481)DSNPNEESkkTDk N289 Novel Hex5Hexh hyaluronic acid receptor 1 Lysosomal alpha-mannosidase MA2B1_HUMAN \$GFkDHFTFcQQLN(+892.317)ISIcPLSQTAAFFQVIVYnPLGFk N497 Potential Hex3Hexh Lysosomal alpha-mannosidase MA2B1_HUMAN \$GFkDHFTFcQQLN(+892.317)ISIcPLSQTAAFFQVIVYnPLGFk N405 Potential Hex3Hexh Lysosomal alpha-mannosidase MA2B1_HUMAN \$GFkDHFTFcQQLN(+2042.720)°FTGLIAGVVSISTALLLLGFFLWLkkRk N303 Potential Hex3Hexh Interstitial collagenase MMP1_HUMAN \$AFQLWSN(+2003.735)VTPLTFTk N143 Novel Hex5Hexh Interstitial collagenase MMP1_HUMAN \$AFQLWSN(+2055.730)VTPLTFTk N143 Novel Hex5Hexh SAFQLWSN(+2055.730)VTPLTFTk N143 Novel Hex5Hexh N143 Novel Hex5Hexh SAFQLWSN(+2055.730)VTPLTFTk N143 Novel Hex5Hexh Novel Hex5Hexh SAFQLWSN(+2055.730)VTPLTFTk N143 Novel Hex5Hexh Novel Hex5Hexh SAFQLWSN(+2055.730)VTPLTFTk N143 Novel Hex5Hexh Novel Hex5Hexh SAFQLWSN(N97 Poter	tial Hex3HexNAc6dHex1NeuAc2
Typaluronic acid receptor MA2B1_HUMAN \$GFkDHFTFcQQLN(+ 892.317)SIcPLSQTAARFQVIVYnPLGRk N497 Potential Hex3HexN Lysosomal alpha-mannosidase MA2B1_HUMAN \$GFkDHFTFcQQLN(+ 1751.624)'SsGcEARRDEYR N497 Potential Hex4HexN Lysosomal alpha-mannosidase MET_HUMAN \$GFkDHFTFcQQLN(+ 892.317)SIcPLSQTAARFQVIVrPLGRk N497 Potential Hex4HexN Nepatocyte growth factor MET_HUMAN \$TLLRN(+1751.624)'SsGcEARRDEYR N405 Potential Hex4HexN Nepatocyte growth factor MET_HUMAN \$TLLRN(+1751.624)'SsGcEARRDEYR N300 Potential Hex4HexN Neceptor \$VIVQPDON(+ 2714.799)'FTGLIAGVVSISTALLLLGFFLWLkKR N930 Potential Hex4HexN SAFQLWSN(+2005.730)'TPLTFTK N143 Novel Hex5HexN N143 Novel Hex5HexN SAFQLWSN(+2005.730)'TPLTFTK N143 Novel Hex5HexN N143 Novel Hex5HexN SAFQLWSN(+2005.530)'TPLTFTK N143 Novel Hex5HexN N143 Novel Hex5HexN SAFQLWSN(+2005.530)'TPLTFTK N143 Novel Hex5HexN N143 Novel Hex5HexN SAFQLWSN(+2056.53030	N289 Nc	vel Hex5HexNAc2dHex1
Lysosomal alpha-mannosidase Ma2B1_HUMAN \$GFkDHFTFcQQLN(+892.317)ISIcPLSQTAARFQVIVYnPLGRk N497 Potential Hex3HexN Hepatocyte growth factor MET_HUMAN \$TLLRN(+1751.624)'SsGcEARRDEYR N405 Potential Hex4HexN receptor MET_HUMAN \$TLLRN(+1751.624)'SsGcEARRDEYR N930 Potential Hex5HexN svIVQPDQN(+2073.730)'TFIGLIAGVVSISTALLLLGFFLWLkKR N930 Potential Hex5HexN hnterstitial collagenase MMP1_HUMAN \$AFQLWSN(+2003.735)'TPLTFTK N143 Novel Hex5HexN SAFQLWSN(+2075.730)'TPLTFTK N143 Novel Hex5HexN N143 Novel Hex5HexN SAFQLWSN(+2075.730)'TPLTFTK N143 Novel Hex5HexN SAFQLWSN(+2075.7351.851)'TPLTFTK N143 Novel Hex5HexN SAFQLWSN(+2051.851)'TPLTFTK N143 Novel Hex5HexN		
Hepatocyte growth factor MET_HUMAN \$TLLRN(+1751.624)'SsGcEARDEYR N405 Potential Hex4HexN receptor \$VIVOPDON(+2042.720)'FTGLIAGV/SISTALLLLGFFL/WL4kRk N930 Potential Hex4HexN svivOPDON(+2174.739)'FTGLIAGV/SISTALLLLGFFL/WL4kR N930 Potential Hex4HexN svivOPDON(+2174.739)'FTGLIAGV/SISTALLLLGFFL/WL4kR N930 Potential Hex4HexN svivOPDON(+2174.739)'TFLTFTK N143 Novel Hex5HexN hitterstitial collagenase MMP1_HUMAN \$AFQLWSN(+2055.730)'TPLTFTK N143 Novel Hex5HexN \$AFQLWSN(+2005.730)'TPLTFTK N143 Novel Hex5HexN N143 Novel Hex5HexN \$AFQLWSN(+2055.730)'TPLTFTK N143 Novel Hex5HexN N143 Novel Hex5HexN \$AFQLWSN(+2055.730)'TPLTFTK N143 Novel Hex5HexN Novel Hex5HexN \$AFQLWSN(+2055.730)'TPLTFTK N143 Novel Hex5HexN Novel Hex5HexN \$AFQLWSN(+2055.300)'TPLTFTK N143 Novel Hex5HexN Novel Hex5HexN <	N497 Poter	tial Hex3HexNAc2
receptor \$VIVQPDQN(+2042.720)*FTGLIAGVVSISTALLLLGFFLWLkkRk N930 Potential Hex4HexN Interstitial collagenase MMP1_HUMAN \$VIVQPDQN(+2174.799)*FTGLIAGVVSISTALLLLGFFLWLkkR N930 Potential Hex5HexN Interstitial collagenase MMP1_HUMAN \$AFQLWSN(+2059.736)VTPLTFTk N143 Novel Hex5HexN SAFQLWSN(+2055.730)VTPLTFTk N143 Novel Hex5HexN Novel Hex5HexN SAFQLWSN(+2056.550)VTPLTFTk N1	N405 Poter	tial Hex4HexNAc4NeuAc1
\$VIVQPDQN(+2174.799)*FTGLIAGVVSISTALLLLGFFLWLkkR N930 Potential Hex5HexN Interstitial collagenase MMP1_HUMAN \$AFQLWSN(+2034.703)VTPLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2059.735)VTPLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2075.730)VTPLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2075.730)VTPLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2075.730)VTPLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2076.750)VTPLTFTk N143 Novel Hex5HexN \$AFQLWSN(+208.3830)VTPLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2350.8330)VTPLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2351.851)VTPLTFTk	N930 Poter	tial Hex4HexNAc4NeuAc2
Interstitial collagenase MMP1_HUMAN \$AFQLWSN(+2034.703)\7PLTFTk N143 Novel Hex7HexN \$AFQLWSN(+2059.735)\7PLTFTk N143 Novel Hex5HexN \$AFGLWSN(+2075.730)\7PLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2075.730)\7PLTFTk N143 Novel Hex5HexN \$AFGLWSN(+2075.730)\7PLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2075.730)\7PLTFTk N143 Novel Hex5HexN N143 Novel Hex5HexN \$AFQLWSN(+2076.750)\7PLTFTk N143 Novel Hex5HexN N143 Novel Hex5HexN \$AFQLWSN(+2076.750)\7PLTFTk N143 Novel Hex5HexN N143 Novel Hex5HexN \$AFQLWSN(+2350.830)\7PLTFTk N143 Novel Hex5HexN Novel Hex5HexN \$AFQLWSN(+2350.830)\7PLTFTk N143 Novel Hex5HexN Novel Hex5HexN \$AFQLWSN(+2351.851)\7PLTFTk N143 Novel Hex5HexN Novel Hex5HexN	N930 Poter	tial Hex5HexNAc6dHex1
\$AFQLWSN(+2059.735)/TPLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2075.730)/TPLTFTk N143 Novel Hex6HexN \$AFQLWSN(+2075.730)/TPLTFTk N143 Novel Hex6HexN \$AFQLWSN(+2076.750)/TPLTFTk N143 Novel Hex6HexN \$AFQLWSN(+2076.750)/TPLTFTk N143 Novel Hex6HexN \$AFQLWSN(+2076.750)/TPLTFTk N143 Novel Hex6HexN \$AFQLWSN(+2030.330)/TPLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2350.330)/TPLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2350.330)/TPLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2351.351)/TPLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2351.351)/TPLTFTk N143 Novel Hex5HexN	N143 No	vel Hex7HexNAc3NeuAc1
\$AFQLWSN(+2075.730)\7PLTFTk N143 Novel Hex6HexN \$AFQLWSN(+2075.730)\7PLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2076.750)\7PLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2076.750)\7PLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2092.745)\7PLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2350.830)\7PLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2350.830)\7PLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2351.851)\7PLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2351.851)\7PLTFTk N143 Novel Hex5HexN	N143 No	vel Hex5HexNAc4dHex1NeuAc1
\$AFQLWSN(+2075.730)/TPLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2076.750)/TPLTFTk N143 Novel Hex6HexN \$AFQLWSN(+2092.745)/TPLTFTk N143 Novel Hex6HexN \$AFQLWSN(+2092.745)/TPLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2350.830)/TPLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2350.830)/TPLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2351.851)/TPLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2351.851)/TPLTFTk N143 Novel Hex5HexN	N143 Nc	vel Hex6HexNAc4NeuAc1
\$AFQLWSN(+2076.750)/TPLTFTk N143 Novel Hex6Hexn \$AFQLWSN(+2092.745)/TPLTFTk N143 Novel Hex7Hexn \$AFQLWSN(+2350.830)/TPLTFTk N143 Novel Hex5Hexn \$AFQLWSN(+2350.830)/TPLTFTk N143 Novel Hex5Hexn \$AFQLWSN(+2350.830)/TPLTFTk N143 Novel Hex5Hexn \$AFQLWSN(+2351.851)/TPLTFTk N143 Novel Hex5Hexn \$AFQLWSN(+2351.851)/TPLTFTk N143 Novel Hex5Hexn	N143 Nc	vel Hex5HexNAc4dHex2NeuGc1
\$AFQLWSN(+2092.745)/TPLTFTk N143 Novel Hex7HexN \$AFQLWSN(+2350.830)/TPLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2350.830)/TPLTFTk N143 Novel Hex5HexN \$AFQLWSN(+2351.851)/TPLTFTk N143 Novel Hex5HexN	N143 No	vel Hex6HexNAc4dHex2
\$AFQLWSN(+2350.830)\7PLTFTk N143 Novel Hex5Hexn \$AFQLWSN(+2350.830)\7PLTFTk N143 Novel Hex5Hexn \$AFQLWSN(+2351.851)\7PLTFTk N143 Novel Hex5Hexn	N143 No	vel Hex7HexNAc4dHex2
\$AFQLWSN(+2350.330)/TPLTFTk N143 Novel Hex5Hex1 \$AFQLWSN(+2351.851)/TPLTFTk N143 Novel Hex5Hex1	N143 NG	vel Hex5HexNAc4dHex1NeuAc2
\$AFQLWSN(+2351,851)VTPLTFTk N143 Novel Hex5Hex1	N143 NG	vel Hex5HexNAc4dHex1NeuAc2
	N143 NG	vel Hex5HexNAc4dHex3NeuAc1

		TABLE II—continued						
Protein name	UniProt ID	Peptide	Glycosite	Type	Glycans	Observed m/z	⊿ = N	Mass ppm)
Multimerin-1	MMRN1_HUMAN	\$INALKkPTVN(+1200.428)LTTVLIGR	N1020	Known	Hex4HexNAc2dHex1	957.031	4	1.5
		\$GARLFVLLSSLWSGGIGLN(+1241.455)*NSk	N21	Potential	Hex3HexNAc3dHex1	1001.006	4	-3.0
		\$LFVLLSSLWSGGIGLN(+568.212)NSk	N21	Potential	Hex1 HexNAc2	756.162	4	-0.8
		\$IDN(+1095.397)'ISLTVNDVRNTYSSLEGk	N344	Known	Hex3HexNAc3	976.973	4	-1.1
		\$InN(+568.212)LTVSLEMEk	N576	Potential	Hex1 HexNAc2	803.746	с С	-1.8
		\$kIEN(+892.317)LTSAVNSLNFIIk	N680	Potential	Hex3HexNAc2	868.469	4	-3.4
		\$LNQSNFQkmYQMFN(+2262.815) ETTSQVR	N828	Potential	Hex5HexNAc5dHex1NeuAc1	1069.470	5	2.0
		\$ALEAkSIHLSInFFSLN(+568.212)k	N921	Potential	Hex1 HexNAc2	819.195	4	-5.2
		\$SIHLSINFFSLN(+892.318)`k	N921	Potential	Hex3HexNAc2	721.609	4	-6.7
C-type mannose receptor 2	MRC2_HUMAN	\$VTPAcN(+2059.735)TSLPAQR	N69	Known	Hex5HexNAc4dHex1NeuAc1	925.654	4	-2.1
		\$SN(+2059.735)VTk	N954	Potential	Hex5HexNAc4dHex1NeuAc1	1020.122	ი	0.2
Nck-associated protein 5	NCKP5_HUMAN	\$ERGPQGQGHGRMALNLQLSDTDDN(+2018.708)^ ETFDELHIESSDEK	N585	Novel	Hex6HexNAc3dHex1NeuAc1	1127.492	9	-3.7
Lysosomal protein NCU-G1	NCUG1_HUMAN	\$LLHTADTcQLEVALIGASPRGN(+1241.454)R	N230	Potential	Hex3HexNAc3dHex1	1010.223	4	-1.4
Natural cytotoxicity triggering receptor 3 ligand 1	NR3L1_HUMAN	\$LN(+2172.745)SSQEDPGTVYQcVVRHASLHTPLR	N216	Potential	Hex10HexNAc2dHex1	1073.477	2	-4.3
Neuronal cell adhesion molecule	NRCAM_HUMAN	\$IPAN(+2715.963)k	N1009	Potential	Hex6HexNAc5dHex1NeuAc2	927.404	4	-1.4
		\$IPAN(+2960.068)``k	N1009	Potential	Hex5HexNAc7dHex1NeuAc2	1000.181	4	6.5
		\$FN(+1378.476)HTQTIQQk	N223	Potential	Hex6HexNAc2	768.611	4	0.9
		\$FN(+1378.476)HTQTIQQK	N223	Potential	Hex6HexNAc2	1024.480	e	2.2
		\$SSRERPPTFLTPEGN(+1710.598)ASNk	N276	Known	Hex5HexNAc3NeuAc1	1062.994	4	-0.4
Nuclear receptor-interacting	NRIP3_HUMAN	\$LMETN(+568.212)LSK	N72	Novel	Hex1HexNAc2	651.345	с	8.7
Plasminogen activator inhibitor 1	PAI1 HUMAN	\$GN(+1694.603)'MTRLPRLLVLPKFSLETEVDLRk	N288	Known	Hex4HexNAc3dHex1NeuAc1	1063.953	2	3.4
		\$GN(+2059 735)MTR	N288	Known	Hex5HexNAc4dHex1NeilAc1	955 394) (r.	0.5
		\$GN(+2350 830)mTB	N288	Known		799.313	, , ,	-3.7
		\$GN(+2350.000)1111 \$GN(+2351 851)mTR	N288	Known	Hevellevindodulevindod Hevelevindodulev3Neildot	798 814		
Platelet-derived growth factor	PDGFB_HUMAN	\$LLHGDPGEEDGAELDLN(+1864.634)mTRSHSG GEI EGI APPDEDEDED	N63	Novel	Hex9HexNAc2	1176.921	ۍ. ۲	-5.5
Suburiit B Secretory phospholipase A9	DI ADE HI IMAN	GELESLANGRA \$MODTSGHQIAITeDMYDMBNTI EVGN(+220/ 772)""BTVb	N1103	Noval	Heve Hev NAc4 Nei 14c2	101/1 013	u u	0
receptor		לאיניט וסמדומיוע וצטאו רואורוע ובבדמוע (דבבטי+גו וב)	C711N			012.4101	D	<u>ה.</u>
Procollagen-lysine,2- oxoglutarate 5-dioxygenase 2	PLOD2_HUMAN	\$YFN(+1856.656)YTVkVLGQGEEWR	N63	Potential	Hex5HexNAc3dHex1NeuAc1	1074.744	4	0.2
Phospholipid transfer protein	PLTP_HUMAN	\$qLLYWFFYDGGYIN(+2157.783)^ASAEGVSIRTGLELSR	N117	Potential	Hex4HexNAc6NeuAc1	1118.898	5	0.2
		\$IYSN(+1403.507)HSALESLALIPLQAPLk	N398	Known	Hex4HexNAc3dHex1	1033.782	4	1.5
Plexin-C1	PLXC1_HUMAN	\$IAN(+1524.534) FTSDVEYSDDHchLILPDSEAFQDVQGkRHR	N1308	Novel	Hex6HexNAc2dHex1	1203.342	2	-1.8
		\$IAN(+2204.773)FTSDVEYSDDhcHLILPDSEAFQDVQGkR	N1308	Novel	Hex5HexNAc4NeuAc2	638.689	0	5.9
		\$VILGEN(+1298.476)LTSNcPEVIYEIk	N407	Known	Hex3HexNAc4	985.483	4	-1.8
		\$ELcQN(+1378.476)k	N548	Potential	Hex6HexNAc2	873.730	ო	8.0
		<pre>\$DvcIQFDGGNcSSVGSLSYIALPHcSLIFPATTWISGGQN (+1403.508)'ITMMGR</pre>	N771	Potential	Hex4HexNAc3dHex1	607.279 1	.	0.5
		\$ENDNFN(+1054.370)ISk	N871	Novel	Hex4HexNAc2	861.725	ന	-4.1
		\$ENDNFN(+2522.916)'ISk	N871	Novel	Hex5HexNAc7NeuAc1	1019.438	4	7.5
Tyrosine-protein kinase-like 7	PTK7_HUMAN	\$SAN(+3007.058)ASFNIk	N116	Known	Hex6HexNAc5dHex1NeuAc3	1102.722	4	2.1
		\$SAN(+3026.090)ASFNIk	N116	Known	Hex9HexNAc7dHex1	1107.479	4	1.3
		\$ATVFAN(+1710.598)GSLLLTQVRPR	N283	Known	Hex5HexNAc3NeuAc1	945.458	4	0.0
		\$RQDVN(+1686.586)ITVATVPSWLk	N405	Potential	Hex7HexNAc2dHex1	991.485	4	3.2
Pentraxin-related protein PTX3	PTX3_HUMAN	\$ATDVLN(+1419.502)kTILFsYGTk	N220	Potential	Hex5HexNAc3	986.474	4	-4.0

		TABLE II—continued						
Protein name	UniProt ID	Peptide	Glycosite	Type	Glycans	Observed <i>m/z</i>	И	∆Mass (ppm)
Proactivator polypeptide	SAP_HUMAN	\$TN(+1038.375)STFVQALVEHVk	N215	Known	Hex3HexNAc2dHex1	1020.847	e	1.2
		<u>\$LIDNN(+1216.423)kTEk</u>	N332	Known	Hex5HexNAc2	988.825	ო	-0.7
		\$LIDNN(+1378.476)kTEk	N332	Known	Hex6HexNAc2	1042.510	ო	0.7
		\$LIDNN(+1694.603)kTEk	N332	Known	Hex4HexNAc3dHex1NeuAc1	861.415	4	-0.8
		\$N(+2245.800)*STk	N426	Known	Hex4HexNAc5NeuAc2	1056.113	ო	-0.8
		\$NLEKN(+1378.476)STk	N426	Known	Hex6HexNAc2	995.485	ო	2.5
Histone deacetylase complex	SAP30_HUMAN	\$N(+1095.397)kSDLk	N209	Novel	Hex3HexNAc3	824.751	ო	-3.7
subunit SAP30		\$GGDAAAAVAAVAAAAAASAGN(+1589.571)GTGAG TGAEVPGAGAVSAAGPPGAAGPGPGQLccLR	N34	Novel	Hex3HexNAc4NeuAc1	682.815	10	-0.7
Serpin H1	SERPH_HUMAN	\$SLSN(+1378.476)`STAR	N120	Potential	Hex6HexNAc2	821.017	с	-1.4
		\$SLSN(+1378.476)STAR	N120	Potential	Hex6HexNAc2	813.358	ო	1.9
		\$SLSN(+1540.529)STAR	N120	Potential	Hex7HexNAc2	867.371	ო	-3.6
		\$SLSN(+1702.581)STAR	N120	Potential	Hex8HexNAc2	922.062	с	1.6
		\$SLSN(+1864.634)STAR	N120	Potential	Hex9HexNAc2	975.414	с	4.5
		\$N(+1540.529)VTWk	N125	Potential	Hex7HexNAc2	879.399	с	-0.5
		\$N(+1702.581)VTWk	N125	Potential	Hex8HexNAc2	933.418	ო	0.6
Tyrosine-protein phosphatase	SHPS1_HUMAN	\$LQLTWLEnGN(+1200.428)VSR	N292	Known	Hex4HexNAc2dHex1	739.847	4	-3.5
non-receptor type substrate								
		\$LQLTWLENGN(+1872.651)"VSR	N292	Known	Hex6HexNAc3NeuAc1	912.893	4	-11.5
SPARC	SPRC_HUMAN	\$VcSNDN(+1622.582)k	N116	Known	Hex5HexNAc4	970.425	ო	3.5
		\$VcSNDN(+1767.619)k	N116	Known	Hex4HexNAc4NeuGc1	1019.107	ю	4.9
		\$VcSNDN(+1768.640)k	N116	Known	Hex5HexNAc4dHex1	1018.439	ო	0.0
		\$VcSNDN(+1864.634)k	N116	Known	Hex9HexNAc2	1051.108	ო	2.2
		\$VcSNDN(+1913.677)°k	N116	Known	Hex5HexNAc4NeuAc1	806.336	4	-1.4
		\$VcSNDN(+1913.677)k	N116	Known	Hex5HexNAc4NeuAc1	800.591	4	-0.3
		\$VcSNDN(+1913.677)k	N116	Known	Hex5HexNAc4NeuAc1	1066.783	ო	-1.7
		\$VcSNDN(+1914.697)k	N116	Known	Hex5HexNAc4dHex2	800.844	4	-2.5
		\$VcSNDN(+1914.697)k	N116	Known	Hex5HexNAc4dHex2	1067.125	ო	0.6
		\$VcSNDN(+2059.735)`k	N116	Known	Hex5HexNAc4dHex1NeuAc1	842.598	4	-3.0
		\$VcSNDN(+2059.735)k	N116	Known	Hex5HexNAc4dHex1NeuAc1	836.857	4	3.1
		\$VcSNDN(+2059.735)k	N116	Known	Hex5HexNAc4dHex1NeuAc1	1115.472	ო	1.6
		\$VcSNDN(+2350.830)k	N116	Known	Hex5HexNAc4dHex1NeuAc2	909.629	4	0.3
Stabilin-1	STAB1_HUMAN	\$ELLQHHGLVPQIEAATAYTIFVPTnRSLEAQGN (+2366.825)`SSHLDADTVR	N1178	Potential	Hex6HexNAc4NeuAc2	732.443	10	3.2
		\$ELKGDGPFTIFVPHADLMSN(+568.212)LSQDELARIR	N1626	Known	Hex1 HexNAc2	1097.310	4	-5.4
		\$LLPAHsGLSLIISDAGPDN(+892.317)SSWAPVAPGTVVVSR	N2424	Known	Hex3HexNAc2	655.464	7	-7.8
		\$ILTMAnQVLAVN(+1095.397)ISEEGR	N606	Potential	Hex3HexNAc3	820.390	4	-9.4
		\$GN(+1216.423)cSDGIQGNGAcLcFPDYk	N745	Potential	Hex5HexNAc2	975.155	4	-10.2
Suppressor of G2 allele of SKP1 homolog	SUGT1_HUMAN	\$RAMN(+568.212)kSFMESGGTVLSTNWsDVGk	N329	Novel	Hex1HexNAc2	981.480	4	6.2
Angiopoietin-1 receptor	TIE2_HUMAN	\$ISN(+568.212)ITHSSAVIsWTILDGYSISSITIR	N649	Potential	Hex1 HexNAc2	762.382	2	-3.1
Tetraspanin-3	TSN3_HUMAN	\$TYN(+1825.661)GTNPDAASRAIDYVQR	N127	Potential	Hex5HexNAc5	1041.454	4	-7.9
Thrombospondin-1	TSP1_HUMAN	\$VVN(+1913.677)STTGPGEHLR	N1067	Known	Hex5HexNAc4NeuAc1	877.141	4	0.2
Vascular endothelial growth	VGFR1_HUMAN	\$RIIWDSRkGFIISN(+892.317)ATYk	N196	Potential	Hex3HexNAc2	934.508	4	8.1
factor receptor 1		\$SVN(+892.318)TSVhIYDkAFITVk	N323	Potential	Hex3HexNAc2	876.466	4	10.2
		\$WFWHPcNHN(+1419.502)HSEARcDFcSNNEESFIL DADSnMGNR	N474	Potential	Hex5HexNAc3	1017.415	9	1.3
		\$mAITKEhSITLNLTIMN(+1257_450)"VSLODSGTYACRAR	N625	Potential	Hex4HexNAc3	1051.702	ŝ	-0.2

Molecular & Cellular Proteomics 12.4

TABLE II—continued

Protein name	UniProt ID	Peptide	Glycosite	Type	Glycans	Observed m/z	Z Z Z	Mass ppm)
von Willebrand factor	WYF_HUMAN	<pre>\$YFN(+ 2059.735)'K \$YFN(+ 2059.735)'K \$YFN(+ 2059.736)K \$YFN(+ 2059.736)K \$YFN(+ 2059.736)K \$YFN(+ 2204.772)K \$YFN(+ 2300.830)'K \$YFN(+ 2350.830)'K \$YFN(+ 2350.830)'K \$YFN(+ 2350.830)'K \$YFN(+ 2350.830)'K \$YFN(+ 2350.831)'K \$YFN(+ 2366.825)'K \$YFN(+ 2366.</pre>	N156 N156 N156 N156 N156 N156 N156 N156	Potential Potential	Hex5HexNAcddHex1NeuAc1 Hex5HexNAcddHex1NeuAc1 Hex5HexNAcddHex1NeuAc1 Hex5HexNAcddHex1NeuAc1 Hex5HexNAcddHex1NeuAc2 Hex5HexNAcddHex1NeuAc2 Hex5HexNAcddHex1NeuAc2 Hex5HexNAcddHex1NeuAc2 Hex5HexNAcddHex1NeuAc2 Hex5HexNAcddHex1NeuAc2 Hex5HexNAcddHex1NeuAc2 Hex5HexNAcddHex1NeuAc2 Hex5HexNAcddHex1NeuAc2 Hex5HexNAcddHex1NeuAc2 Hex5HexNAcddHex1NeuAc2 Hex5HexNAcddHex1NeuAc2 Hex5HexNAcddHex1NeuAc2 Hex5HexNAcddHex1NeuAc2 Hex5HexNAcddHex1NeuAc2 Hex5HexNAcddHex1NeuAc2 Hex5HexNAcddHex1NeuAc2 Hex5HexNAcddHex1NeuAc2 Hex5HexNAcddHex1NeuAc2 Hex5HexNAc5dHex1NeuAc3 Hex6HexNAc5dHex1NeuAc3 Hex6HexNAc5dHex1NeuAc3 Hex6HexNAc5dHex1NeuAc3 Hex6HexNAc5dHex1NeuAc3 Hex6HexNAc5dHex1NeuAc3 Hex6HexNAc5dHex1NeuAc3 Hex6HexNAc5dHex1NeuAc3 Hex6HexNAc5dHex1NeuAc3 Hex6HexNAc3dHex1NeuAc3 Hex5HexNAc4dHex1NeuAc3	776.330 1027.114 770.587 1075.587 1075.587 1075.588 1081.467 848.856 1131.473 843.362 1124.145 843.362 843.362 843.362 843.362 843.362 843.643 934.643 934.643 934.643 971.409 971.735 972.955 11007.667 11007.667 11007.667 1007.555 971.733 972.9555 972.9555 972.9555 972.9555 972.9555 972.9555 972.95555 972.95555 972.955555555555555555555555555555555555	4 \u03cm \u03cm 4 \u03cm \u03cm 4 \u03cm	447 477 477 477 477 477 477 477
		\$GQYYLQcGTPcN(+2059.735)LTcR \$GQYYLQcGTPcN(+2075.730)LTcR \$GQYYLQcGTPcN(+2076.750)LTcR \$GQYYLQcGTPcN(+3260.830)LTcR	N666 N666 N666 N666	Potential Potential Potential	Hex5HexNAC4dHex1NeuAc1 Hex6HexNAC4NeuAc1 Hex6HexNAC4dHex2 Hex5HexNAC4dHex1NeuAc2	1053.444 1057.695 1058.193 1126.222	4444	0.9 -0.6 4.5
Bovine proteins Alpha-1-acid glycoprotein	A1AG_BOVIN	\$QN(+2861.000)GTLSk \$QN(+2861.000)GTLSk \$QN(+2880.031)GTLSk \$QN(+2880.031)GTLSk	N104 N104 N104 N57	Potential Potential Potential	Hex6HexNAc5NeuAc3 Hex6HexNAc5NeuAc3 Hex9HexNAc7 Hex9HexNAc7	1020.428 1014.934 1019.690	4444	0.4 0.5 0.5
Alpha-fetoprotein	FETA_BOVIN	\$MELT47-2014-000 K \$AEN(+1200-128)ATECFETK \$AEN(+2204-772)ATECFETK \$AN+2204-772)FTEICK	N197 N197 N251	Potential Potential Potential	Hex4Hex1Aex1Aex1Aex1 Hex5Hex1Aex1Aex1 Hex5Hex1Ac41euAc2 Hex5Hex1Ac41euAc2	983.428 988.913 901.651	1ω44	-5.8 0.1 2.5
Alpha-2-HS-glycoprotein	FETUA_BOVIN	\$kLcPDcPLLAPLN(+2204.772)DSR \$kLcPDcPLLAPLN(+2861.000)DSR \$LcPDcPLLAPLN(+2204.772)DSR	N156 N156 N156	Known Known Known	Hex5HexNAc4NeuAc2 Hex6HexNAc5NeuAc3 Hex5HexNAc4NeuAc2	905.409 1036.654 1043.195	4 57 57	0.3 -1.0 -1.7
Peptide modification symbol: $(+57.021)$; h, oxidation of histic and loss of TMT ⁰ (-241.179) ; Underlined glycopeptides we	s: \$, N-terminal Tf dine (+15.995); k, s, phosphorylation are also detected	ATO labelling (+224.152); \degree Na adduct on glycan (+21.982); TMT ⁰ labeling of lysine (+224.152); m, oxidation of methion of serine (+79.966). via the PNGase F + H ₂ ¹⁸ O method (supplemental Table §); [~] , 2 Na ad onine (+15.9 S4).	duct on gl 995); n, de	ycan (+43.964); c, carbamid amidation of asparagine (+0	domethylati 0.984); q, G	ion of c	cysteine wro-Glu

Fig. 3. **HCD-pd-ETD fragmentation.** Full MS showing the different glycoforms of the same peptide sequence (*A*). Characteristic oxonium ion detected by HCD at m/z = 204.09 (*B*). This HexNAc signature triggered an ETD scan to identify the peptide sequence and confirm the glycosylation site (*C*).

ture, sugars tend to be arranged in branched polymers, resulting in an exponential increase of possible polysaccharide combinations. Theoretically, just six monosaccharides can give rise to 10¹² different glycan structures. This high diversity of protein-bound glycans requires a combination of different techniques. For example, new MS-based methods were de-

Fig. 4. **Comparison of HCD-pd-ETD and HCD-alt-ETD.** The two methods, HCD-pd-ETD (blue) and HCD-alt-ETD (red), displayed distinct distributions of the observed m/z, charge state, mass of identified peptides (M+H), and glycan mass, as well as the intensity of the precursor ions and the ByonicsTM score (all *y*-axes). The *x*-axes represent index numbers after proteins were sorted by their corresponding *y*-axis value from lower to higher (A). There was limited overlap in the identified glycopeptides (B). *C*, the HCD-pd-ETD method preferentially identified complex/hybrid glycans.

veloped to profile the cell surface N-glycoproteome as a differentiation marker for stem cells (32). We applied a combination of different glycoproteomics techniques to further enrich for secreted and shed membrane proteins and reveal potential glycosylation sites within the endothelial secretome. Glycoproteins play important roles in many biological processes related to ECs, such as angiogenesis, in which the structural change of the glycans will determine the attachment

property of cells and influence cell-to-cell interactions (33). Interestingly, vWF is a glycoprotein produced uniquely by ECs and megakaryocytes. Previous publications investigating vWF isolated from plasma failed to identify glycosylation sites within the propeptide (29). In plasma, the concentration of the propeptide is about one-tenth of the concentration of mature vWF (34, 35). In the conditioned medium of ECs, however, we observed several glycopeptides of the propeptide. Thus, the

FIG. 5. **Glycoprotein enrichment for validation.** *A*, spectral count of input, glycoprotein-enriched fraction (GP), and flow-through fraction (FT) from representative glycoproteins and non-glycoproteins. *B*, complementarity of the different methods (HCD-ETD, PNGase $F + H_2^{18}O$ treatment, and glycoprotein enrichment). Only 18 glycoproteins were consistently identified.

endothelial secretome allowed us to interrogate the glycosylation sites of von Willebrand antigen 2, the N-terminal cleavage product of vWF that aids N-terminal multimerization and protein compartmentalization of mature vWF in storage granules.

Conventional Methods for Glycoproteomics—As reviewed elsewhere (36), conventional glycoproteomic methods involve the enrichment of glycoproteins (typically with lectins like ConA and wheat germ agglutinin), cleavage of the glycans, and identification of the remaining peptide sequence. The most widely used method for detecting N-glycopeptides is digestion by PNGase F. PNGase F cleaves the GlcNAc molecule closest to the peptide (37). After PNGase F treatment, formerly *N*-linked glycosylated peptides are identified based on the conversion of Asn to Asp (deamidation) in the consensus motif for *N*-linked glycosylation (sequence N-X(not P)-S/T). This method has two major caveats. The first of these is a high false positive rate due to spontaneous deamidation. Asn-Gly sites, in particular, are prone to spontaneous deamidation (38–40). To reduce false positives, PNGase F treatment is performed in ¹⁸O water, adding a larger tag of 2.99 Da. Importantly, all known glycosyltransferases that mediate *N*-linked glycosylation are supposed to recognize a consensus motif, and this consensus sequence for *N*-linked glycosylation

Fig. 6. Sequence coverage for vWF. *A*, schematic illustration of vWF sequence. Coverage is highlighted in green, and potential glycosylation sites are shown in red. A large hexagon indicates a glycosylation site with a reference in the Uniprot database. By using the HCD-ETD (H) or PNGase F (P) method, we confirmed six N-glycosylation sites on vWF. *B*, ETD spectra of glycopeptides identified via HCD-ETD (N156, N211, N666, N1574). The following abbreviations are used: a, y, g, k = TMT modified Ala, Tyr, Gly, and Lys, respectively; c = carboxyamidomethylation of Cys; m = oxidation of Met.

must be taken into consideration (41). 2) The second caveat is that after PNGase F cleavage, the released sugars can be analyzed separately, but the link to the identified peptides with deamidated amino acids is lost (42, 43). Ideally, intact glycopeptides are analyzed directly via MS/MS even in complex biological samples.

Novel HCD-ETD Method-HCD fragmentation mostly breaks glycosidic bonds, whereas ETD preserves the glycan attachment and fragments the peptide backbone, providing more complete peptide sequence information. Current MS/MS acquisition strategies for glycopeptide analysis rely on the acquisition of MS/MS spectra for all precursor ions. In this study, HCD was employed to generate glycan oxonium ions and trigger an ETD spectrum in a data-dependent manner. HCD presents the sugar signatures within the low m/zrange, which are otherwise lost as a result of the one-third rule of ion trap fragmentation (44). Glycopeptides with terminal HexNAc generate typically an m/z 204.0864 oxonium ion and its fragments at m/z 168.0653 and 138.0550. The oxonium ion and its fragments are measured with the high mass accuracy of the Orbitrap analyzer, and the unambiguous identification of the glycan oxonium ion generated by the HCD scan serves as a diagnostic marker for glycopeptides. This approach was compared against conventional HCD-alt-ETD scans using a complex biological sample. The HCD-alt-ETD preferentially detects higher charged and higher intensity precursor ions than HCD-pd-ETD. This might be because (i) a higher charge increases ETD fragmentation efficiency, resulting in more identified glycopeptides; (ii) high-charged precursors did not produce HCD spectra of sufficient quality to trigger ETD based on the diagnostic oxonium ions; or (iii) more abundant peptides were selected in HCD-alt-ETD because the instrument duty cycle is less efficient than in HCD-pd-ETD. Overall, the combination of multiple MS methods used in our study provides greater confidence in the identification of glycopeptides than studies relying on a single approach and offers complementary advantages in the assessment of the glycoproteome, notably, the simultaneous identification of the peptide sequence, the glycosylation site, and the glycan composition.

Study Limitations – *N*-linked and O-linked glycosylation are the two most common forms of glycosylation in mammals (45). Only *N*-linked glycosylation was analyzed in the present study. Unlike *N*-linked glycosylation, O-linked glycosylation has no consensus site (46). This makes the analysis of Olinked glycopeptides a more daunting task (47). Lectins are widely used for glycoprotein enrichment. There are many types of lectins binding to different sugars, such as ConA (binds to α -D-mannosyl and α -D-glucosyl residues) and wheat germ agglutinin (binds to GlcNAc β 1–4GlcNAc β 1–4GlcNAcand N-acetylneuraminic acid). Here we used only ConA as a proof of principle to demonstrate the complementary results of multiple glycoprotein identification methods. ConA is known to display nonspecific avidity for hydrophobic ligands such as certain domains of tropomyosin (48). Furthermore, the standard protocol for the ConA glycoprotein enrichment kit is not optimized for cleanliness, and several known nonglycoproteins were also detected in the eluate samples. Sequential washes with low- and high-ionic-strength buffers before elution might have reduced this contamination (49). Also, mixing different lectins would increase the coverage of the glycoproteome in biological samples (39). Additional efforts are needed for a complete structural characterization of protein glycosylation; in particular, the quantitation of the occupancy rates and the identification of the glycan structure as complex/hybrid glycans cannot be discerned via our current MS approach.

CONCLUSIONS

Cardiovascular diseases arise from exposure to risk factors that induce complex pathophysiological perturbations of endothelial protein secretion. The recent advent of new proteomic technologies has enabled us to obtain information on the dynamic regulation of endothelial protein secretion. We present results from an extensive glycoproteomic analysis with information on glycan composition obtained via a direct MS method. Future proteomics studies linking endothelial secretory processes to cardiovascular risk factors and endothelial dysfunction will provide valuable insights about the mechanisms contributing to cardiovascular disease.

Acknowledgment—We thank Dr. Sarah Langley for assistance with the gene ontology annotation.

* This work was funded by the Department of Health via a National Institute for Health Research (NIHR) Biomedical Research Centre award to Guy's and St. Thomas' NHS Foundation Trust in partnership with King's College London and King's College Hospital NHS Foundation Trust. Dr. M. Mayr is supported by a Senior Research Fellowship of the British Heart Foundation.

S This article contains supplemental material.

** To whom correspondence should be addressed: Prof. Manuel Mayr, Cardiovascular Division, King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK, Tel.: +44 (0) 20 7848 5132, E-mail: manuel.mayr@kcl.ac.uk.

REFERENCES

- Mayr, M., Mayr, U., Chung, Y. L., Yin, X., Griffiths, J. R., and Xu, Q. (2004) Vascular proteomics: linking proteomic and metabolomic changes. *Proteomics* 4, 3751–3761
- Pula, G., Perera, S., Prokopi, M., Sidibe, A., Boulanger, C. M., and Mayr, M. (2008) Proteomic analysis of secretory proteins and vesicles in vascular research. *Proteomics Clin. Appl.* 2, 882–891
- Pober, J. S., and Sessa, W. C. (2007) Evolving functions of endothelial cells in inflammation. *Nat. Rev. Immunol.* 7, 803–815
- Cai, H., and Harrison, D. G. (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. *Circ. Res.* 87, 840–844
- Libby, P., and Simon, D. I. (2001) Inflammation and thrombosis: the clot thickens. *Circulation* **103**, 1718–1720
- Ross, R. (1999) Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340, 115–126
- Pellitteri-Hahn, M. C., Warren, M. C., Didier, D. N., Winkler, E. L., Mirza, S. P., Greene, A. S., and Olivier, M. (2006) Improved mass spectrometric proteomic profiling of the secretome of rat vascular endothelial cells. *J. Proteome Res.* 5, 2861–2864

- Tunica, D. G., Yin, X., Sidibe, A., Stegemann, C., Nissum, M., Zeng, L., Brunet, M., and Mayr, M. (2009) Proteomic analysis of the secretome of human umbilical vein endothelial cells using a combination of free-flow electrophoresis and nanoflow LC-MS/MS. *Proteomics* 9, 4991–4996
- Flora, J. W., Edmiston, J., Secrist, R., Li, G., Rana, G. S., Langston, T. B., and McKinney, W. (2008) Identification of in vitro differential cell secretions due to cigarette smoke condensate exposure using nanoflow capillary liquid chromatography and high-resolution mass spectrometry. *Anal. Bioanal. Chem.* **391**, 2845–2856
- Burghoff, S., and Schrader, J. (2011) Secretome of human endothelial cells under shear stress. J. Proteome Res. 10, 1160–1169
- Hocking, S. L., Wu, L. E., Guilhaus, M., Chisholm, D. J., and James, D. E. (2010) Intrinsic depot-specific differences in the secretome of adipose tissue, preadipocytes, and adipose tissue-derived microvascular endothelial cells. *Diabetes* 59, 3008–3016
- Griffoni, C., Di Molfetta, S., Fantozzi, L., Zanetti, C., Pippia, P., Tomasi, V., and Spisni, E. (2011) Modification of proteins secreted by endothelial cells during modeled low gravity exposure. *J. Cell. Biochem.* **112**, 265–272
- Brioschi, M., Lento, S., Tremoli, E., and Banfi, C. (2013) Proteomic analysis of endothelial cell secretome: a means of studying the pleiotropic effects of Hmg-CoA reductase inhibitors. J. Proteomics 78, 346–361
- Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y. (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. *J. Biol. Chem.* 257, 7847–7851
- Jacobs, J. M., Waters, K. M., Kathmann, L. E., Camp, D. G., 2nd, Wiley, H. S., Smith, R. D., and Thrall, B. D. (2008) The mammary epithelial cell secretome and its regulation by signal transduction pathways. *J. Proteome Res.* **7**, 558–569
- Zampetaki, A., Kiechl, S., Drozdov, I., Willeit, P., Mayr, U., Prokopi, M., Mayr, A., Weger, S., Oberhollenzer, F., Bonora, E., Shah, A., Willeit, J., and Mayr, M. (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. *Circ. Res.* 107, 810–817
- Margariti, A., Zampetaki, A., Xiao, Q., Zhou, B., Karamariti, E., Martin, D., Yin, X., Mayr, M., Li, H., Zhang, Z., De Falco, E., Hu, Y., Cockerill, G., Xu, Q., and Zeng, L. (2010) Histone deacetylase 7 controls endothelial cell growth through modulation of beta-catenin. *Circ. Res.* **106**, 1202–1211
- Yin, X., Cuello, F., Mayr, U., Hao, Z., Hornshaw, M., Ehler, E., Avkiran, M., and Mayr, M. (2010) Proteomics analysis of the cardiac myofilament subproteome reveals dynamic alterations in phosphatase subunit distribution. *Mol. Cell. Proteomics* 9, 497–509
- Didangelos, A., Yin, X., Mandal, K., Baumert, M., Jahangiri, M., and Mayr, M. (2010) Proteomics characterization of extracellular space components in the human aorta. *Mol Cell. Proteomics* 9, 2048–2062
- Mayr, M., Grainger, D., Mayr, U., Leroyer, A. S., Leseche, G., Sidibe, A., Herbin, O., Yin, X., Gomes, A., Madhu, B., Griffiths, J. R., Xu, Q., Tedgui, A., and Boulanger, C. M. (2009) Proteomics, metabolomics, and immunomics on microparticles derived from human atherosclerotic plaques. *Circ. Cardiovasc. Genet.* 2, 379–388
- Pula, G., Mayr, U., Evans, C., Prokopi, M., Vara, D. S., Yin, X., Astroulakis, Z., Xiao, Q., Hill, J., Xu, Q., and Mayr, M. (2009) Proteomics identifies thymidine phosphorylase as a key regulator of the angiogenic potential of colony-forming units and endothelial progenitor cell cultures. *Circ. Res.* **104**, 32–40
- Urbich, C., De Souza, A. I., Rossig, L., Yin, X., Xing, Q., Prokopi, M., Drozdov, I., Steiner, M., Breuss, J., Xu, Q., Dimmeler, S., and Mayr, M. (2011) Proteomic characterization of human early pro-angiogenic cells. *J. Mol. Cell. Cardiol.* **50**, 333–336
- Hagglund, P., Bunkenborg, J., Elortza, F., Jensen, O. N., and Roepstorff, P. (2004) A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. *J. Proteome Res.* **3**, 556–566
- Saba, J., Dutta, S., Hemenway, E., and Viner, R. (2012) Increasing the productivity of glycopeptides analysis by using higher-energy collision dissociation-accurate mass-product-dependent electron transfer dissociation. *Int. J. Proteomics* **2012**, 560391
- Bern, M., Cai, Y., and Goldberg, D. (2007) Lookup peaks: a hybrid of de novo sequencing and database search for protein identification by tandem mass spectrometry. *Anal Chem.* **79**, 1393–1400

- Antonov, A. S., Lukashev, M. E., Romanov, Y. A., Tkachuk, V. A., Repin, V. S., and Smirnov, V. N. (1986) Morphological alterations in endothelial cells from human aorta and umbilical vein induced by forskolin and phorbol 12-myristate 13-acetate: a synergistic action of adenylate cyclase and protein kinase C activators. *Proc. Natl. Acad. Sci. U.S.A.* 83, 9704–9708
- Sadler, J. E. (1998) Biochemistry and genetics of von Willebrand factor. Annu. Rev. Biochem. 67, 395–424
- Matsui, T., Titani, K., and Mizuochi, T. (1992) Structures of the asparaginelinked oligosaccharide chains of human von Willebrand factor. Occurrence of blood group A, B, and H(O) structures. *J. Biol. Chem.* 267, 8723–8731
- Canis, K., McKinnon, T. A., Nowak, A., Haslam, S. M., Panico, M., Morris, H. R., Laffan, M. A., and Dell, A. (2012) Mapping the N-glycome of human von Willebrand factor. *Biochem. J.* 447, 217–228
- Simak, J., Holada, K., and Vostal, J. G. (2002) Release of annexin V-binding membrane microparticles from cultured human umbilical vein endothelial cells after treatment with camptothecin. *BMC Cell Biol.* 3, 11
- Hart, G. W., and Copeland, R. J. (2010) Glycomics hits the big time. *Cell* 143, 672–676
- Wollscheid, B., Bausch-Fluck, D., Henderson, C., O'Brien, R., Bibel, M., Schiess, R., Aebersold, R., and Watts, J. D. (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. *Nat. Biotechnol.* 27, 378–386
- Leth-Larsen, R., Lund, R. R., and Ditzel, H. J. (2010) Plasma membrane proteomics and its application in clinical cancer biomarker discovery. *Mol. Cell. Proteomics* 9, 1369–1382
- Madabhushi, S. R., Shang, C., Dayananda, K. M., Rittenhouse-Olson, K., Murphy, M., Ryan, T. E., Montgomery, R. R., and Neelamegham, S. (2012) von Willebrand factor (VWF) propeptide binding to VWF D'D3 domain attenuates platelet activation and adhesion. *Blood* **119**, 4769–4778
- 35. van Mourik, J. A., Boertjes, R., Huisveld, I. A., Fijnvandraat, K., Pajkrt, D., van Genderen, P. J., and Fijnheer, R. (1999) von Willebrand factor propeptide in vascular disorders: a tool to distinguish between acute and chronic endothelial cell perturbation. *Blood* **94**, 179–185
- Pan, S., Chen, R., Aebersold, R., and Brentnall, T. A. (2011) Mass spectrometry based glycoproteomics—from a proteomics perspective. *Mol. Cell. Proteomics* 10, R110.003251
- Maley, F., Trimble, R. B., Tarentino, A. L., and Plummer, T. H., Jr. (1989) Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. *Anal. Biochem.* 180, 195–204
- Flatmark, T. (1967) Multiple molecular forms of bovine heart cytochrome c.
 V. A comparative study of their physicochemical properties and their reactions in biological systems. J. Biol. Chem. 242, 2454–2459
- Zielinska, D. F., Gnad, F., Wisniewski, J. R., and Mann, M. (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. *Cell* **141**, 897–907
- Angel, P. M., Lim, J. M., Wells, L., Bergmann, C., and Orlando, R. (2007) A potential pitfall in 18O-based N-linked glycosylation site mapping. *Rapid Commun. Mass Spectrom.* **21**, 674–682
- Palmisano, G., Melo-Braga, M. N., Engholm-Keller, K., Parker, B. L., and Larsen, M. R. (2012) Chemical deamidation: a common pitfall in largescale N-linked glycoproteomic mass spectrometry-based analyses. *J. Proteome Res.* **11**, 1949–1957
- Wuhrer, M., Deelder, A. M., and Hokke, C. H. (2005) Protein glycosylation analysis by liquid chromatography-mass spectrometry. *J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.* 825, 124–133
- Morelle, W., and Michalski, J. C. (2007) Analysis of protein glycosylation by mass spectrometry. *Nat. Protoc.* 2, 1585–1602
- Zhang, M. Y., Pace, N., Kerns, E. H., Kleintop, T., Kagan, N., and Sakuma, T. (2005) Hybrid triple quadrupole-linear ion trap mass spectrometry in fragmentation mechanism studies: application to structure elucidation of buspirone and one of its metabolites. *J. Mass Spectrom.* 40, 1017–1029
- Tissot, B., North, S. J., Ceroni, A., Pang, P. C., Panico, M., Rosati, F., Capone, A., Haslam, S. M., Dell, A., and Morris, H. R. (2009) Glycoproteomics: past, present and future. *FEBS Lett.* 583, 1728–1735
- Hang, H. C., Yu, C., Kato, D. L., and Bertozzi, C. R. (2003) A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. *Proc. Natl. Acad. Sci. U.S.A.* **100**, 14846–14851

- Zhao, P., Viner, R., Teo, C. F., Boons, G. J., Horn, D., and Wells, L. (2011) Combining high-energy C-trap dissociation and electron transfer dissociation for protein O-GlcNAc modification site assignment. *J. Proteome Res.* **10**, 4088–4104
- Owen, J. B., Di Domenico, F., Sultana, R., Perluigi, M., Cini, C., Pierce, W. M., and Butterfield, D. A. (2009) Proteomics-determined differences in the concanavalin-A-fractionated proteome of hippocampus and inferior

parietal lobule in subjects with Alzheimer's disease and mild cognitive impairment: implications for progression of AD. *J. Proteome Res.* **8**, 471-482

 Ghosh, D., Krokhin, O., Antonovici, M., Ens, W., Standing, K. G., Beavis, R. C., and Wilkins, J. A. (2004) Lectin affinity as an approach to the proteomic analysis of membrane glycoproteins. *J. Proteome Res.* 3, 841–850