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Similarity-Based Segmentation of 
Multi-Dimensional Signals
Rainer Machné1,6, Douglas B. Murray2 & Peter F. Stadler3,4,5,6,7,8

The segmentation of time series and genomic data is a common problem in computational biology. 
With increasingly complex measurement procedures individual data points are often not just numbers 
or simple vectors in which all components are of the same kind. Analysis methods that capitalize on 
slopes in a single real-valued data track or that make explicit use of the vectorial nature of the data 
are not applicable in such scenaria. We develop here a framework for segmentation in arbitrary data 
domains that only requires a minimal notion of similarity. Using unsupervised clustering of (a sample 
of) the input yields an approximate segmentation algorithm that is efficient enough for genome-wide 
applications. As a showcase application we segment a time-series of transcriptome sequencing data 
from budding yeast, in high temporal resolution over ca. 2.5 cycles of the short-period respiratory 
oscillation. The algorithm is used with a similarity measure focussing on periodic expression profiles 
across the metabolic cycle rather than coverage per time point.

The segmentation problem consists in finding a piece-wise constant approximation to a function defined on a 
1-dimensional independent variable, which may be e.g. time or a genomic coordinate. The problem arose early 
in the -omic era in the context of detecting copy number variations in array comparative genomic hybridiza-
tion (CGH) data and for determining transcripts from RNA expression data measured by tiling arrays. For a 
1-dimensional readout, coverage, it can be solved by dynamic programming1,2. With the rapidly increasing flood 
of high throughput data the problem was generalized to segmenting vector-valued data such as multiple tran-
scriptomes or CGH data from an entire cohort of patients. Again a dynamic programming solution can be found3.

In many applications one is not only interested in a segmentation but at the same time attempts to infer 
clusters of measurements that behave in similar way. This problem has typically been tackled by combining an 
expectation-maximization (EM) step to train a model that is then used to produce the segmentation. A hybrid 
of EM and the dynamic programing algorithm was used for multidimensional CGH data3, in a transcriptomics 
context hidden semi-Markov models were used to deal with the directional nature of strand-specific transcrip-
tome data4.

A particularly important version of the problem is chromatin segmentation, i.e., the assignment of biologically 
interpretable functional annotations based on a pattern of histone modifications typically measured by ChIP-seq. 
ChromaSig5 then uses a greedy algorithm to extend seed patterns to determine segments. ChromHMM6,7 and 
EpiCSeg8 are based on a hidden Markov models (HMM), Segway9 uses Dynamic Bayesian Network, and 
bidirectional HMMs are proposed to model the assignment of binarized (presence/absence) data or ChIP-Seq 
signal intensities or read counts to chromatin states10. The models are trained on a subset of the data and then a 
Viterbi algorithm or its equivalent is then used to decode the complete data track, i.e. to produce a segmentation 
of the complete data set.
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A closely related segmentation problem is the detection of differentially methylated regions (DMRs) from 
whole genome bisulfite sequencing data. While some tools use simple heuristics to aggregate differentially meth-
ylated CpGs into DMRs (e.g. BS-seq11, MOABS12, or MethylSig13). More recently, HMM based methods such 
as HMM-Fisher14 have been introduced.

Another important variation on the theme are reference-based transcriptome assemblers such as 
cufflinks15, TruHMM16, ORA17, or TransComb18. These tools, however, do not solve a general segmentation 
problem. The HMM of TruHMM, for instance only separates expressed from non-expressed states. Similarly, the 
determination of intron-exon boundaries can be viewed as a particular, specialized segmentation problem. We 
refer to reference19 for a recent review and comparison.

HMMs and similar stochastic models are attractive theoretically because (i) such models inherently define 
segmentations, (ii) they provide a consistent statistical framework, and (iii) they are capable of computing meas-
ures of confidence for the results. The EM training, however, can be computationally rather expensive for large 
data sets. Furthermore, it requires a user-defined number of labels (such as chromatin states) and it depends on 
the vector structure of the data (such as position-wise counts or presence/absence information for each position 
and each transcriptome or ChIP-seq experiment. It is of interest therefore, to investigate whether the expensive 
model training can be replaced by computationally more efficient heuristics. This avenue has been explored e.g. 
in metilene20, which uses a fast heuristic to propose differentially methylated regions that are tested for signif-
icance only in a second step.

In this contribution we describe a general purpose segmentation method for essentially arbitrary linearly 
ordered data. It relies only on a similarity function and proceeds in three separate steps: (i) The measurements 
are clustered using an unsupervised clustering method so that each measurement is replaced by membership to 
one of the clusters and possibly an additional “garbage bin”; (ii) Cluster-cluster and/or position-cluster similar-
ity measures are calculated; (iii) The resulting coarse-grained series of cluster IDs is segmented using an exact 
dynamic programming algorithm.

The data set that motivated the work presented here is a time-series of 24 RNA-seq transcriptomes covering 
about two and a half cycles of oscillatory growth dynamics (‘metabolic cycle’) in budding yeast (Saccharomyces 
cerevisiae) continuous culture. In this experimental system, a large majority of protein-coding transcripts showed 
dynamic (oscillatory) abundance signals in earlier hybridization-based transcriptome measurement (‘microar-
rays’) that are reproducible across a variety of strains and conditions21–23.

The budding yeast genome is compact, i.e densely packed with transcripts with a low frequency of spliceoso-
mal introns24, and expresses a large number of antisense and long non-coding RNAs25–27 that often partially over-
lap other transcriptional units. This makes inference of yeast transcripts difficult for the standard tools, which are 
optimized for mammalian transcriptomes and use splice junctions as an import source of information. Moreover, 
during the metabolic oscillation the transcriptome is highly dynamic, so that different time points cannot be 
simply pooled before transcripts are characterized. Taken together, segmentation thus would seem to be a more 
prudent approach.

The correlation between consecutive time points and the usually well-defined phase of the expression changes 
w.r.t. to the metabolic cycle on the one hand, and the large variations of coverage between different loci of the 
same annotated transcript on the other hand, strongly suggest not to focus on the expression levels in individual 
experiments but on the position-wise pattern of the time-course for the purpose of segmentation. A clustering 
strategy for such oscillatory transcriptome data based on selected and scaled components of the discrete Fourier 
Transform (DFT) of the time-series was introduced for corresponding microarray data23, where it was used to 
identify groups of genes with consistent temporal profiles. This strategy has proved superior in a scan of various 
data transformation and clustering strategies for similar data, diurnal expression profiles in a cyanobacterium28. 
Here we employ the same technique to quantify similarities of temporal expression changes at single nucleotide 
resolution. This amounts to abandoning the vector space structure of the data and thus renders existing seg-
mentation tools inapplicable. We therefore consider the segmentation problem in a more general formal setting, 
which assumes that the position-wise signal “lives” in a similarity space, a mathematical construct even more 
general than the more familiar metric spaces. In particular, we do not any longer assume that there is a concept 
of mean values or averages.

In this contribution we first summarize the necessary theoretical background to formulate the segmentation 
problem in arbitrary similarity spaces. We then show that it can be solved by means of dynamic programming in a 
manner similar to more restricted segmentation problems. Finally, we focus on the application to yeast transcrip-
tome time series to demonstrate the practical applicability of our approach.

Theory
We start from a signal ... → x n i x:[1, , ] , i that is measured on a finite sequence of consecutive points, which 
without loss of generality we can label = …i n1, , . For the domain  of measured data we assume only that the 
similarity between two measurements can be quantified. That is, there exists a similarity function X X Rσ × →:  
such that for all ∈u v,  holds

(s0)    σ ≥u u( , ) 0;
(s1)    σ σ=u v v u( , ) ( , );
(s2)    σ σ≥u u u v( , ) ( , );
The pair  σ( , ) satisfying (s1) and (s2) is a similarity space. For completeness of the presentation we note that 

two additional axioms,
(s3)    σ σ σ σ+ ≤ +u v v w u w v v( , ) ( , ) ( , ) ( , );
(s4)    σ σ σ= =u v u u v v( , ) ( , ) ( , ) iff =u v.
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are satisfied for all ∈u v w, , . Axiom (s3) corresponds to the triangle inequality. If axiom (s4) holds in addi-
tion, there is an equivalent metric space with distance function σ σ= −σd u v u u u v( , ) ( , ) ( , ). We will require 
neither condition here since similarity functions satisfying (s1) and (s2) already introduce sufficient structure on 
 for well-defined clustering and classification algorithms, see e.g.29–33. The k-medoids strategy34,35, for example, 
is a generalization of the well-known k-means clustering that only requires similarity data, see also36,37 for more 
recent developments.

A segmentation = … −S i i: ( , , )1 1  with = < < … < =


i i i n1 0 1  is a sequence of − 1 jump points or break 
points that partitions n[1, ] into  non-empty, consecutive intervals = −I i i: [ , ]h h h1  for ≤ ≤ h1 . The coarsest 
segmentation, for = 1, consists only of the interval n[1, ] itself, while the finest segmentation assigns each point 
to a distinct interval, =I h{ }h . A given segmentation S defines sets = ∈ | ∈x i I: { }h i h  of signals observed in 
the corresponding interval.

Good segmentations are distinguished from bad ones by a measure of the similarities of signal values within 
each set h. Since h is uniquely determined by the interval Ih we can think of the scores as a functions f I( )h  of the 
intervals. The quality of a particular segmentation S is then = ∑ ∈S Sf f I( ) ( )I hh

. We now can define the segmen-
tation problem in one of the following ways: (i) We fix a number  of desired segments, or (ii) we fix a cost M for 
each jump. In first case we ask for the segmentation with  non-empty intervals that maximizes Sf ( ). In the sec-
ond case we allow  to vary and penalize the use for more distinct intervals then necessary by maximizing 
∑ − −f I M( ) ( 1)h h .

It is easy to see that both problems can be solved by essentially the same dynamic programming approach. 
Denote by Si h,  the optimal segmentation of the sub-problem on the points ... i[1, , ] that consists of exactly h 
non-empty intervals. For brevity we write = ...f f j: ([i, , ])i j, . These values satisfy the recursion

=

= +
− ≤ <

−

S f
S S fmax

(1)

k k

k h
h j k

j h j k

,1 1,

,
1

, 1 ,

In the first case, the optimal solution is found as 


Sn, , for the other variant, one needs to determine 
− −S h Mmax ( 1)h n h, . An optimal segmentation is obtained by backtracing from these entries in either case. 

Equ. ((1)) provides a polynomial time solution in O n( )2  or O n( )3  time and O n( ) or O n( )2  space, assuming that the 
scores fj k,  can be computed fast enough.

The structure of the cost function f  is not arbitrary. Most importantly breaking up an interval into two parts 
must not make the fit worse, i.e., ≤ +−f f fi k i u u k, , 1 ,  must hold for all < ≤i u k. This condition implies 

≤ ∑ =f fi k u i
k

u u, ,  and strongly suggests to consider scores of form

∑σ=
∈

f I x( ): ( , )
(2)

h
i I

i h
h

where σ x( , )  measures the similarity of ∈x  with a set ⊆ . In general similarity spaces there are at least 
two natural choices for σ x( , ) . One may represent the set   by a “representative point”  ∈x  and define 

 σ σ=x x x( , ): ( , )m . The most natural choice of a representative object is the medoid, which has the property 
that  the  tota l  s imi lar ity  σ∑ ∈ y x( , )y    i s  maximal .  Alternat ive ly,  the  average  s imi lar ity 
σ σ= | | ∑ ∈x x y( , ): (1/ ) ( , )a y    can be used. The nave evaluation of these measures is quadratic in the length of 
the interval, and hence would slow down the evaluation by another order of magnitude. More efficient evalua-
tions are easily available, however (Appendix A in Supplementary Data).

Even with an efficient evaluation of fi j,  the performance bounds on equ ((1)) are expensive for genome-wide 
applications. The basic idea to devise a much faster approximate solution is to replace the sets h  of measurements 
within an interval with a precomputed clustering of the measurement comprising N  clusters  ⊆α , 
α = … N1, , . There is no restriction on the definition of these clusters. In particular the clusters may overlap or 
leave parts of the data set uncovered. The only formal requirement is that the similarity σ between a point ∈x  
and a cluster α , introduced above, can be computed.

Denote by αSi ,  the optimal score for segmentation of the interval [1, ... i, ] that assigns the last position i to clus-
ter α , and let αs i k( , , ) denote a scoring function that measures the total similarity of all positions in the interval 

... k[i, , ] to the cluster α. Again, we write M for the penalty incurred by introducing and additional interval. Then 
αSk ,  satisfies the recursion

α= + −α
β α

β
≤ ≠

−S S s i k Mmax max ( , , )
(3)k

i k
i, 1,

with the initialization (basis case) β =S M(0, )  for all β, ensuring that α≥αS s i(1, , )i , . This can be evaluated in 
O n N( )2 2  time and nN( ) space. The optimal segmentation is then obtained by standard backtracing from the entry 
realizing the optimal score α αSmax n, .

Several scoring functions αs i k( , , ) can be conceived. On the one hand, one might want to match the original 
segmentation problem as closely as possible. This amounts to using a score of the form

http://A
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∑α σ= α

=


s i k x( , , ) ( , )
(4)j i

k

j 

where σ is either the average similarity between xj and the cluster α  (corresponding to σa in the original problem) 
or the similarity between xj and the medoid point of α  corresponding to the σm measure. The latter is particularly 
appealing if e.g. a k-medoid method was used for clustering. If a divisive clustering method was used, then usually 
no natural representative is available, and the average similarity score may be the natural choice. Of course, if σ is 
derived from a vector space, i.e., centroids = | | ∑α

α
∈ αx x: (1/ ) x   are well defined, these are the natural replace-

ment for medoids.
Alternatively, we can determine the cluster i  that fits best to xi, i.e.,  σ= α

αxargmax ( , )i i . It is not necessary 
to assign all measurements to a cluster. Instead, we may place a measurements xi into a “garbage bin” or “nuisance 
cluster” 0  if σ θ<αx( , )i  for all regular clusters, i.e., α≤ ≤ N1  and some threshold similarity value θ. In this 
setting, the scoring function is naturally constructed as

  ∑=
=

s i k Q( , , ) ( , )
(5)j i

k

j

where Q( , )C D  is an, in principle arbitrary, similarity measure for the two clusters. The most basic choice is 
=Q( , ) 1   and C D = <Q a( , ) 0 for C D≠ .

For the specific application scenario of transcriptome time series we found similarity measures derived from 
the Pearson correlation of a discrete Fourier transformation of the expression time series particularly useful, 
and equations (4) and (5) are implemented as scoring functions icor and ccor as outlined below (section 
‘Implementation & Application’).

There are several possibilities to treat scattered outliers or special cases such a non-expressed locations. One 
approach is to use a smaller penalty value M0 instead of M for jumps to the “nuisance cluster” to allow such values 
to accumulate in short’special’ segments. Another plausible parametrization for a “nuisance cluster” is to simply 
set =s i k M( , , 0) , compensating the penalty M for the jump to 0  thus adding no contribution to the similarity 
score at all for the nuisance cluster.

To make the parameters easier to interpret, it can be convenient to use a scaled version so that σ takes values 
between 0 and 1. The jump penalty parameter M then serves as a lower bound on the length of a segment.

We observe, finally, that with any of the choice of the scoring functions discussed above, it not necessary to 
store or precompute all values of s i k( , , ) . For every real cluster and >i 1 we have

α α α= − −s i k s k s i( , , ) (1, , ) (1, 1, ) (6)

Hence it suffices to compute the O nN( ) entries of αs k(1, , ) for all k and α.
The quadratic running time suggests to employ a heuristic pre-segmentation step that reduces the problem to 

smaller pieces at positions where break points are obvious such as longer genomic regions without expression or 
histone modification signals. Alternatively, the running time can be reduced by cutting the input into overlapping 
pieces with a size a few times larger than some upper bound on the expected segment size.

Implementation and Application
The algorithm was implemented in R, where the work-horse scoring routines are written in C++ via Rcpp38, 
and is available as an R library from github (https://github.com/raim/segmenTier). The state of the code used 
herein is tagged as release v0.1. The library additionally implements the time-series preprocessing (data trans-
formations, including the DFT) and clustering strategies used in this presentation. The implementation is specif-
ically equipped for batch calculations over different input clusterings and parameter settings, to scan for optimal 
parameters for the given segmentation objective.

The package is geared towards use from command-line scripts in parallel computing environment, and these 
command-line scripts are available from the segmenTools code repository and R library (https://github.com/
raim/segmenTools). This library provides all functionality used for the comparative evaluation of segmentation 
characteristics and quality.

RNA-seq Time-Series Clustering and Similarity Measures.  The time-series of read-counts for each 
nucleotide (see ‘Additional Methods’) were processed as previously described for micro-array based periodic 
expression data23 with data- and problem-specific adaptations. The following processing pipeline is imple-
mented in segmenTier as function processTimeseries. A Discrete Fourier Transform was applied 
to the raw (trafo = raw) or arcsinh-transformed (trafo = ash) time-series, and all components were 
amplitude-scaled (use.snr = TRUE) as described23. High-frequency components were discarded and only the 
informative components 1–7 (dft.range = 1:7) were selected for clustering. Components 2–7 carry the main 
information of the time-series profiles. Unlike previously, we included the first DFT component, which provides 
information on the temporal mean of expression. This allowed for a better separation of very close adjacent seg-
ments with otherwise similar temporal profiles. To avoid segmentation by the mean expression alone, this com-
ponent was separately scaled by the arcsinh transformation (dc.trafo = ash). All non-expressed positions 
were assigned to the nuisance cluster.

The transformed data was then clustered by the base R implementation of k-means using the 
Hartigan-Wong algorithm39, via the package’s clusterTimeseries function. This function also 

https://github.com/raim/segmenTier
https://github.com/raim/segmenTools
https://github.com/raim/segmenTools
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calculates the similarity matrices for the scoring functions, specifically Pearson correlation coefficients between 
cluster means for ccor or between each position and cluster means for icor. For the latter we implemented the 
algorithm in C++ (via Rcpp) for efficiency. After clustering another filtering step proved useful for scoring func-
tion ccor. Positions with a correlation coefficient below a threshold θ (nui.thresh = 0.6) to their cluster 
center were re-assigned to the nuisance cluster. See Appendix A for the definition of θ in context.

Scoring Functions.  The simple scoring =Q( , ) 1C D  or a depending on whether  and  are equal or dis-
tance is available as ccls scoring in segmenTier with default value = −a 1 (equ. (5)).

For vector-like data such as the DFT of the time series of yeast transcriptomes that motivated this work, the 
Pearson correlation coefficient C Dcorr x x( , ) is a natural choice of the similarity measure. As it turned out, a trans-
formation that reduced the influence of moderate positive or negative correlations improved the segmentation 
performance. To this end we used transformation φ − + → − +ε

ε
t sign t t: [ 1, 1] [ 1, 1]: ( ) . Note that φ1

 is the 
identity. For large ε the transformation approaches φ − = −∞( 1) 1, φ =∞(1) 1, and φ =∞ t( ) 0 for − < <t1 1.

segmenTier implements both σ φ=α
ε α


x corr x x( , ) ( ( , ))i i   and C D C Dφ= εQ corr( , ) ( ( , )) as options icor 

and ccor. The transformation parameter ε is available as parameter E.
The ‘nuisance cluster’ correlation ν is available as parameter nui in segmenTier. For our test data ν > 1 

proved useful to enforce breaks between close adjacent transcripts and cut ends at the transition to noisy 
low-expressed regions. Finally, the length-penalty M and the nuisance-specific M0 are available as parameters 
M and Mn in segmenTier.

Two package demos demonstrate the usage of the package and effects of parameters. The first 
(segment_test) uses an artificial data set to demonstrate the low level interface to the algorithm, function 
segmentClusters, and how to construct similarity matrices for scoring functions icor and ccor. It fur-
ther shows that variations in scoring matrix calculation and back-tracing affect only the discrete scoring function 
ccls (Supp. Fig. S1). The second demo (segment_data) reproduces Fig. 3 and S4 of this article and demon-
strates the usage of higher-level interfaces and S3 data structures for processing of time-series, including simple 
wrappers for time-series transformation, clustering, segmentation and plotting.

Additional Methods
Data Acquisition.  The yeast strain used in this study was IFO 0233 and continuous culture experiments were 
carried out as previously described40. Total RNA was extracted41 from 24 samples taken every 4 min, covering 
ca. 2.5 cycles of the respiratory oscillation (Supp. Fig. S2), and DNA removed (RNase-Free DNase Set, Qiagen, 
Japan). Total RNA had an RNA integrity number > 7 and 260 nm:230 nm and 260 nm:230 nm ratios > 2.14. 
Strand specific cDNA libraries were created using the dUTP method42,43 and sequencing was carried out on an 
Illumina 1 G sequencer. All cDNA libraries were generated and sequenced by BGI, China.

RNA-seq reads were mapped against yeast S288C genome (release R64-1-1) using segemehl (version 
0.1.4)44 with default parameters and spliced read mapping enabled. Initially unmatched reads were mapped 
again using the remapping tool from the segemehl package and the resulting files were merged. Coverage 
(read-counts per nucleotide) was normalized for total library size and was stored in a bedgraph file for further 
analysis.

Pre-Segmentation.  The algorithm performance was improved by using areas largely devoid of RNA-seq 
coverage as “safe anchors” for pre-segmentation. To this end we calculated for each genomic position i the number 
ni of time-points with any signal at all, i.e., ≠ →x oi . A moving average n d/i  of this signal, scaled by the total num-
ber of measured time points d (here 24), is then used to determine non-expressed region. For the yeast data we 
used a window-size of avg = 1000 nt for the running average, and required an interval of length 1000 nt where 
the moving average does not exceed the threshold ≤n d/ 1/3i  (achieved by option minrd = 8, indicating 8 of 24 
time points) for the average number of nucleotides with any expression signal at all. To avoid the removal of 
weakly expressed regions close to non-expressed intervals, we extended pre-segments on both ends until the n d/i  
signal, computed with a much narrower moving average over only favg = 100 nt, dropped to 0. Finally, adjacent 
pre-segments with a length of less than minsg = 1000 nt were fused with their neighbors, and segments span-
ning chromosome ends were split there. The pre-segmentation heuristics is implemented in the R script wrapper 
presegment.R and distributed with the segmenTools package.

Application of the pre-segmentation heuristic to the yeast data set produced 2617 pre-segments between 1 and 
47 kb, and in total covering 72% of the genome (Fig. 1). The majority of 2610 inter-segment regions is small; the 
largest (89 kb) corresponds to the mitochondrial genome and was skipped due to the specific complex structure 
(large introns, overlapping ORF) of the mitochondrial transcriptome. Both the expressed pre-segments and the 
inter-segments, potentially containing lowly expressed smaller transcripts, were then used as input for 
segmentation.

Parameter Scan and Optimization.  In order to test the quality of the segmentation, we used a set of 5171 
experimentally defined transcripts that were assigned to open reading frames (ORF-T)26, as available from the 
yeast genome database45 (file Xu_2009_ORF-Ts_V64.bed). With our segmentation as the query Q and anno-
tated ORF-T as the target T , we calculated three parameters for each target segment, graphically defined in Fig. 2a.

For each target segment we counted all overlapping query segments (nhits), then selected the query segment 
with the highest Jaccard index ∩ ∪= | | | |J Q T Q T/  and calculated the query/target length ratio = | | | |R Q T/ . To 
characterize a segmentation globally, we used the fraction Rshort of segments with ≤ .R 0 8 and Rlong  with ≤ .R 1 2 
(Fig. 2b), the total Jaccard index Jtot of all best hits queries for all targets, and nhits, the average number of query hits 

http://S1
http://S4
http://S3
http://S2
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per target (Fig. 2d). A segmentation that recovers the test set well, will have high Jtot and Rlong , and low nhits and 
Rshort.

We tested 540 parameter combinations against the ORF-T test set, varying time-series pre-processing, clus-
tering and segmentation parameters. The segmentations were clustered by the four optimization parameters (col-
oring in Fig. 2) using’partitioning around medoids’ (PAM). Enrichment of these clusters with run parameters 
was established by Fisher’s exact tests (Fig. 2e) and provides an overview of the effects of parameters. A detailed 
inspection of parameter combinations in the optimal clusters (Figs 2f and S3) finally guided the choice of three 
optimal and two bad-scoring parameter sets for discussion, indicated as 1–5 in Fig. 2d.

Results and Discussion
We have shown here that segmentation along a linear coordinate axis can be modeled as a combinatorial opti-
mization problem independently of the data type or types. Indeed, the only mathematical structure required in 
the data domain is a symmetric similarity measure that favors identity, i.e., satisfies conditions (s1) and (s2). An 
efficient implementation is made available with the R package segmenTier.

As a showcase application we consider the segmentation of a time-series of 24 yeast transcriptomes, taken 
over 2.5 cycles of the respiratory oscillation (Supp. Fig. S2). The rich transcriptome dynamics of this experi-
mental system are well explored by hybridization based techniques21–23, which, however, only measure known 
protein-coding transcripts. RNA-seq allows to establish transcription at single nucleotide-resolution for the 
whole genome, and thus evaluate also the extent and dynamics of non-coding or antisense transcription, which 
is widely thought to have regulatory functions or encode for functional RNA molecules. While RNA-seq experi-
ments had also been performed for this oscillatory system, the sequencing was not strand-specific and analyzed 
only on a per-gene level46,47.

Using a pre-segmentation at large non-expressed regions (Fig. 1) segmenTier computes segmentation of 
the complete yeast genome data set in about 15 hours on a desktop computer (Lenovo ThinkCenter, Intel i7-4790 
CPU (3.60 GHz), Fedora F22). This performance made is possible to explore the parameter space systematically.

ORF Transcript Recovery.  To our knowledge no tools with comparable functionality, i.e., segmentation of 
RNA-seq time-series data based on consistent temporal profiles, exist. Thus, we could not compare the perfor-
mance of the algorithm directly with other tools. Instead, we reasoned that previously annotated protein-coding 
transcripts should also be expressed as temporally coherent segments in our data set. We systematically scanned 
540 parameter combinations and tested the resulting segments for recovery of a set of 5171 published transcripts26 
annotated as Open Reading Frame transcripts (ORF-T) (Fig. 2). Over-fragmentation is observed when segments 
are shorter than target ORF-T and a given ORF-T comprises several segments, and under-fragmentation when 
adjacent segments are not split (Fig. 2b and d).

The test revealed the exponent ε, the nuisance cluster similarity ν and the length-penalty score M  as major 
determinants of ORF-T recovery performance. Notably, a good recovery of ORF-T can be achieved with differ-
ent opposing combinations, combining either higher ≥M 150 with ε > 1 and ν > 1, or low <M 150 and 
ε ν= = 1 (Fig. 2e and f). We also observed small but systematic effects of the of choice of data pre-processing, 
the number of clusters K , and scoring function S (Supp. Fig. S3a) which contributed to our final choice of 
parameter sets used for further discussion and indicated in Fig. 2d. Parameter sets 1, 3 & 5 recovered ORF-T 
with total Jaccard indices Jtot of 53%, 75% and 66% (Fig. 2d), 35%, 64% and 49% of ORF-T with a Jaccard index 

> .J 0 8 (Fig. 2c, vertical line at 0.8), and 80 % of ORF-T with > .J 0 32, > .J 0 62 and > .J 0 50 (Fig. 2c, horizon-
tal line at 0.2).

Example Transcripts.  The detailed effects of parameters can be illustrated on specific examples: a small 
region from chromosome V comprises of four ORF and one non-coding RNA (Figs 3 and S5), and a broader 

Figure 1.  Length distributions of the pre-segmentation. Distribution of mean number of expressed time points, 
read-count presence = − + ∑−n i j n( 1) j

i
k

1 , (a) and lengths (b) of genomic intervals of the final pre-segments 
(black) and inter-segment regions (red).

http://S3
http://S2
http://S3a
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genomic region (Fig. 4). The non-coding RNA SRG1 regulates the transcription of the downstream overlapping 
SER3 ORF transcript via a transcription-interference mechanism48.

M allows to enforce minimal length requirements for the expected signal, here RNA transcripts. However, 
unlike most eukaryotic genomes the yeast genome is highly compact and densely packed with transcripts (Fig. 4). 
We often observe a gradient of signal towards the end of transcriptional units, indicating the distribution of actual 
transcription start and end sites or potential read-through events. Thus, the signal between distinct transcrip-
tional units often remains above 0 and often will reflect contributions from both transcripts. For example the 
three transcripts of genes YER078W-A, YER079W, AIM9, upstream of the SRG1, remain un-segmented with 
parameters ε ν= = 1 at =M 200 (Figs 3 and S5a). Amplifying or scaling of the cluster-position and nuisance 
similarity measures by ε and ν allows to locally overcome length requirements set by M and cut-off small and 

Figure 2.  Parameter Scan & Selection: ORF Transcript Recovery. 540 segmentations were calculated with 
varied parameters, and segments (queries Q) from each segmentation were tested against a set of 5171 annotated 
ORF transcripts (targets T ). (a) Graphical definition of recovery measures: ratio R, Jaccard index J and the 
number of segments per target nhits (also see Methods section). Only the best matching hits for each target were 
used for calculation of R and J. (b) Empirical cumulative distribution function (ECDF) of query-target length 
ratios R: mean values of the clusters (solid lines) defined in panel d, and the full spread of values in each cluster 
(dashed lines). A segmentation where many query segments that are longer than their matching ORF transcript 
target ( > R 1) is interpreted as under-fragmentation of the data (e.g. the ‘too long’ red segmentations), while 
segments which are shorter than their target ( <R 1) point to over-fragmentation (e.g. the ‘too short’ magenta 
segmentations). (c) ECDF of the best hit Jaccard indices, plotted as in panel b. (d) The total Jaccard index Jtot of 
best-matching pairs (x-axis) and nhits, the average number of segments per target (y-axis). Numbers indicate the 
example segmentations in Fig. 3, the slightly shifted ‘x’ indicate the same parameters but with scoring function 
ccor instead of icor. The coloring of segmentations is derived from a PAM clustering of the ratios Rshort and 
Rlong  (vertical lines in panel b), and Jtot and nhits. (e) Frequency distribution of parameters (T: time-series 
processing, K: number of clusters, S: scoring function, E: similarity transformation exponent ε, M: length-
penalty parameter M, nui: nuisance cluster correlation ν) in the PAM clusters; the gray-scale is derived from the 
p-values (−log p2( )) of Fisher’s exact tests of the overlaps and indicates enrichment. This provides an overview of 
parameter effects on optimization criteria. Detailed effects for each parameters are shown in Supp. Fig. S3a. (f) 
Frequency distributions of parameter combinations in the ‘optimal’ cluster 4, gray-scale is derived from the 
shown frequencies; see Supp. Fig. S3b for other clusters.

http://S5a
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mostly noisy segments between adjacent and at the end of transcripts. Several such examples can be observed in 
Fig. 4.

In contrast, the overlapping transcriptional units of SRG1 ncRNA and SER3 ORF transcript both have a strong 
and distinct signal. Their detection is stable over the parameter range tested (Fig. 3). It is notable that this pair was 
not identified as separate transcripts in the ORF-T data set. The genome contains several known and expectably 
many more unknown examples of such overlapping transcripts interacting by transcriptional interference mech-
anisms, and potentially un-detected in our ORF-T set. Such artifacts may in part explain why the Jaccard meas-
ures J and Jtot remain well below their maximum (Fig. 2c and d).

Setting a lower M, combined with similarity scaling often leads to internal breaks that appear artefactual but 
do usually represent subtly distinct temporal profiles, e.g., the central portion of gene AIM9 is split at ε ν= = 3 
and =M 75 with scoring function ccor (Fig. 3, bottom segmentation). It is for the present analysis and without 
further experimental tests impossible to judge all individual break points, several experimental and data process-
ing sources of noise can bias local signals. But it is well understood that “cryptic” transcription can occur inside of 
and overlapping with more traditionally defined transcriptional units26,27. Optimal parameter settings will highly 
depend on the data structure and the purpose of analysis. Parameters could be geared to higher break sensitivity 
to analyze more subtle signals, e.g. from splice sites, or merely pinpoint methodological artifacts.

User-defined choices of parameters cannot be entirely avoided in segmentation problems. This is in particular true 
in applications where the structure of the data domain is either unknown or deliberately modeled with little internal 
detail. In most cases the similarity measure will be defined heuristically based on the user’s intuition about the data or 
based on a prior empirical exploration. For our show-case example, oscillatory transcriptome dynamics, we had previ-
ously observed that the phase and amplitude information describes the data better than the more obvious representa-
tion of the time-series as vectors in a euclidean space23,28. We note that in the context of the segmentation problem, 
it proved useful to additionally account for the total coverage to achieve better segmentation between close adjacent 
fragments. This seems to reflect the tendency of adjacent genes to show correlated expression patterns50.

The segmenTools package therefore has been designed to make it easy to scan and evaluate the effects of 
parameters. It also implements optimization strategies for the parameters to be used in applications where an 
annotated set of test data is available.
The clustering techniques available for similarity spaces typically contain a random component, such as the choice 
of the initial medoids in the k-medoids approach. The efficiency of segmenTier makes is possible to compute 

Figure 3.  Example Region: SRG1 vs. SER3 (chrV:317829..325452). All segmentations were calculated from 
the shown clustering (K = 12, clusters sorted by similarity) of selected DFT components of the raw read-count 
time-series, with the indicated parameters E, M and nui, and with scoring function icor (corresponding 
from top to bottom to 1–5 in Fig. 2d), except where indicated (‘S:ccor’), which were calculated with the same 
parameters as the segments directly above but using scoring function ccor (‘x’ in Fig. 2d). ‘ORF’ are annotated 
transcripts from the ORF-T test set26, ‘gene’ and ‘ncRNA’ are annotations from the yeast genome release R64.1.1 
of the actual ORF, from left to right YER078W-A, YER079W, AIM9 and SER3, and the ncRNA SRG1. This 
figure was produced by the demo segment_data of the segmenTier R package.
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multiple segmentations so that the robustness of the segmentation can be determined. This also suggests to inves-
tigate, in future research, systematic methods to define and compute consensus segmentations. A simple majority 
voting over several runs with identical parameters but exploiting the random effect of k-means clustering, may 
already yield good results (Supp. Fig. S4b).

Concluding Remarks.  The general 1D segmentation method outlined here poses several questions for 
future research. Although we have shown that the results are quite robust over a range of parameter values for 
data as complex as the yeast transcriptome, some parameters choice have to be left to user as matter of design: 
most importantly, the user has to supply an estimate of the typical segment size or an estimate of the noise level. 
Without any prior knowledge, these cannot be estimated from the data as a matter of principle. To see this, sup-
pose that there is no noise at in the data. Then every jump in the data is real and segments are interval of exactly 
constant signal. In the other extreme, the input might be entirely noise and the correct answer is a single segment.

The second key parameter is the number of clusters K  that are to be used. As we have seen, the segmentation 
problem can be phrased without a clustering step. For most applications, however, this is beyond the limits of 
computational resources. We have seen above that K  only has a moderate influence on the results. If K  is chosen 
much too large, this mostly infringes on the computational efficiency. Too few clusters, on the other hand, may 
lead to incomplete segmentation. Classical information-theoretic methods51 or the silhouettes method52 are cer-
tainly applicable to estimate good values of K , or even assess the quality of the re-clustering of the data set by the 
segmentation. It remains a question for future research, however, whether values of K  optimal in terms of cluster-
ing also yield the best segmentation results.

An important issue is the robustness of the segmentation. As the most simple test we have used independent 
instances of k-means clustering to assess this issue. One might also consider bootstrap-like re-sampling. The 
construction of multiple segmentations for the same data set, either due to randomized components in the clus-
tering algorithm (here the random choice of the K  initial centroids), or due to variations in the parameters, natu-
rally leads to the question how segmentations should be compared and how to define a consensus set of 
segmentations. In particular the latter appears to be an interesting problem for future research that is not only of 
relevance for the future releases of segmenTier but also for problems such as the reconciliation of multiple 
chromatin segmentations.

Availability.  The software is available as an R package from https://github.com/raim/segmenTier.
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