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alysis of Pd/C nanoparticles using
SEM imaging and advanced deep learning

Nguyen Duc Thuan, * Hoang Manh Cuong, Nguyen Hoang Nam, Nguyen Thi Lan
Huong and Hoang Si Hong*

In this study, we present a comprehensive approach for themorphological analysis of palladium on carbon (Pd/

C) nanoparticles utilizing scanning electronmicroscopy (SEM) imaging and advanced deep learning techniques.

A deep learning detectionmodel based on an attentionmechanismwas implemented to accurately identify and

delineate small nanoparticles within unlabeled SEM images. Following detection, a graph-based network was

employed to analyze the structural characteristics of the nanoparticles, while density-based spatial clustering of

applications with noise was utilized to cluster the detected nanoparticles, identifying meaningful patterns and

distributions. Our results demonstrate the efficacy of the proposed model in detecting nanoparticles with high

precision and reliability. Furthermore, the clustering analysis reveals significant insights into the morphological

distribution and structural organization of Pd/C nanoparticles, contributing to the understanding of their

properties and potential applications.
1. Introduction

The synthesis and characterization of nanoparticles are critical
areas of research in nanotechnology, with applications spanning
catalysis, energy storage, and biomedical elds.1,2 Among the
various nanoparticles, palladium on carbon (Pd/C) nanoparticles
have garnered signicant attention due to their exceptional
catalytic properties, making them indispensable in processes
such as hydrogenation reactions, fuel cells, and environmental
remediation.2–5 A comprehensive understanding of the
morphology of these nanoparticles is essential for optimizing
their performance and tailoring their properties for specic
applications.6,7

Traditional methods for characterizing nanoparticle
morphology, such as transmission electronmicroscopy (TEM) and
X-ray diffraction (XRD), provide valuable insights but oen require
extensive sample preparation and are time-consuming.8,9 Scan-
ning electron microscopy (SEM) has emerged as a powerful alter-
native due to its relatively straightforward sample preparation,
rapid imaging capabilities, and high spatial resolution.10,11

However, the manual analysis of SEM images is labor-intensive
and subject to human error, necessitating the development of
automated and accurate methods for morphological analysis.

In recent years, advances in deep learning have revolution-
ized various elds, including image analysis. Deep learning
algorithms, particularly convolutional neural networks (CNNs),
have demonstrated remarkable success in automatically
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identifying and classifying complex patterns in images.12–14 A
signicant challenge in applying deep learning to SEM image
analysis is the requirement for large, labeled datasets.15,16

Labeling nanoparticles in SEM images is particularly difficult
due to the high resolution and complexity of the images.17,18

Each nanoparticle must be accurately identied and annotated,
a process that requires expert knowledge and is extremely time-
consuming and prone to human error.

Furthermore, existing deep learning-based methods for
nanoparticle analysis typically rely on SEM or TEM imaging,
focusing primarily on size and shape analysis.19–23 While TEM
provides higher resolution, it is difficult to capture the surface
structures that are crucial for a comprehensive morphological
analysis of nanoparticles like Pd/C. This limitation means that
many current approaches fail to offer insights into both shape
and structural characteristics, which are essential for under-
standing nanoparticle behavior and functionality. The impor-
tance of structure analysis cannot be overstated, particularly for
Pd/C nanoparticles, where characteristics like surface defects,
roughness, and atomic arrangements signicantly impact
catalytic activity, selectivity, and stability. Without proper
structural analysis, key factors inuencing the efficiency and
durability of nanoparticles may be overlooked, which can lead
to suboptimal performance.

To overcome the abovementioned limitations, this paper
presents a novel approach for the morphological analysis of Pd/
C nanoparticles by integrating SEM imaging with advanced
deep learning techniques, specically addressing the challenge
of labeled data requirements. We propose a method that
signicantly reduces the need for extensive manual labeling
while still achieving high accuracy in morphological
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Literature review on deep leaning-based method for morphological analysis of nanoparticles

Reference Nanoparticle type Imaging modality

Analysis focus

Size Shape Distribution Structure

Xu et al.19 Al/SiO2/Si TSOM Yes No No No
Wen et al.20 Various materials TEM Yes Yes Yes No
Sun et al.21 NaGdF4: 49% Yb, 1% Tm SEM/TEM Yes No No No
Lee et al.22 HAuCl4$3H2O TEM Yes Yes No No
Bals et al.23 Various materials SEM No Yes Yes No
Our work Pd/C SEM Yes Yes Yes Yes
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characterization. Our approach leverages semi-supervised
learning techniques, enabling the model to learn from partially
labeled data, thus alleviating the dependency on labor-intensive
and error-prone labeling processes. The proposed deep model is
designed based on attention mechanism to improve the ability in
detecting small nanoparticles. In addition to deep learning for
detection, we employ advanced clustering algorithms to analyze
the structure and distribution of the detected nanoparticles.
These clustering methods allow us to uncover meaningful
patterns and distributions that are crucial for understanding the
morphological properties and behaviors of Pd/C nanoparticles. To
highlight the distinctions between our method and existing
approaches, Table 1 compares deep leaning-based methods for
morphological analysis of nanoparticles.

The structure of the paper is as follows: rst, we describe the
deep learning methodology, including data labeling, semi-
supervised learning methods, training process, and clustering
techniques. Next, we provide an overview of the synthesis and
preparation of Pd/C nanoparticles and the acquisition of SEM
images. We then present the results of our model's performance
in detecting, analyzing the morphological features of Pd/C
nanoparticles, and discuss the implications of these ndings
for future research and applications. Finally, we conclude with
a summary of the contributions of this research.
2. Methodology
2.1. Automated labelling

Given the challenge of no labeled data for training, we employ
an automated image-processing-based blob detection algo-
rithm to label some of the nanoparticles. Blob detection is
effective for labeling nanoparticles in unlabeled data because it
automatically identies localized features based on differences
Table 2 Blob filtering criteria

Filter Formula Range

Area (size) A ¼ P
ðx;yÞ˛Blob

1 Below 20 nm

Circularity
C ¼ 4pA

P2
Above 0.1

Convexity
CV ¼ A

ACH

Above 0.5

Inertia ratio
IR ¼ lmin

lmax

Above 0.1

© 2024 The Author(s). Published by the Royal Society of Chemistry
in intensity or color.24,25 Its scale-invariance detects nano-
particles of varying sizes, and its noise robustness lters out
irrelevant details. This automation allows efficient processing of
large datasets, making it a practical solution for generating
labeled data and enabling further analysis andmodel training.26

Moreover, the blob detection algorithm is highly adaptable and
can be generalized to analyze other types of nanoparticles by
modifying key parameters such as blob size, and shape sensi-
tivity (circularity, convexity, and inertia ratio).27 These adjust-
ments allow the algorithm to accommodate a range of
nanoparticle morphologies and material systems, making it
versatile for detecting nanoparticles with varying sizes, shapes,
and compositions. The blob detection process involves:24

� Step 1. Thresholding: convert the grayscale image to
a binary image by applying a threshold (50% of maximum
intensity). Each pixel value is compared against a threshold
value to classify it as either part of a blob or the background.

Bðx; yÞ ¼
8<
:

1;
0;

if Iðx; yÞ. threshold
otherwise

(1)

� Step 2. Connected components: identify connected regions
(blobs) in the binary image. This involves nding all contiguous
sets of pixels that form distinct blobs.

� Step 3. Blob ltering criteria: lter the identied blobs
based on several criteria presented in Table 2. Aer ltering,
detected blobs are labeled nanoparticles and served as training
information for the deep learning model.
2.2. Model architecture

The proposed deep learning model is based on a feature
pyramid network (FPN) architecture enhanced with an
Note

Only keep blobs whose area falls within a specied range of area

P is the perimeter i.e., boundary length of the blob. Circularity ranges
from 0 to 1, with 1 being a perfect circle
A is the area of the blob and ACH is the area of its convex hull.
Convexity ranges from 0 to 1, with 1 indicating a perfect convex shape
lmin and lmax are the minimum and maximum eigenvalues of the
blob's second-moment matrix. This measures the elongation of the
blob
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Fig. 1 The structure of employed deep learning-based detector model.
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attention-based scale sequence network (ASSN) for better small
object detection.28 The typical structure of a detector model
comprises a backbone, neck, and head as illustrated in Fig. 1.
This model begins with a backbone feature pyramid, where
feature maps labeled C1 to C5 are extracted from CNNs. These
feature maps progressively reduce in spatial resolution from C1
to C5, with C1 capturing low-level details like edges and
textures, while C5 captures more abstract and semantic infor-
mation. To ensure these features are manageable, 3 × 3 con-
volutional layers (Conv2D) are applied to reduce the depth (or
number of channels) of each featuremap. Themiddle section of
the model is the feature neck, which includes feature maps
labeled P3A, P4, and P5. These represent multi-scale features
derived by merging earlier layers (C3 to C5) to create a scale
sequence based on the scale space theory. The scale space
theory generally suggests that objects should be detected across
various scales to account for their size variations in images. This
is particularly useful for small object detection, where capturing
ne details at different scales can enhance recognition
accuracy.

The ASSN module, integrated into this structure, is designed
to enhance small object detection by rening the feature
pyramid.28 The ASSN module enhances the detection of small
Table 3 Details on the architecture of the proposed model

Layer Type Input layer Output

Input — — 1280 ×

C1 Conv2D Input 640 ×
C2 Conv2D C1 320 ×

C3 Conv2D C2 160 ×

C4 Conv2D C3 80 × 5
C5 Conv2D C4 40 × 2
P3A Down sampling C3, C4, C5 160 ×

P4 Up/down sampling C3, C4, C5 80 × 5
P5 Up sampling C3, C4, C5 40 × 2
P3B Attention P3A, P4, P5 160 ×
P3 head Detection head P3A, P3B 160 ×

P4 head Detection head P4 80 × 5
P5 head Detection head P5 40 × 2
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nanoparticles by applying attention mechanisms to the feature
pyramid. Specically, we denote the feature pyramid by
different resolution feature maps from P3A to P5. Attention
mechanisms are applied to the P3A feature map, which retains
the most information about small objects. Channel attention in
eqn (2) and spatial attention in eqn (3) are sequentially gener-
ated and applied to P3A based on CBAM:29

ChannelAtt. = s(MLP(AvgPool(P3A)))

+ s(MLP(MaxPool(P3A))) (2)

SpatialAtt. = s(BN(f7 × 7(AvgPool(ChannelAtt.);

MaxPool(ChannelAtt.)))) (3)

where MLP represents a multi-layer perceptron, BN denotes
batch normalization, f7 × 7 denotes a convolution operation
with a 7 × 7 kernel, and s is the sigmoid function. Besides,
upscaling blocks are also applied to higher resolution feature
maps (P4 and P5) to match the size of P3A. The ASSN module
uses element-wise multiplication and concatenation to inte-
grate the attention maps with the feature maps, ensuring that
small object information is preserved and highlighted. Then,
the rened P3A feature map is used to generate a scale sequence
which enhances features for small objects. Aerward, the
size Kernel size Stride Activation

886 × 1 — — —
443 × 32 3 × 3 2 ReLU
221 × 64 3 × 3 2 ReLU
110 × 128 3 × 3 2 ReLU
5 × 256 3 × 3 2 ReLU
7 × 512 3 × 3 2 ReLU
110 × 896 2 for C4, 4 for C5 — Concat
5 × 896 2 — Concat
7 × 896 2 for C4, 4 for C3 Concat
110 × 896 — — —
110 × 5 3 × 3 1 Sigmoid
5 × 5 3 × 3 1 Sigmoid
7 × 5 3 × 3 1 Sigmoid

© 2024 The Author(s). Published by the Royal Society of Chemistry
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feature map P3B obtained from that scale sequence is merged
with P3A by element-wise sum to form the dynamic P3 head.

Finally, the right side of the model architecture focuses on
detection heads for each scale (P3, P4, P5). These detection
heads take the rened feature maps and make predictions,
which include bounding box regressions and object classica-
tions. The output of the model consists of vectors with a length
of 5, corresponding to 4 values for the coordinates of the
bounding box, and 1 value representing the condence of the
prediction. By having separate detection heads for each scale,
the model can specialize in detecting objects that correspond to
different sizes, improving accuracy for small objects. Details of
the architecture is listed in Table 3 and principle of the
proposed deep learning model can be found in previous
works.28

2.3. Training process

The training process begins with initializing the model weights
using pre-trained YOLOv7/YOLOv8 weights to accelerate
convergence. A composite loss function, including localization
loss and condence loss, is dened to measure the accuracy of
the model's predictions with blob labels presented in section
3.1. The formulas for the localization loss and condence loss
are presented in the corresponding eqn (4) and (5) as follows:

Lloc ¼
X

i˛correct predictions

X
m˛fcx;cy;w;hg

xij � SmoothL1
�
li
m � gj

m
�

(4)

Lconf ¼ �
X

i˛all boxes

xij � logðciÞ (5)

where xij is the variable for matching between the i-th predicted
box and the j-th ground truth box; SmoothL1(z) is dened as
0.5z2 if jzj < 1 and jzj − 0.5 otherwise; li

m are the predicted box
parameters (e.g., center cx, cy, width w, height h); gj

m are the
ground truth box parameters; and ci is the predicted condence
score.

The dataset used for experiments consists of 1000 images,
split into an 80 : 20 ratio for training and validation. The input
image size is 1280 × 886 pixels, selected to maintain sufficient
resolution for detecting nanoparticles, and the output consists
of bounding boxes for nanoparticle localization corresponding
condence scores. The Adam optimizer is employed with an
initial learning rate of 0.001, which decays over time for gradual
ne-tuning. A batch size of 16 was chosen, and training was
conducted over 300 epochs. Other hyperparameters were
congured to match the default settings of YOLOv7 and
YOLOv8, with momentum set to 0.937 and weight decay set to
0.0005. Data augmentation techniques including rotation
(±20°) and ipping (vertically and horizontally) were applied to
ensure better model generalization.

Model performance is evaluated using precision and recall
for detection accuracy and mean absolute error (MAE) for
assessing centroid location predictions. A prediction is
considered correct if the predicted bounding box shares at least
one pixel with the ground truth bounding box. Non-maximum
suppression (NMS) is applied as a post-processing step to
lter out overlapping bounding boxes. Details of the training
© 2024 The Author(s). Published by the Royal Society of Chemistry
process of the proposed deep learning model can be found in
previous works.28

2.4. Morphological analysis

For visualizing structured or ordered nanoparticles, a graph-
based (GB) network construction approach is employed. In
this method, detected nanoparticles are treated as nodes in
a graph, with edges representing the spatial relationships
between them. The process begins by identifying the positions
of nanoparticles in the SEM images using the deep learning
model. These positions are then used to construct a graph
where the connectivity between nodes reects the physical
arrangement of nanoparticles. The graph construction involves
dening a distance threshold to determine which nanoparticles
are considered neighbors. Then, the adjacency matrix is con-
structed based on the threshold and the distances between
nodes:

Aij ¼
8<
:

S
�
xi; xj

�
;

0;
if S

�
xi; xj

�
\threshold

otherwise
(6)

where S(xi,xj) is the distance between nodes xi,xj. Each element
Aij in the adjacency matrix is represented for the edge of two
nodes xi,xj. Aerward, edges are drawn between nodes that are
within this distance, creating a network that visually represents
the ordered structure of nanoparticles. This approach allows for
the visualization of spatial patterns and regularities in the
nanoparticle distribution, facilitating a deeper understanding
of their organization and potential inter-particle interactions.

For non-structured or disordered nanoparticle distributions,
the density-based spatial clustering of applications with noise
(DBSCAN) algorithm is used for clustering and visualization.30

DBSCAN is a robust clustering method that groups points (in
this case, nanoparticles regardless of their shape and size)
based on their density in the spatial domain, making it well-
suited for identifying clusters in irregularly distributed data.
The process begins by applying the deep learning model to
detect nanoparticles in the SEM images, obtaining their coor-
dinates. DBSCAN then processes these coordinates, identifying
clusters based on two parameters: epsilon (3), the maximum
distance between two points to be considered neighbors (in this
research, 3 = 30 nm), and minPts, the minimum number of
points required to form a dense region (in this research, minPts
= 5). A point p is considered core point if it has at least minPts
neighbors. Each point r is called p-reachable if there exist n
points from p1 to pn satisfying:30

8>><
>>:

p1 ¼ p

pn ¼ r

piþ1˛N3ðpiÞ; c1# i\n
(7)

where N3 is the neighbors set. Then, points that are core-point-
reachable are in the same cluster with the core point. Points
that do not meet the above density criteria are classied as
noise. DBSCAN's advantage lies in its ability to nd arbitrarily
shaped clusters and to handle noise effectively. This makes it
ideal for analyzing the morphology of non-structured
RSC Adv., 2024, 14, 35172–35183 | 35175
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nanoparticle distributions. The result is a clear visualization of
clusters of nanoparticles, highlighting regions of high density
and providing insights into the overall spatial arrangement and
potential agglomeration of nanoparticles.
3. Results and discussion
3.1. Synthesis and SEM imaging of Pd/C nanoparticles

Commercially obtained carbon materials were used in this
study to evaluate the effect of structural differences on reac-
tivity. The palladium complex, Pd2dba3, was synthesized
following a previously reported procedure,31 with its purity
conrmed via NMR spectroscopy and elemental analysis. The
Pd2dba3 complex was chosen for its ability to form small
nanoparticles under mild conditions.32 The reaction of palla-
dium deposition is shown as follows:

Pd2dba3 + C / Pd/C + dba (8)

To deposit palladium on carbon surfaces, a direct process
was employed to avoid introducing impurities or requiring
additional reagents and high temperatures, which could affect
the sample's morphology. For samples with an ordered distri-
bution of Pd nanoparticles, a screw cap tube was charged with
Pd2dba3$CHCl3 (5 mg), graphite powder (100 mg), and CHCl3 (5
mL). This mixture was stirred at 50 °C for 1 hour, followed by
ltration to separate the transparent solution from the carbon
material. The material was then dried and, if necessary, washed
with acetone to remove any residual dba ligand. The process of
palladium deposition on carbon surface is illustrated in Fig. 2.

The completeness of the reaction was conrmed by two
methods. Visually, the post-deposition solution appeared
completely transparent, indicating no remaining Pd2dba3,
which is deep red. Additionally, using a Bruker DRX500 spec-
trometer, 1H NMR spectrum of the supernatant conrmed the
complete consumption of the palladium complex and the
release of the dba ligand in its free form. ICP-AES (inductively
coupled plasma atomic emission spectrometer) analysis using
a JY 38 (Jobin Yvon) spectrometer veried the deposition of
palladium on the carbon surface, showing a palladium content
Fig. 2 Illustration of palladium deposition process on carbon surface. (a
mg), and CHCl3 (5 mL). (b) Stirring at 50 °C for 1 hour. (c) Filtration to sepa
is washed with acetone.
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of 0.98 wt% in the Pd/C sample, indicating that 99% of the
palladium was successfully deposited.

To verify the presence of palladium nanoparticles and study
their morphology, SEM imaging and EDX spectroscopy were
employed. Samples were mounted on an aluminum stub and
xed with conductive graphite adhesive tape, then observed
under native conditions using a Hitachi SU8000 eld-emission
scanning electron microscope (FE-SEM). Images were acquired
in secondary electron mode with an accelerating voltage of 10–
30 kV and a working distance of 6–12 mm. The presence of
palladium was conrmed using an X-max EDX system (Oxford
Instruments, UK). The SEM images revealed the surface
topography and morphology of the carbon materials with
deposited Pd nanoparticles. EDX analysis conrmed the pres-
ence of palladium across all samples. Comparison of images
before and aer the deposition process demonstrated the
formation of new Pd nanoparticles on the carbon surface. Fig. 3
shows the examples of SEM images acquired from the
microscope.

The SEM imaging process involves a total of 1000 images of
carbon materials with deposited palladium nanoparticles. Each
image is 1280 × 1024 pixels in size and presented in TIFF
format (.tif). The images are named to facilitate identication
with the provided data. A 134-pixel wide digital caption at the
bottom of each image indicates key parameters such as the
accelerating voltage, working distance, magnication, mode of
operation, type of detector, and scale. These indicators, along
with additional acquisition parameters and sample names, are
available in a separate CSV le, which includes the following
details: sample number, acceleration voltage (V), magnication,
working distance (mm), emission current (nA), lens mode, and
area code. The dataset is available at: https://doi.org/10.6084/
m9.gshare.11783661.

3.2. Detection performance

This section presents the detection performance of nano-
particles using the proposed deep learning method. A separate
validation set which comprises 20% of the entire dataset and
was not used during training, is employed to evaluate the
model. Fig. 4(a–c) illustrates the effectiveness of the proposed
) A screw cap tube with Pd2dba3$CHCl3 (5 mg), graphite powder (100
rate the transparent solution from the carbon material. (d) The material

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Examples of acquired SEM images.

Fig. 4 (a) Original SEM image. (b) Nanoparticles detected by blob detection algorithm. (c) Nanoparticles detected by proposed deep learning
model.
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deep learning model in detecting nanoparticles in SEM images.
Fig. 4(a) presents the original SEM image of the nanoparticles,
which serves as the baseline for comparison. The image
contains numerous nanoparticles distributed across the
surface, which are challenging to identify manually due to their
small size and overlapping nature. Fig. 4(b) shows the results of
© 2024 The Author(s). Published by the Royal Society of Chemistry
a traditional blob detection algorithm applied to the same SEM
image. This algorithm uses image-processing techniques to
identify potential nanoparticles by detecting regions that differ
in intensity compared to the background. The identied
nanoparticles are marked with red circles. While the blob
detection algorithm successfully identies many nanoparticles,
RSC Adv., 2024, 14, 35172–35183 | 35177



Fig. 5 (a) Original SEM image and detected nanoparticles. (b) Shape statistics of detected nanoparticles. (c) Enlarged examples of detected
nanoparticles.
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it misses several smaller particles and misidenties some areas
as particles.

In Fig. 4(c), the deep learning model's detection results are
displayed. This model was trained using data labeled by the
blob detection algorithm, providing a visual representation of
nanoparticles for the model to learn. The detected nano-
particles are again highlighted with red circles. The rightmost
image zooms in on a specic region, showing the new particles
identied by the deep learning model that were missed by the
blob detection algorithm. These new particles are marked with
yellow arrows, indicating the model's superior performance in
detecting smaller and less distinct nanoparticles. The deep
learning model's enhanced detection capability is evident in the
increased number of detected particles, particularly the smaller
ones that the blob detection algorithm failed to recognize. This
improvement demonstrates the model's ability to learn from
the labeled data and generalize its knowledge to detect nano-
particles more accurately on the validation set.
35178 | RSC Adv., 2024, 14, 35172–35183
Fig. 5 presents a detailed analysis of detected nanoparticles,
combining visual examples with statistical summaries to illus-
trate the model's detection capabilities. Fig. 5(a) displays an
original SEM image alongside the detected nanoparticles,
demonstrating the model's prociency in accurately identifying
nanoparticles against a complex background. Fig. 5(b) provides
histograms of various shape statistics for the detected nano-
particles in Fig. 5(a). The particle size histogram reveals that
most nanoparticles range between 2 and 10 nm, indicating the
model's ability to detect a broad size spectrum. The circularity
histogram shows that most particles have circularity values
between 0.7 and 0.9, suggesting that most nanoparticles are
nearly round. The convexity histogram illustrates that detected
nanoparticles generally have convex shapes, with values clus-
tered around 0.8 to 1.0. The inertia ratio histogram indicates
a diverse distribution of mass within the nanoparticles, with
a peak around 0.7 to 0.8, reecting the model's effectiveness in
identifying particles with varying mass distributions. Fig. 5(c)
showcases enlarged images of 50 detected nanoparticles in
© 2024 The Author(s). Published by the Royal Society of Chemistry



Table 4 Statistics of detected nanoparticles in the validation dataset

Statistics Particle size Circularity Convexity Inertia ratio

Mean 5.54 nm 0.82 0.89 0.75
Median 5.18 nm 0.86 0.91 0.70
Standard deviation 3.22 nm 0.12 0.06 0.15
Range 0.52–10.48 nm 0.54–0.99 0.74–0.99 0.36–0.99

Table 5 Comparison of detection methods

Metric Thresholding Blob detection Proposed method

Precision 0.78 0.86 0.92
Recall 0.54 0.79 0.95
Mean absolute
error for centroid
location

1.22 nm 0.42 nm 0.35 nm

Paper RSC Advances
Fig. 5(a), emphasizing the diversity in shape and size. These
examples underline the model's robustness in identifying
nanoparticles with different characteristics, further validating
its reliability in real-world applications.

Table 4 provides a comprehensive summary of key statistical
metrics for the detected nanoparticles in the validation dataset.
The particle size was determined from the dimensions of the
bounding box, while circularity, convexity, and inertia ratio
were inferred by analyzing the geometric properties of the
detected particles within the bounding boxes. The particle size
Fig. 6 Visualization of structured nanoparticles based on GB network c

© 2024 The Author(s). Published by the Royal Society of Chemistry
statistics show a mean size of 5.54 nm, with a median of
5.18 nm and a standard deviation of 3.22 nm, spanning a range
from 0.52 to 10.48 nm. Circularity metrics reveal a mean value
of 0.82 and a median of 0.86, with most values falling between
0.54 and 0.99. The convexity of nanoparticles shows a mean of
0.89 and a median of 0.91, with a standard deviation of 0.06,
indicating that most detected particles are generally convex.
The inertia ratio has a mean of 0.75 and a median of 0.70, with
values ranging from 0.36 to 0.99, showcasing the diversity in
mass distribution within the detected nanoparticles. The
combination of visual examples and detailed statistical
summaries conrms the model's ability to detect a wide range
of nanoparticles accurately. This comprehensive analysis
demonstrates the model's effectiveness and reliability, making
it a valuable tool for nanoparticle characterization in SEM
images.

To validate the reliability of our results, including the
detected nanoparticle images and the associated morphological
statistics, wemanually labeled 10 random images for evaluation
purposes. This manual labeling was carried out by experts in the
eld to ensure accuracy. Using these manually labeled images
onstruction.

RSC Adv., 2024, 14, 35172–35183 | 35179



Table 6 GB network statistics of the validation dataset

Statistics Degree Clustering coefficient Path length

Mean 3.1 0.58 14.6 nm
Median 2.9 0.56 16.8 nm
Standard deviation 1.8 0.22 8.3 nm
Range 0–11 0–1 1–30 nm

RSC Advances Paper
as ground truth, we compared the proposed method with
thresholding and blob detection techniques in nanoparticle
detection tasks. The comparison results, detailed in Table 5,
reveal that the proposed method signicantly outperforms both
thresholding and blob detection.

In terms of precision, the proposed method achieved a score
of 0.92, which is substantially higher than the 0.86 obtained by
blob detection and the 0.78 from thresholding. This indicates
that the proposed method is more effective in accurately iden-
tifying true nanoparticles and reducing false positives. For
recall, the proposed method scored 0.95, surpassing the 0.79 of
blob detection and the 0.54 of thresholding, demonstrating its
superior capability in detecting all actual nanoparticles and
minimizing false negatives. Additionally, the proposed method
exhibited the lowest mean absolute error for centroid location
at 0.35 nm, compared to 0.42 nm for blob detection and
1.22 nm for thresholding. This highlights its enhanced spatial
accuracy in locating nanoparticles.
3.3. Morphological analysis

This section illustrates detailed morphological analyses of
nanoparticles observed through SEM images obtained from the
proposed model. Fig. 6 visualizes the structured nanoparticles
by highlighting different types of formations within the GB
Fig. 7 Visualization of nanoparticle clusters based on DBSCAN clusterin

35180 | RSC Adv., 2024, 14, 35172–35183
network. The red markings in the images highlight the edges
identied by the GB network, forming the basis of the network
analysis. Line structures, represented by green dashed lines,
depict elongated, linear formations. Circle structures, shown
with yellow dashed circles, indicate circular or ring-like
features. Spot structures, marked with cyan dashed circles,
represent small, isolated spots likely corresponding to tiny
clusters. Complex structures, enclosed within white dashed
ellipses, demonstrate intricate formations that combine
elements of lines, circles, and spots, indicating highly inter-
connected networks. These visual representations help in dis-
tinguishing and categorizing various structural formations
within the nanoparticle ensemble, facilitating a deeper under-
standing of their spatial distribution and connectivity.

Table 6 presents statistical data derived from the GB network
constructed using the validation dataset. The degree metric
shows a mean of 3.1, suggesting that each node (nanoparticle)
has, on average, about three connections, with a range from
isolated nodes (degree 0) to highly connected ones (degree 11).
The clustering coefficient, with a mean of 0.58, indicates
a moderate level of clustering, suggesting that features tend to
form localized clusters within the network. The path length
metric reveals a mean of 14.6 nm, providing insight into the
typical separation between connected features, with a range of 1
to 30 nm, indicating variability from very short to relatively long
connections. This analysis offers a comprehensive under-
standing of the structural characteristics and connectivity
patterns within the nanoparticle network, shedding light on
their morphological complexity.

Fig. 7 illustrates the clustering of nanoparticles based on the
DBSCAN algorithm. The visualization, on SEM images derived
from the proposed detection model, shows the clusters formed
by the DBSCAN algorithm. Different clusters are highlighted
g.

© 2024 The Author(s). Published by the Royal Society of Chemistry



Table 7 DBSCAN clustering analysis of the validation dataset

Statistics
Number of
clusters

Cluster
size

Percentage of
noise

Mean 24.8 367 3.5
Median 26.9 314 3.6
Standard deviation 12.2 102 1.0
Range 2–42 2–785 0.7–6.5

Paper RSC Advances
using various colors, with noise particles indicated by black
dots. This method allows for the identication of distinct
groups of nanoparticles and provides insight into their distri-
bution and density. The application of DBSCAN for morpho-
logical analysis of unstructured nanoparticles has proven
effective in clustering and identifying noise in SEM images.

Table 7 presents a detailed statistical analysis of the clus-
tering results from the validation dataset. The data indicates
that the mean number of clusters identied is approximately
24.8, with an average cluster size of 367 nanoparticles. The
percentage of noise, or particles not belonging to any cluster, is
relatively low, averaging around 3.5%. These results suggest
that the DBSCAN algorithm is effective in distinguishing
meaningful clusters from background noise, providing a clear
and organized view of nanoparticle distribution. The median
values offer further insights, with a median cluster count of 26.9
and a median cluster size of 314 nanoparticles. This slight
variation from the mean indicates some degree of skewness in
the data, possibly due to the presence of a few very large or very
small clusters. The standard deviation values highlight the
variability in cluster size and noise percentage, with standard
deviations of 12.2 and 102, respectively, for the number of
clusters and cluster size, and 1.0 for the percentage of noise.
The range of values observed 2 to 42 clusters, cluster sizes from
2 to 785 nanoparticles, and noise percentages from 0.7% to
6.5% demonstrates the diversity in the dataset and the ability of
the DBSCAN algorithm to adapt to different clustering
scenarios. The statistical data supports the robustness of the
clustering method, with low noise percentages and consistent
identication of clusters.

3.4. Implications for future research

The ndings of this research have several important implica-
tions for future studies in the eld of nanotechnology and
materials science. Firstly, the successful application of deep
learning for nanoparticle detection opens new avenues for
automating and enhancing the accuracy of nanoparticle anal-
ysis in SEM images. Future research could focus on rening and
expanding the deep learning model to detect a wider variety of
nanoparticles across different substrates and imaging condi-
tions. Additionally, integrating this model with other imaging
techniques, such as transmission electron microscopy (TEM) or
atomic force microscopy (AFM), could provide a more compre-
hensive understanding of nanoparticle morphology and
behavior.

The use of the GB network for structural analysis and
DBSCAN for clustering offers a robust framework for
© 2024 The Author(s). Published by the Royal Society of Chemistry
understanding nanoparticle organization. Further research
could explore the application of these techniques to different
types of nanoparticles and composite materials, potentially
leading to the discovery of new material properties and behav-
iors. Moreover, advancing the clustering algorithms to include
dynamic and temporal analysis could provide insights into the
formation and evolution of nanoparticle clusters over time,
which is crucial for applications in catalysis, drug delivery, and
sensor technologies.33

Another important direction for future research is the
investigation of the relationship between nanoparticle
morphology and their functional properties. By correlating the
morphological data obtained from this study with experimental
measurements of catalytic activity, electrical conductivity, or
other relevant properties, researchers can develop a deeper
understanding of how nanoparticle structure inuences their
performance. This knowledge could guide the design and
synthesis of nanoparticles with tailored properties for specic
applications.
4. Conclusion

In this study, we have successfully demonstrated a novel
approach for the morphological analysis of Pd/C nanoparticles
using SEM imaging combined with advanced deep learning and
clustering techniques. Our deep learning detection model
effectively identied and delineated small nanoparticles within
unlabeled SEM images, showcasing high precision and reli-
ability in nanoparticle detection. The subsequent application of
a GB network facilitated the structural analysis of these nano-
particles, while the use DBSCAN provided valuable insights into
the clustering patterns and distributions of the detected nano-
particles. Our ndings underscore the potential of integrating
deep learning models with clustering algorithms to automate
and improve the accuracy of nanoparticle analysis. This
approach can signicantly advance research in nanotechnology
and materials science by providing a more detailed and quan-
titative understanding of nanoparticle structures and distribu-
tions. In the future, we will consider the shape of nanoparticles
to enhance our understanding of their distribution and
properties.
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