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Accelerometer-based predictive models of fall risk in older
women: a pilot study
Andrew Hua1, Zachary Quicksall1,2, Chongzhi Di3, Robert Motl4, Andrea Z. LaCroix3,5, Bruce Schatz1,2 and David M. Buchner1

Current clinical methods of screening older adults for fall risk have difficulties. We analyzed data on 67 women (mean age= 77.5
years) who participated in the Objective Physical Activity and Cardiovascular Health (OPACH) study within the Women’s Health
Initiative and in an accelerometer calibration substudy. Participants completed the short physical performance battery (SPPB),
questions about falls in the past year, and a timed 400-m walk while wearing a hip triaxial accelerometer (30 Hz). Women with
SPPB ≤ 9 and 1+reported falls (n= 19) were grouped as high fall risk; women with SPPB= 10–12 and 0 reported falls (n= 48) were
grouped as low fall risk. Random Forests were trained to classify women into these groups, based upon traditional measures of gait
and/or signal-based features extracted from accelerometer data. Eleven models investigated combined feature effects on
classification accuracy, using 10-fold cross-validation. The models had an average 73.7% accuracy, 81.1% precision, and 0.706 AUC.
The best performing model including triaxial data, cross-correlations, and traditional measures of gait had 78.9% accuracy, 84.4%
precision, and 0.846 AUC. Mediolateral signal-based measures—coefficient of variance, cross-correlation with anteroposterior
accelerations, and mean acceleration—ranked as the top 3 features. The classification accuracy is promising, given research on
probabilistic models of falls indicates accuracies ≥80% are challenging to achieve. The results suggest accelerometer-based
measures captured during walking are potentially useful in screening older women for fall risk. We are applying algorithms
developed in this paper on an OPACH dataset of 5000 women with a 1-year prospective falls log and week-long, free-living
accelerometer data.
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INTRODUCTION
Falls are the most common cause of serious injuries in older
adults. During 2014, approximately 2.8 million adults were treated
for fall-related injuries in emergency departments, and about
27,000 older adults died because of falls or fall-related injuries.1

Accordingly, the U.S. Preventive Services Task Force recommends
screening older adults for fall risk and implementing prevention
strategies in high-risk adults, such as exercise programs.2

There are several methods of screening for fall risk. For example,
the Centers for Disease Control and Prevention (CDC) has
developed the STEADI toolkit, which includes a screening
approach that combines questions about falls and functional
limitations with simple physical performance tests such as the
Timed Up & Go (TUG).3 The short physical performance battery
(SPPB) assesses fall risk by measuring balance, gait, and muscular
strength.4,5 Overall, the sensitivity and specificity of existing
screening methods is modest. In one review of 38 different
screening tools, there were only four methods with high
specificity (over 90%) but all of them had mediocre sensitivity
(50–60%).6 While more comprehensive assessments of fall risk
have been developed, their feasibility for mass screenings is
questionable. For example, Lord et al.7 have developed a
comprehensive fall risk assessment tool which measures physio-
logic capacity in each organ system related to falls, but the short
version of this tool requires equipment that is not readily
available, 10–15min for administration, and a trained assessor.

Existing methods of screening for fall risk typically involve
assessments in a clinic or laboratory, and therefore may not
reflect fall risk during everyday life activity (i.e., real-world
monitoring).
One potential approach for screening fall risk that may better

reflect fall risk during daily life is use of wearable devices during
walking tasks to characterize gait and a person’s pattern of
walking during the day. While a variety of devices exist, the use of
triaxial accelerometers has several desirable characteristics for
screening purposes. Accelerometers are becoming more afford-
able and available in consumer devices such as smartphones,
which are nearly ubiquitous.8 When motion sensors sample at
30 Hz or greater, raw data can provide precise measures of gait
such as measures of gait variability among gait cycles during
walking tasks.9,10 While many other devices can be used for brief
clinical gait assessments, accelerometers offer the option of
basing fall risk assessments on data collected during actual
activities of daily living, including frequent longitudinal measure-
ments from worn or carried devices.
The utility of accelerometers assumes that fall risk is consistently

correlated with characteristics of body movement and gait, and
that these characteristics can be accurately detected using sensors
measuring body motions. Instability during movement and
walking is a primary cause of actual falls, as emphasized in
studies analyzing senior falls in nursing homes.11 Several studies
have demonstrated the potential of using raw data from wearable
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devices to predict fall risk by identifying gait related risk factors.
Some use multiple sensors across the body (head, torso, pressure
insoles, etc.).12–16 Other studies use specialty sensors developed in
the lab (not commercially available requiring hardware develop-
ment to collect data) which limits applicability.17,18 Our study, in
contrast, uses a single sensor, placed at the hip.
One concern with using a single sensor to assess fall risk is that

fall risk prediction from single sensors may have limited accuracy.
We are aware of one previous study that used a single pelvis
accelerometer that attained lower rates of accuracy= 57%,
sensitivity= 43%, and specificity= 65%.19 However, use of a
single sensor at the hip may be feasible, as if a single sensor is
to be used to predict fall risk during walking, the hip is the
preferred location.19 The hip is responsible for connecting the
lower kinetic chain (legs and feet) to the areas responsible for
maintaining balance (core and head). Older adults with high fall
risk exhibit reduced harmonic ratios of acceleration patterns in the
pelvis.16 A single hip mounted accelerometer is best suited to
capture these accelerations compared to L3 that is commonly
used in fall risk assessment and gait analysis. Moving the
accelerometer further from the midline allows for collecting small
mediolateral and anteroposterior accelerations that may not be
detected at the midline due to greater displacement at the lateral
aspect of the hip compared to the small of the back.
In developing methods to identify accelerometer-based risk

factor assessments of fall risk, our study uses the concept of the
STEADI toolkit for classifying fall risk. Fall risk was classified using
physical performance and falls history, rather than only a faller/
non-faller status.3 This approach is distinct from recent studies
which use machine learning techniques to develop models using

accelerometer data to predict fall risk based on physical function
and falls history.
The purpose of this pilot study is to develop a machine learning

algorithm for classifying older women into high versus low fall risk
categories, based upon raw data from hip-worn accelerometers
collected at 30 Hz during one bout of walking (from a 400-m walk
test). The study also seeks to explore which features of gait
derived from the x (anteroposterior), y (vertical), and z (medio-
lateral) axes of the accelerometer are potentially useful for
assessing fall risk. The results of this pilot study are informing
the methods of an ongoing larger prospective study of
accelerometer-based fall prediction during activities of daily living,
leveraging the full dataset of the Objective Physical Activity and
Cardiovascular Health (OPACH) study within the Women’s Health
Initiative. Ultimately, the results may be used to develop a self-
administered fall risk assessment for home-based delivery using a
single hip sensor, such as an embedded sensor within an
inexpensive smartphone as carried during daily living.20

RESULTS
Table 1 reports characteristics of the study participants by fall risk
category. Women in the high and low fall risk groups were not
significantly different in age, ethnicity, and education. By design,
because SPPB scores were used to define fall risk groups, the
overall SPPB score and each of the three SPPB subscores differed
significantly between groups. Average cadence during good
walking was about 124 steps/min. Average values for most
variables differed significantly by risk group (Table 1).

Table 1. Participant characteristics by fall risk category

Characteristic Total High fall risk (≤9 SPPB and >0 falls) Low fall risk (>9 SPPB and 0 falls) p-value

N (%) 67 19 (28.4%) 48 (71.6%)

Age, years, mean (SD) 77.5 (6.1) 77.3 (5.9) 77.6 (6.2) 0.829

EPESE SPPB score, mean (SD) 10.1 (1.5) 8.3 (1.1) 10.8 (0.8) <0.001

Balance subscore, mean (SD) 3.9 (0.4) 3.7 (0.7) 4.0 (0.0) 0.004

Chair stand subscore, mean (SD) 2.7 (1.1) 1.4 (0.8) 3.2 (0.8) <0.001

Gait subscore, mean (SD) 3.5 (0.7) 3.2 (0.9) 3.6 (0.6) 0.016

Number of falls in the past year

0 Falls 48 (71.6%) 0 48 (100%)

1 Fall 13 (19.4%) 13 (68.4%) 0

2–3 Falls 6 (9.0%) 6 (31.6%) 0

Cadence (steps/minute), mean (SD) 123.5 (16.5) 120.5 (15.5) 124.6 (16.7) <0.001

Vector magnitude CoV, mean (SD) 0.216 (0.049) 0.205 (0.047) 0.220 (0.050) <0.001

Vector magnitude ACC, mean (SD) 0.476 (0.202) 0.500 (0.228) 0.458 (0.191) <0.001

Vector magnitude, mean (SD) 0.998 (0.014) 0.995 (0.012) 0.998 (0.014) <0.001

X acceleration, mean (SD) −0.137 (0.114) −0.103 (0.115) −0.149 (0.112) <0.001

Y acceleration, mean (SD) −0.889 (0.088) −0.910 (0.080) −0.881 (0.089) <0.001

Z acceleration, mean (SD) −0.124 (0.323) −0.044 (0.293) −0.153 (0.328) <0.001

X CoV, mean (SD) −1.0 (27.8) −1.6 (18.2) −0.8 (30.4) 0.221

Y CoV, mean (SD) −0.225 (0.053) −0.206 (0.041) −0.231 (0.055) <0.001

Z CoV, mean (SD) 0.0 (78.9) 0.1 (153.6) −0.1 (13.2) 0.924

X ACC, mean (SD) 0.397 (0.193) 0.392 (0.197) 0.399 (0.191) 0.109

Y ACC, mean (SD) 0.394 (0.216) 0.415 (0.239) 0.386 (0.206) <0.001

Z ACC, mean (SD) 0.352 (0.254) 0.374 (0.270) 0.344 (0.248) <0.001

Acceleration is measured in g’s, where 1 g= acceleration due to gravity. p values were calculated using two-sided Student’s t-tests for continuous variables and
chi-square tests for categorical data
SPPB Short Physical Performance Battery is scored 0–12 and SPPB subscales are scored 0–4, with higher scores= better function), CoV coefficient of variance,
ACC autocorrelation
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The results of providing various feature sets to random forest
classification models are available in Table 2. Classifiers were
trained using 10-fold cross validation to ensure proper separation
of training and testing data and limit overfit. The models
performed with an average accuracy of 73.7%, precision (also
known as positive predictive value) of 81.1%, sensitivity (also
known as recall) of 84.2%, and AUC of 0.706 and could
discriminate between high and low fall risk classes. The best
performing feature set was feature set #10 (accuracy= 79.3%,
precision= 84.6%, sensitivity= 88.1%, and AUC= 0.834), and it
included: data from each axis, cross-correlations, and traditional
measures of gait. Combining individual axes data into a vector
magnitude (feature set #9) reduced the performance of the model
dramatically (accuracy= 71.4%, precision= 78.5%, sensitivity=
84.6%, and AUC= 0.616). Traditional measures of gait alone
performed the worst (accuracy= 69.0%, precision= 75.0%, preci-
sion= 87.3%, and AUC= 0.545). Models including single axis data
performed better though not as well as the models including data
from all three axes. Of the single axis models, the model
containing vertical data outperformed mediolateral and ante-
roposterior models. Adding traditional measures of gait to models
with signal-based features had little effect in most cases. On
average, accuracy and precision differed by 0.8% and AUC differed
by 0.006 compared to models containing only signal-based
features. In all models containing signal-based and traditional
measures of gait, signal-based measures were consistently ranked
above traditional measures of gait. In the top performing models,
four out of the top five features were derived from the
mediolateral dimension (z axis) (Table 2).
We identified the top ten features used by classifiers for feature

set #10 and for feature set #11. With feature set #10 (all feature
groups eligible), the most important features were mediolateral
signal-based measures followed by anteroposterior signal-based
measures (Fig. 1a). With feature set #11 which included traditional
measures of gait, the most important features were still
mediolateral and anteroposterior signal-based features (Fig. 1b).
In both models, the top three features included mediolateral
coefficient of variance, correlation coefficient between

anteroposterior and mediolateral accelerations, and mean med-
iolateral acceleration. Traditional measures of gait were of lesser
importance and did not rank amongst the top ten features.

DISCUSSION
The results suggest accelerometer-based measures of gait are
potentially useful in screening older women for fall risk. Further,
features derived from the accelerometer data extracted by the
good walking algorithm were predictive of fall risk.20 Specifically,
sideways (mediolateral) hip motion detected by the z-axis of a
triaxial accelerometer may be a useful predictor of risk, such as the
top three features in our analyses: coefficient of variance,
correlation coefficient between two axes, and mean acceleration.
The importance of features derived from z-axis data is plausible as
excessive or variable sideways movement during walking, as
measured by coefficient of variation, may increase fall risk.21,22 The
sideways movement is consistent with age-related neuromuscular
weakness due to slower motor unit recruitment with age.23 That is,
when motor control is diminished, gait variability increases, as
older adults lack the ability of younger adults to respond to
perturbations in gait by increasing neuromuscular control.24 This
may present as chaotic accelerometer tracings since erratic
muscular control can cause inconsistent accelerations. The
perturbation in mediolateral movement may predispose older
adults to higher risk of falling sideways by exceeding the bounds
of stability and may portend greater odds of a hip fracture.25

With the additional data, it was of little surprise that the triaxial
models outperformed the single-axis models. Following the top
ten features of the triaxial model, it would be expected that the
mediolateral model would outperform both the anteroposterior
and vertical models. However, the vertical model performed the
best (accuracy= 76.2%, precision= 82.5%, and AUC= 0.727). This
may be explained by certain feature pairs being more predictive
than any individual feature. That is, an x-axis feature may
consistently adjust the instances that end up in the next node
such that the z-axis features are much better at separating the two
classes. One possible biomechanical explanation is that vertical

Table 2. Performance metrics from 10-fold cross validation for random forest classification of high and low function women on each of 11 feature
sets

Set Accuracy Precision Sensitivity F1-Score AUC Feature groups Top-five features

1 69.0% 75.0% 0.873 0.807 0.545 Gait STD_STEP_TIME, STD_STRIDE_TIME, MEAN_STRIDE_TIME,
MEAN_STEP_TIME, CADENCE

2 71.9% 79.0% 0.845 0.817 0.665 X-axis X_MEAN, X_COV, X_SMA, X_PFREQ, X_ENERGY

3 72.7% 79.1% 0.858 0.823 0.661 X-axis, gait X_MEAN, X_COV, X_SMA, X_RMS, X_ENERGY

4 75.9% 82.6% 0.855 0.840 0.730 Y-axis Y_PFREQ, Y_MCR, Y_COV, Y_STD, Y_MAD

5 76.2% 82.5% 0.862 0.843 0.727 Y-axis, gait Y_PFREQ, Y_MCR, Y_RMS, Y_STD, Y_COV

6 70.9% 83.3% 0.760 0.795 0.759 Z-axis Z_COV, Z_MEAN, Z_MAD, Z_STD, Z_PFREQ

7 73.1% 84.1% 0.785 0.812 0.771 Z-axis, gait Z_COV, Z_MEAN, Z_MAD, Z_STD, Z_SMA

8 70.9% 79.3% 0.822 0.807 0.616 Vector magnitude MAG_PFREQ, MAG_MAD, MAG_MCR, MAG_P2P, MAG_SMA

9 71.4% 78.5% 0.846 0.814 0.616 Vector magnitude, gait MAG_PFREQ, MAG_MCR, MAG_MAD, MAG_MEAN, MAG_SMA

10 79.3% 84.6% 0.881 0.863 0.834 XYZ, cross-correlations Z_COV, XZ_CORR, Z_MEAN, X_MEAN, Z_MAD

11 78.9% 84.4% 0.877 0.860 0.846 XYZ, cross-correlations,
gait

Z_COV, XZ_CORR, Z_MEAN, X_MEAN, Z_MAD

AVG 73.7% 81.1% 0.842 0.826 0.706

Note: With a two group classifier, there are 4 possible results: true positive (TP), true negative (TN), false positive (FP), and false negative (FP). Accuracy= (TP
+TN)/(TP+ TN+ FP+ FN). Precision (also referred to as positive predictive value)= TP/(TP+ FP). Sensitivity (also referred to as recall)= TP/(TP+ FN); F1 score
= 2TP/(2TP+ FP+ FN); AUC= area under curve in ROC analysis
Top-five features in each feature set are listed. Full list of features included in each feature group can be found in supplementary data
MAG vector magnitude, SMA signal magnitude area, COV coefficient of variance, CORR correlation coefficient between two axes, PFREQ peak frequency, MAD
mean amplitude deviation, MCR mean crossing rate, STD standard deviation, P2P peak-to-peak amplitude, RMS root mean squared. Prefixes indicate axis or
vector magnitude—X anteroposterior, Y: vertical, Z: mediolateral
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acceleration may be a correlate of primarily force production
whereas anteroposterior and mediolateral acceleration are corre-
lates of a combination of balance and force production. Therefore,
the vertical model uses data that is more telling of an adult’s
physiologic capacity to walk safely than either the anteroposterior
or mediolateral models. This is supported by the significantly
lower SPPB chair stand subscore of the high fall risk group (SPPB
chair stand subscore= 1.4) compared to the low fall risk group
(SPPB chair stand subscore= 3.2). It is difficult to assess balance in
a single plane and thus requires two axes (anteroposterior and
mediolateral) to completely analyze the data. Furthermore, since
musculature is a component of balance, this may explain why the
mediolateral and anteroposterior features are more important
than vertical features in the triaxial models.
Random forest methods identified features that were reason-

ably predictive of fall risk, with an average accuracy of almost
73.7% and AUC of 0.706. While this level of accuracy and AUC are
low compared to machine learning models that predict stable
characteristics, the task of fall prediction is more challenging and
the fall risk classification models met accuracy expectations.
Furthermore, this average includes models that were not expected
to perform well such as only traditional measures of gait and
vector magnitude data. The performance of these models
surpasses previous models that utilize only a single hip
accelerometer during walking.19 Multiple features of this study
could explain the increased performance such as the longer one-
year falls history or combination of falls history and SPPB for fall
risk classification. In-house solutions may acquire better accuracy
by building higher resolution sensors or combining multiple
sensors.17,26 Though gait quality is a strong predictor of fall risk, it
is not the only risk factor. There are environmental risk factors and
other host risk factors that are relatively independent of gait such
as poor vision, postural hypotension, and ability of shoes to
oppose slipping.
Using theoretical probabilistic models, one study estimated the

maximum AUC when predicting falls within one year ranges from
0.80 to 0.89, with accuracies exceeding 80% challenging to
achieve.27 Our models are the nearly meet these predicted
maximums with an accuracy of 79.3% and AUC of 0.834 (feature
set #10). Of course, it is of interest to empirically test these
theoretical maximums.
The potential of signal-based accelerations as predictors of fall

risk is also suggested by the fact that random forest classifiers
using only signal-based features (feature set #2, #4, #6, #8, and
#10) performed similarly as classifiers including traditional
measures of gait (feature set #3, #5, #7, #9, and #11). This may
indicate the potential of machine learning to identify interactions
among signal-based features that increase their predictive ability.

Reduced feature-sets have also been shown to outperform full
feature-sets.28

The results of this study are consistent with the general finding
of other studies that raw data from wearable accelerometers are
potentially useful in fall prediction. Accelerometer-derived mea-
sures, including gait variability, can predict time to first fall in
patients with Parkinson’s disease.29 The results are further
consistent with other research that mediolateral and anteropos-
terior measures of sway and velocity are indicators of fall risk and
that relatively brief gait assessments provide information on fall
risk.15 Some studies have attained greater predictive accuracy (up
to 90.4%) by using a TUG Test, rather than a simple walk test,
which may better assess other risk factors including muscular
strength and physiology.30,31 Furthermore, the models predicted
fall risk based on assessments rather than actual falls history.31

When using past falls history, reasonable accuracy, sensitivity, and
specificity (80%, 74%, 96%, respectively) was achieved using
accelerometer data from only a TUG test and a 20m walk.32

However, these studies utilized a homebrew accelerometer
solution which may contain better sensors than commercial
offerings but require expertise to implement.30–32 Greater
accuracy, sensitivity, and specificity can be achieved with multiple
sensors on body parts other than the waist.26 This finding
suggests use of accelerometer to assess characteristics of move-
ment beyond only gait characteristics may improve predictive
ability.
Of course, this pilot study has several limitations. First, the

study assumes that gait was stable between the measurement of
SPPB in 2012–13 and data collection of the calibration substudy
up to many months later. Second, as in other laboratory studies
of gait and fall risk, women may alter their gait in laboratory
conditions under investigator observation.33 Third, the study has
a small sample size with uneven numbers of women in the two
risk groups. It did not attempt to classify fall risk in all women but
only in women at upper and lower ends of risk. Fourth, the study
used data on past falls rather than prospectively collected
information after the calibration study. Possibly, gait character-
istics at the time of a past fall could differ from gait
characteristics at the time of the 400 m walk, e.g., a participant
began walking more cautiously after a fall. Fifth, machine
learning methods are susceptible to overfitting prediction
models, though the cross-validation method of this study,
combined with both the tree bagging and feature bagging used
in random forests, is less likely to have overfit than the base
method of using a single decision tree. Finally, because women
were screened for ability to walk on a treadmill, the sample
excluded women at highest fall risk for whom treadmill walking
is unsafe. For example, the sample did not include any women
with 4+ falls in the past year. In a study where the “high risk”

Fig. 1 Top-ten features for two of the feature sets used in prediction of high and low function. Average importance of each feature for model
prediction was computed as mean decrease impurity (see text) and is indicated by the blue bar. Black error bars represent standard deviation
of importance across all trees in the forest. a Top-ten features for a random forest model trained on features extracted from individual x, y, and
z axes and cross-correlations between axes. b Top-ten features for a random forest model trained on features extracted from the individual x,
y, z axes, cross-correlations between axes, and traditional measures of gait
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group includes frequent fallers, classification accuracy might be
improved and, possibly, different features or additional features
could be included in predictive models.

CONCLUSION
This pilot study suggests that raw data collected from a hip-worn,
triaxial accelerometer during walking may be useful in assessing
risk of falls. Prospective studies of the ability of accelerometer-
based measures of walking to predict falls are warranted, given
the potential of these inexpensive sensors to monitor walking and
fall risk during activities of daily life, in large numbers of older
adults, and over long periods of time. In particular, large
prospective studies in older adults who vary widely in risk of falls
are needed. In these studies, accelerometer-based assessments of
fall risk should be based upon patterns of walking under free-
living conditions, rather than only on data collected in laboratory
or clinical settings. Analysis of data collected in free-living
conditions may identify different gait characteristics as indicators
of fall risk, in part because free-living walking occurs in a variety of
environments (e.g., hills, uneven sidewalks, and wet surfaces).
We are proceeding to confirm the usefulness of accelerometer-

based measures of walking in predicting fall risk using an OPACH
dataset of over 5000 women who wore a hip accelerometer for
1 week and reported falls prospectively for 1 year. With this
unique dataset, we seek to analyze which of the accelerometer-
derived features identified in the current study are useful in
predicting fall risk in real-world free-living conditions. We also seek
to determine if these features improve ability to predict fall risk
compared to standard prediction models based upon known fall
risk factors and physical function measures.
If accelerometer-based, fall risk models based upon prospective

data are successful, then risk screening with smartphones could
become feasible for large populations, by simply carrying these
during normal activities as passive monitors. In separate
preliminary work, accelerometer data extracted from smartphones
during week-long activities of daily living was input to predictive
models of pulmonary function and accurately predicted pulmon-
ary function in senior patients with nearly 100% accuracy.20 The
least expensive low-end smartphones (e.g., the LG Optimus Zone
3 which now costs $30) can measure gait as accurately as the most
expensive high-end medical accelerometers, while also being
more accurate than fitness devices.34 Thus, there is a potential
path towards screening and prevention of falls at population scale
for the aging population, by leveraging already carried personal
phones.

METHODS
Study population
Participants in the current study were 67 women originally recruited for
the Women’s Health Initiative (WHI) in the 1990s who subsequently
consented to participate in the second extension study of WHI
(2010–2015) and in a WHI ancillary study called OPACH (Objective Physical
Activity and Cardiovascular Health in Older Women, R01 HL105065; PI: A
LaCroix). The 67 women further consented to participate in a substudy
which calibrated the accelerometers used in OPACH. The methods of both
OPACH and the calibration substudy are described elsewhere.35,36 Thus
this study is a secondary analysis of OPACH data for the purpose of
exploring predictive models of fall risk.
In brief, the subset of OPACH participants included in the present study

had an in-home visit for data collection and completed a physical activity
questionnaire between March 2012 and May 2013. In 2013, they were
recruited to participate in the calibration study. Notably, an exclusion
criterion for the calibration substudy was a significant change in health
status affecting ability to walk or risk of walking-related injury between
OPACH data collection and recruitment for the substudy. Of the N= 7058
women enrolled in OPACH, N= 142 participated in the calibration
substudy, and N= 67 of these women met the inclusion criteria for this

study: (1) completed the SPPB at the in-home visit (scored 0–12 with
higher scores indicate better function); (2) provided data on history of falls
in the past year on the OPACH Physical Activity Questionnaire; (3)
completed the 400-m walk of the calibration study; and (4) met criteria for
either high fall risk or low fall risk. Consent to participate in OPACH was
obtained by either phone or mail. After a screening phone interview,
participants in the calibration substudy provided written consent at the
study’s clinic visit. The OPACH study and the calibration substudy were
approved by the Institutional Review Boards at each clinical site and by the
WHI Clinical Coordinating Center.

Classification of high and low fall risk. We decided to classify fall risk of
calibration study participants based upon two, well-known predictors of
fall risk: history of falls in the past year and SPPB score. The CDC also uses
these predictors to classify fall risk in the STEADI Toolkit.3 In a study of
66,134 postmenopausal women, the strongest predictor of future falls was
any fall in the past 12 months.37 A study of the SPPB and fall risk concluded
that, in older women, SPPB scores of 9 or less are associated with higher
fall risk in women.4 Hence, we classified women as “high fall risk” (N= 19)
based on SPPB scores of ≤9 and reporting of at least one fall in the past
year. We classified women as “low fall risk” (N= 47) based on SPPB score of
10–12 and no reported falls in the past year. For the purposes of this pilot
study which has limited statistical power, we decided not to attempt a
more difficult classification task of distinguishing between women of high
fall risk versus intermediate fall risk (i.e., women with past falls but SPPB
scores of 10–12, or women with SPPB scores of 9 or less, but no past falls).

Study measures
OPACH and the WHI extension study. Demographic data (age, ethnicity,
education) were available as part of the 2nd WHI extension study. The
SPPB was collected at the in-home visit. The SPPB includes a chair stand
test (score 0–4), a balance test (score 0–4), and a gait speed test (scored
0–4), with total score ranging from 0–12 (higher scores indicate better
function). Participants self-reported the number of falls in the past year on
the OPACH Physical Activity Questionnaire (available in an online
supplement to the Design paper).35

Calibration substudy. Height and weight were measured at the calibration
substudy clinic visit. Women further completed up to eight tasks including
a 400-m walk test during the calibration study visit. The 400m walk test
involved 10 laps around an indoor hallway course marked by cones 20m
apart. Women walked without aids at a normal pace. During all tasks,
women wore a triaxial accelerometer (ActiGraph GT3X+; Pensacola,
Florida), a POLAR heart rate monitor, and an Oxycon—a portable,
battery-operated metabolic unit (Oxycon Mobile; CareFusion, Rolle,
Switzerland). The accelerometer was set to collect raw data at 30 Hz.
Raw data were downloaded from the device using the manufacturer’s
ActiLife software. Vector magnitude for each 1/30th of a second was
computed from raw data as the square root of the sum of the x, y, and z
axis accelerations squared.

Predictive modeling
Preprocessing. During the 400m walk test, women needed to turn 180
degrees at the cones, and some women would occasionally pause during
the test. The purpose of preprocessing was to separate data on steady or
“good” walking from data on turns and pauses. In more detail, “good
walking” refers to a steady pattern of walking like that seen during a
straight path walk test. Previous research effectively utilized this algorithm
as part of a pipeline for gait analysis and highly accurate prediction of
pulmonary function in both laboratory and free-living environments.38,39

The patient population was similar in age to the individuals in this study,
although it may be important to note that the individuals from the
previous work were patients undergoing pulmonary rehabilitation in a
suburban hospital.38,39

First, accelerometer tracings for each participant were segmented using
a ten-second sliding window with 50% overlap. A variety of window sizes
have been used to segment time series for classification tasks and often
range from one to ten seconds in length with a median length of three
seconds.40 We selected a window size of ten seconds to ensure the capture
of a sufficient number of steps necessary for computation of traditional
measures of gait such as those that look at variation in step and stride. It
should be noted that the use of “large” windows leads to increased
computation time for all features and inherently imposes a limit on the
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resolution at which changes in activity can be identified.41 Regarding
signal-based features, larger windows have been shown to provide
minimal increase in accuracy compared to windows of 1–3.25 s.41 For this
calibration study, these limitations are less of a concern given that all
subjects are either walking or not walking during the test (few activity
transitions) and the 400m distance allows for the collection of plenty of
data. For free-living data, signal segmentation becomes quite important
given the increased variation in both task type and duration. Second,
segments (periods of time) containing non-walking elements were
eliminated through two filtering steps. For segment filtering, the vector
magnitude was computed and subjected to a threshold-based filter which
discarded segments of low standard deviation (VM standard deviation <
0.01) to remove periods of inactivity. This threshold was experimentally
determined through manual inspection of the accelerometer tracings from
a randomized subset of individuals and fixed to ensure that all walking
segments were retained. This threshold value was not unique for each
participant but instead fixed for all participants analyzed in this study.
Third, periods during walking disturbed by turns and pauses were

excluded from analysis using our algorithm previously developed to
identify “good walking”.20 As previously mentioned, good walking
identified with this approach was used as input to predictive models for
pulmonary function, and these models showed high accuracy.38,39 Figure 2
contains a sample of two 10-s periods of vector magnitude calculated from
accelerometer raw data. The algorithm identifies repetitive patterns of
“good walking” and eliminates portions of the tracing without the good
walking pattern (Fig. 3).

Feature engineering. Features were extracted from the remaining ten-
second good walking samples. Signal-based features in the time and
frequency domains were computed for each of the individual acceler-
ometer axes and the vector magnitude. The features selected for
extraction were chosen based upon both knowledge of how gait affects
fall risk and upon findings of research on assessing fall risk using inertial,
wearable sensors.15 Features were organized into groups to assess the
relative predictive ability of traditional measures of gait and signal-based

features of the accelerometer data. The specific features in each feature
group can be found in Table 3.

Selection of optimal model for use in feature selection. Certain machine
learning models can be used to identify a subset of features that capture
the most useful content for a larger classification problem—a process
called “feature selection.” Some models available for this purpose include
Decision Trees, Random Forests, and Support Vector Machines. To
determine the model likely best suited for this study’s classification task,
a simple spot-checking approach was used. This approach involved
training each classifier (model) with default parameters on the full feature
set and evaluating performance via 10-fold cross validation. With 10-fold
cross validation, the data were divided into ten equally-sized partitions
with nine partitions used for model training and one for testing. This
process was repeated such that each partition was used once for testing.
Performance metrics averaged across all ten folds were used to compare
model performance and included accuracy, precision (positive predictive
value), recall (true positive rate or sensitivity), F1-score (harmonic mean of
precision and recall), and area under the ROC curve (AUC). Based upon the
results, it was deemed that Random Forests were likely the most
appropriate classifier to use for the study task.

Random forest training and evaluation. Random forests of 500 trees with a
maximum depth of ten nodes were trained and evaluated using 10-fold
cross validation implemented in the scikit-learn library.42 Again, metrics
including accuracy, precision, recall, F1-score, and AUC were used to assess
performance. Separate forests were trained on each of 11 feature sets to
obtain further insight into the usefulness of certain feature types and the
combined effects of certain feature groups.

Feature importance. Relative feature importance in random forests was
characterized by mean decrease impurity.43 Impurity is computed by
summing the weighted reduction of sample entropy for all splits that
utilize the feature of interest. The resulting values are then averaged across
all trees in the forest. Feature importance was calculated independently for

Fig. 2 Ten second acceleration tracings from the 400-m walk for a participant classified as high fall risk woman (a, c) and a participant
classified as low fall risk (b, d). a, b shows acceleration data in all three accelerometer axes: anteroposterior (blue), vertical (green), and
mediolateral (red). c, d shows vector magnitude of acceleration for both participants

Accelerometer-based predictive models of fall risk in older
A Hua et al.

6

npj Digital Medicine (2018)  25 Published in partnership with the Scripps Translational Science Institute



forests trained on each of the seven feature sets. The top-ten features were
identified for each forest and used to assess feature applicability to fall risk
prediction.

Data availability
The data that support the findings of this study are available on request
from Andrea Z. Lacroix (A.Z.L., alacroix@ucsd.edu). The data are not
publicly available now due to the ongoing main WHI study. Data will be
made available after the main study results have been published. Data can
be accessed through WHI data sharing policies described at https://www.
whi.org/researchers/data/Pages/Home.aspx.
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