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ABSTRACT 
As brain-computer interface (BCI) research advances, many new applications are being developed. Tasks 
can be performed in different environments, and whether a BCI user can switch environments seamlessly 
will influence the ultimate utility of a clinical device. Here we investigate the importance of the 
immersiveness of the virtual environment used to train BCI decoders on the resulting decoder and its 
generalizability between environments. Two participants who had intracortical electrodes implanted in 
their precentral gyrus used a BCI to control a virtual arm, either viewed immersively through virtual reality 
goggles or at a distance on a flat television monitor. Each participant performed better with a decoder 
trained and tested in the environment they had used the most prior to the study, one for each 
environment type. The neural tuning to the desired movement was minimally influenced by the 
immersiveness of the environment. Finally, in further testing with one of the participants, we found that 
decoders trained in one environment generalized well to the other environment, but the order in which 
the environments were experienced within a session mattered. Overall, experience with an environment 
was more influential on performance than the immersiveness of the environment, but BCI performance 
generalized well after accounting for experience. 
 
Clinical Trial: NCT01894802 

INTRODUCTION 
Brain-computer interfaces (BCIs) hold the promise of improved quality of life for many people with chronic 

motor impairments. Intracortical BCIs can provide people with cervical spinal cord injury, brainstem stroke, 

or ALS with the abilities to communicate via decoded cursor control [1,2], handwriting [3], or speech [4]; 

to control the movements of a virtual [5,6] or real robotic arms [7–12]; or, through functional electrical 

stimulation, to move their paralyzed hand [13,14] and arm [15]. For BCI users to accomplish a variety of 

tasks, their abilities will need to generalize across environments.  

Virtual reality (VR) technologies enable researchers to create virtual environments that feel more natural 

and immersive for BCI users, and can be used to train BCI decoders that are used with physical robots or 

functional electrical stimulation [6,15]. Visual feedback is an important element to consider as modifying 

the design of a virtual limb [16,17] or its alignment relative to a user's native limb [18] can impact overall 

performance. Further, manipulating the relationship between the BCI users intended movement and 

action performed by the virtual limb decreases an individual's sense of agency and embodiment of that 

limb [17,19]. These findings highlight the importance of clear and accurate visual feedback. Researchers 

have begun testing how different setups, such as a VR headset or a standard monitor display, effect BCI 

usability; however, results have varied from improvements when working in VR [20], to mixed effects [21], 

or no difference between the two conditions [22]. These studies have primarily relied on non-invasive or 

low-dimensional BCIs which can work with an abstracted strategy to control movement; little is known 

about how the immersiveness of the environment will affect more intuitively controlled higher degree of 

freedom BCIs. 

Here we began by changing the immersiveness of the environment within which two BCI users controlled 

a virtual robotic arm. They either wore a VR headset, providing a fully immersive experience with the arm, 

or viewed the arm on a television (TV) at a distance, providing an abstracted experience with the arm. We 

asked whether the immersive condition made it easier for the participants to control the arm. We found 

that both participants performed slightly better in the environment in which they had routinely performed 

BCI control before the study, for one participant that was the VR environment and for the other that was 

the TV environment. Indeed, we further analyzed the underlying neural data and found that multi-unit 
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activity recorded from the precentral gyrus maintained similar tuning regardless of which environment the 

participant’s robotic prosthetic was viewed in. Finally, to investigate the generalizability of decoders, one 

of the participants attempted to use decoders trained in each environment to complete tasks in both 

environments. He succeeded with decoders trained in the VR environment regardless of which 

environment.  

Overall, we found that BCI control typically generalized between environments. However, there were some 

differences that were presumably related to previous experience with the condition in both the short and 

long terms, which should be considered when developing generalizable decoders. 

METHODS 

Participants 

Both participants enrolled in a multi-site clinical trial of an intracortical sensorimotor BCI (registered on 

clinicaltrials.gov, NCT01894802) that was conducted under an FDA Investigational Device Exemption and 

provided informed consent prior to any experimental procedures. All procedures were approved by the 

Institutional Review Boards at the University of Pittsburgh or the University of Chicago. Participant C1 

(male), 57 years old at the time of implant, presented with a C4-level ASIA D spinal cord injury (SCI) that 

occurred 35 years prior. Participant P4 (male), 30 years old at the time of implant, presented with a C4 

ASIA A SCI that occurred 11 years prior. C1 completed this study between 645 and 989 days after the 

electrode arrays were implanted. P4 completed this study between 251 and 385 days after the electrode 

arrays were implanted.  

Neural Recording Setup 

Both participants had two microelectrode arrays with 96 electrodes each (Utah Arrays, Blackrock 

Neurotech, Salt Lake City, UT) implanted in the precentral gyrus. Signals from these electrodes were 

recorded using the NeuroPort system at 30 kHz, high-pass filtered with a 1st order 750 Hz filter [23], and 

every crossing of a voltage threshold (-4.25 RMS, set at the start of each recording session) was counted 

in 20 ms bins and used for offline analysis and online decoding. 
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Grasp and Transport Task 

Participants performed a 4 

degree of freedom grasp 

and transport motor 

imagery task in one of two 

environments. In this task, 

participants attempted to 

reach an object in 3-

dimensional space, grasp 

the object, transport the 

object to a new target 

location, and then release 

the object at that site. Once 

all four phases were 

completed a new trial 

started immediately with 

the appearance of a new 

target object. The phase 

was completed successfully when the hand was within 5 cm of the target and the hand opened or closed 

(within 20% of range of motion) as instructed. If any of the phases were not completed within 10 seconds, 

the trial was failed and the hand automatically returned to the center home position before a new trial 

began.  We asked participants to complete this task in two different environmental conditions, either in a 

three dimensional VR headset (Figure 1a, participant C1: Index, Valve Corp, Bellevue, WA USA, participant 

P4: Quest, Meta, Menlo Park, CA, USA) or with a 2 dimensional TV screen (Figure 1b, participant C1: TV 

screen 100 x 85 cm at a distance of 244 cm, participant P4: PC monitor 27.5 x 15 cm at a distance of 70 

cm), within the same experimental session. All trials for a given condition were completed before switching 

to the other environmental condition and the order was balanced across experimental sessions 

(participant C1: 3 sessions, participant P4: 2 sessions). 

Decoder Training 

Each environmental condition started with initial calibration sets performed in the respective 

environment, where the participant was instructed to observe and imagine they are completing the task 

while the computer controlled the actual movements of the hand (participant C1: 54 trials, participant P4: 

36 trials). Using these observation sets we trained an optimal linear estimator decoder [6] which the 

participants used to complete an error-limited calibration step. During this step the participants attempted 

to control the arm but the computer prevented any deviations in the path from the start position to the 

target location by eliminating velocities orthogonal to that path (participant C1: 54 trials, participant P4: 

36 trials). These error-limited sets were used to train another decoder which the participants then used 

to perform unassisted BCI-controlled trials of the task. Participant C1 attempted 171 trials in each 

condition across 3 experimental sessions, while participant P4 completed 108 trials in each condition 

across 2 experimental sessions. During the first two calibration steps of the decoder training, participant 

C1 performed a 5 degree of freedom version of the task, rotating the wrist before grasping targets, but 

that was not done during BCI-controlled trials. For participant P4, during the BCI-controlled trials he only 

had control of the type of movement needed to reach the current target (i.e. no grasp movements were 

permitted while reaching to the target, and no arm movements were permitted while grasping the target). 

 

Figure 1. Experimental Setup. a) In the VR experimental condition, the participant wears a 

virtual reality headset where the field of view moves to match their head movements to 

interact with the environment. b) In the TV experimental condition, the participant looks at 

a fixed view on a screen. Inset displays coordinate system used in the MuJoCo virtual 

environment. 
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Performance Metric Calculations 

To quantify BCI performance we analyzed several metrics: failure rates, completion times, and normalized 

path length.  As this task is performed in discrete phases, we can segment each of these analyses to look 

at the reach and transport phases individually. The failure rate is defined as the percentage of trials where 

the participant failed to reach the target in the allotted time (10 seconds). Completion time is a measure 

of how quickly the participant was able to successfully move to the target location. If a phase was failed, 

then the failure time (10 seconds) was used in the analysis, though the results were still significant if failed 

phases were excluded from the analysis. Finally, normalized path length is the ratio of the of the length of 

the executed path to the minimum distance from the start point to the outer edge of the target was 

calculated both in total and for each translation dimension individually (x, y, and z). For the individual 

dimension analysis, we normalized the distance the participant traveled in a particular dimension by the 

maximum target separation distance allowed in that dimension (x=0.17, y = 0.42, z = 0.5). A normalized 

path length of 1 indicates the participant traversed the ideal path to reach the target. Phases where the 

new target location appeared in the same location as the previous target were excluded from analysis. 

Neural Tuning 

To quantify neural tuning, we calculated the preferred direction for each active channel for each 

environmental condition. We defined an active channel as having an average firing rate above 3.5 Hz 

during the task, to ensure enough modulation to stably calculate tuning, giving us 279 active channels 

across 3 datasets for participant C1, and 336 active channels across 2 datasets for participant P4. Some 

neurons may have been measured multiple times in different sessions, but overlap was likely low given 

the amount of time between sessions [24]. Preferred directions are defined by fitting a linear encoding 

model for each channel as follows: 

 

 √𝑓 = 𝑏0 + 𝑏1𝑣1 + 𝑏2𝑣2 + 𝑏3𝑣3 + 𝑏4𝑣4 

 

where f is the firing rate on a given channel and v was the velocity of movement for a given degree of 

freedom. Fitting the b coefficients through linear regression using data from full trials, not individual 

phases, defines the tuning of a channel. The preferred direction of the channel was defined by the angle 

vector of the first three velocity coefficients. The depth of modulation was calculated as the magnitude of 

the same vector. We parsed the data in half for each condition and calculated a preferred direction for 

each channel in both halves of the VR and TV conditions. We could then calculate the shift in each 

channel’s preferred direction within condition (e.g., VR to VR), across conditions (VR to TV), or across 

conditions where the channel identity had been shuffled to determine how stable the tuning properties 

are across conditions. We also calculated the percentage change in depth of modulation for each unit 

between tasks. 
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Online Decoder Comparison 

To test how well a decoder trained in one condition generalizes across conditions, we trained two separate 

decoders (one for the VR environment and one for the TV environment) at the start of an experimental 

session and then tested both of these decoders in both environments on the same grasp and transport 

task with participant C1. For a given day, we would start working in the VR environment and train a decoder 

(VR decoder) according to the methods detailed above. The participant was then allowed 2 short 

unassisted sets to practice using the decoder in that environment to ensure reasonable performance of 

the decoder for the task. We then immediately switched to the TV environment and repeated this process, 

training a new decoder (TV decoder). After satisfactory training of both decoders was completed, we 

switched back to the VR environment and began testing trials. Testing trials were completed in blocks of 

18 trials at a time using either the VR decoder or TV decoder. After finishing all testing trials in the VR 

environment, we switched to the TV environment and again completed testing trials with alternating 

decoder blocks (Figure 2). The participant was not aware which decoder was active during testing trials. 

We collected 4 sessions in total, 2 starting in the VR environment and 2 starting in the TV environment. 

For analysis, failure rates were calculated using data across all 4 testing sessions while completion times 

and normalized path length were calculated using data from only the 2 sessions where training started in 

the VR environment due to the excessive failure rate of the TV decoder in the excluded sessions. 

  

 

Figure 2. Online decoder training paradigm. To test decoder generalizability with participant C1, for a given experimental session, 
we fully trained separate decoders in the TV environment and VR environment and then alternated testing both decoders in both 
environments. The starting environment was balanced across sessions. 
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RESULTS 

The participants each completed multiple sessions comparing their ability to control an arm in a virtual 

environment, either projected on a TV or in VR (Figure 1). Throughout this task, participant C1 noted a 

strong preference for the VR condition, as working in that environment felt much more natural for him. 

Participant P4 noted that although the task was easier for him in the TV condition because he didn’t have 

to move his head at all to see the entire environment, he felt closer to the workspace in the VR 

environment and more like the virtual arm was his own. 

Failure Rates 

In line with the subjective reports from participants, C1 was more successful in the VR condition and P4 

performed better in the TV condition. Across 3 test sessions, during unassisted use of the optimal linear 

estimator decoder, participant C1 failed fewer trials in the VR condition than in the TV condition (26.9% 

and 38% respectively, p = 0.0282, chi-squared test). He was slightly less likely to fail to reach the object 

successfully while working in the VR environment as opposed to the TV environment (9.4% vs 14.1% failure 

rate, p = 0.2, chi-squared test) and much less likely to fail to transport the object (4% vs 18.5% failure rate, 

p < 0.001, chi-squared test). However, participant P4 failed fewer trials in the TV condition than in the VR 

condition (0% and 24.1% respectively, p < 0.001, chi-squared test).  Accordingly, he only failed during reach 

and transport in the VR condition (12.9% and 9.8% for reach and transport, respectively, p < 0.001 and p 

< 0.01, chi-squared test, Figure 3a).  
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Completion Times 

Completion times were 

dependent on the testing 

environment, again 

matching the reported 

preference of each 

participant. Participant C1 

took 0.56 seconds less to 

complete the reach phase 

in the VR condition 

(medians: 1.98 sec in VR, 

2.54 sec in TV, p = 0.0457, 

Wilcoxon rank-sum test), 

and 1.55 seconds less to 

complete the transport 

phase in the VR condition 

(medians: 2.46 sec in VR, 

3.99 sec in TV, p<0.001, 

Wilcoxon rank-sum test). 

Inversely, P4 took 1.07 

seconds less to complete 

the reach phase in the TV 

condition on average 

(medians: 3.04 sec in VR, 

1.97 sec in TV, p<0.001, 

Wilcoxon rank-sum test). 

He also took 0.80 seconds 

less to complete the 

transport phase in the TV 

condition (medians: 2.52 

sec in VR, 1.72 sec in TV, 

p<0.01, Wilcoxon rank-sum 

test, Figure 3b). 

Normalized Path Length 

We found that C1 made 

shorter, that is more direct, 

movements to the target in 

the VR condition for both the reach and the transport phases of the task (4x minimum in VR, 7x minimum 

in TV for reach, p<0.001 and 3.8x minimum in VR, 8.6x minimum in TV for transport, p<0.001, Wilcoxon 

rank-sum test). Conversely, P4 made shorter reaches in the TV condition in both phases (3.9x minimum in 

VR, 2.52x minimum in TV, p<0.001, for reach and 3.04x minimum in VR, 2.39x minimum in TV, p<0.001, 

for transport, Wilcoxon rank-sum test, Figure 3c). Normalized path lengths were analyzed separately for 

each reach dimension to assess whether difficulties with depth perception led to differences in 

performance across dimensions, but no such pattern appeared (Figure S1). 

 

Figure 3. Performance metrics for VR versus TV experimental conditions. a) Failure rates 
for participants C1 and P4 during the reach and transport phases. Data collected during the 
same experimental session are connected via a dotted line.  b) completion times, and c) 
normalized path length from the reach (left column) or transport (right column) phases. 
Black lines indicate median values. Path length is plotted on a log scale. *p<0.05, **p<0.01, 
*** p<0.001, chi-squared test for failure rates, Wilcoxon rank-sum test for completion times 
and path length. 
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Stable unit tuning across conditions 

After quantifying the differences in performance across both subjects, we were interested in how similar 

or different neural activity was between the conditions. To do this, we split the data from each condition 

on each day into two parts and calculated the shift in the preferred direction for each active channel 

between the two partitions within and across conditions. The shift within the same condition was used to 

establish the baseline for the stability of the tuning. We found that there was a slightly larger shift in the 

preferred direction across conditions than within conditions for both participants (53.3° vs 47.4°, p<0.05, 

for participant C1, and 60.2° vs 53.4°, p<0.01, for participant P4, Wilcoxon rank-sum test). To compare this 

shift to chance we shuffled the identities of the channels and recalculated the change in preferred 

direction across conditions with the shuffled channel labels. We found that tuning was significantly 

different across conditions with the channel identities shuffled compared to the non-shuffled across 

condition comparison in both participants (86.8° vs 53.3°, p<0.001, for participant C1, 90.1° vs 60.2°, 

p<0.001, for participant P4, Wilcoxon rank-sum test, Error! Reference source not found.). C1 showed no 

significant difference in depth of modulation between environments (median 8.2% higher in VR, p = 0.46, 

KS Test) while P4 showed higher depths of modulation in the TV environment (median 36.6% higher in TV, 

p = 0.0007, KS Test, Supplementary Figure 2). This demonstrates that while it is difficult to precisely 

calculate the preferred direction on this data, they were much more stable across conditions than would 

be expected by chance, while the depth of modulation was higher in the preferred environment for P4 but 

not C1. 

 

 

Figure 4. Neural tuning across conditions. Shift in preferred direction angle for a) participant C1 and b) participant P4. Within 
condition quantifies changes in tuning within the same environment pooled across VR and TV. Across condition describes 
changes in tuning between the VR and TV environments. The shuffle condition is a comparison of changes in across condition 
tuning where the recording channel numbers have been shuffled. Individual points are a singular channel (279 channels for 
participant C1, 336 channels for participant P4). Black lines indicate median values. *p<0.05, **p<0.01, *** p<0.001, K-S test. 
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Decoder comparison testing 

While performance was better in the condition that each subject was most practiced in, and neural tuning 

did not show meaningful 

differences between 

conditions, we were 

interested in whether 

decoders trained in one 

condition would yield 

similar control in the other 

condition. To determine 

how transferable decoders 

were, C1 completed 2 

sessions where a decoder 

was first trained in the VR 

environment, and then a 

second decoder was 

trained in the TV 

environment. Both 

decoders were then tested 

in both environments in 

alternating blocks. The 

same experiment was 

repeated in 2 other 

sessions with the order of 

decoder training switched.  

Out of all conditions, 

participant C1 performed 

best in the VR environment 

when using the VR decoder. 

We found that when 

training started in the VR 

environment followed by 

the TV environment, both 

decoders performed 

similarly when testing in 

either environment. Failure 

rates were similar for both 

the VR and TV decoders in 

the VR environment (2.1% 

vs 6.3%, p=0.2, chi-squared 

test) and in the TV 

environment (4.2% vs 2%, 

p=0.4, chi-squared test) 

during the reach phase, as 

 

Figure 5. Decoder comparison performance metrics. a) Failure rates during online decoder 
comparison testing for reach and transport phases. Yellow indicates performance when 
using the decoder trained in the VR environment. Blue indicates performance when using 
the decoder trained in the TV environment. Solid lines indicate experimental testing 
sessions where training started in the TV environment. Dashed lines indicate experimental 
testing sessions where training started in the VR environment. b) completion times, and c) 
normalized path length during online decoder comparison testing for the reach (left 
column) or transport (right column) phases for sessions where training started in the VR 
environment. Black lines indicate median values. This task was only completed by C1. Path 
length is plotted on a log scale. *p<0.05, **p<0.01, *** p<0.001, chi-squared test for failure 
rates, Wilcoxon rank-sum test for completion times and path length. 
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well as the transport phase (8% vs 1.2% in VR environment, p = 0.0299 chi-squared test; 7.7% vs 6.7% in 

TV environment, p=0.7, chi-squared test, Figure 5a).  

However, the order of decoder training had a strong impact on performance in different environments. 

When the TV decoder was trained first, it failed to transfer to the VR environment, even though the VR 

decoder still successfully transferred to the TV environment. Using the TV decoder in the VR environment, 

participant C1 failed to reach to the object far more frequently than when using the VR decoder (49% vs 

9.8%, p<0.001, chi-squared test). This was similar for the TV environment (57.7% vs 4.5%, p<0.001, chi-

squared test), and for the transport phase in the VR (61% vs 8.3%, p<0.001, chi-squared test) and TV (45% 

vs 3.8%, p<0.001, chi-squared test) environments (Figure 5a). This unidirectional decoder transfer 

performance (i.e., VR decoders always work in VR or TV, but TV decoders only work if trained after the VR 

decoder) indicates that there are some differences in the environments that need to be accounted for. 

The exceptionally poor performance of TV decoders trained first was apparent from the failure analysis 

and did not require further analysis of movement time or distance. Further analysis was warranted for the 

two decoders when they both had low failure rates (i.e., when the VR decoder was trained first). The 

participant performed about equally with both decoders across both environments during the reaching 

phase of the task (Figure 5b&c) suggesting that decoders can be used successfully in different 

environments than they are trained in. However, on average he was able to transport the object to the 

target location faster when working in the VR environment than in the TV environment with both the VR 

decoder (1.92 sec in VR, 3.64 sec in TV, p<0.01, Wilcoxon rank-sum test) and the TV decoder (1.50 sec in 

VR, 2.45 sec in TV, p<0.001, Wilcoxon rank-sum test). Additionally, he made more efficient movements 

when working in the VR environment with both the VR decoder (4.69x minimum in VR, 7.78x minimum in 

TV, p<0.01, Wilcoxon rank-sum test) and the TV decoder (3.78x minimum in VR, 5.41x minimum in TV, 

p<0.01, Wilcoxon rank-sum test). 

DISCUSSION 

Experience is more important than immersiveness 

Here we show that participants were able to complete a grasp and transport task, carrying out the same 

movements in a virtual environment but viewed either as a two-dimensional projection on a TV screen or 

with binocular depth cues in a VR headset. Both participants performed better with the view that they 

had primarily used in previous work. Participant C1 had almost exclusively performed BCI tasks with the 

VR headset for the 2 years since starting the study (e.g. [5]). Participant P4 had only performed BCI tasks 

on the TV in the 8 months since starting the study. While there were significant differences in performance 

in the different conditions, the magnitude of the differences was relatively small and both participants 

were able to complete the tasks satisfactorily in both conditions. This result adds an interesting piece of 

information to previous work that showed conflicting results as to how a VR environment could influence 

BCI control [20–22]. It may be that the importance of immersiveness is small or that the importance of 

experience in an environment is large, but in either case a device for long-term use should be able to utilize 

either type of environment. 

Stable neural tuning 

The tuning of neurons in motor cortex to desired movement showed changes in preferred directions 

between environmental conditions, that were only slightly larger than between partitions within one 

environment, and significantly less than chance levels. One participant showed stronger tuning (i.e. larger 

depth of modulation) in his preferred environment, but the other did not. This is consistent with the 
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relatively minor differences in BCI control between the two environmental conditions but was not a given 

since changes in perspective of the arm could have resembled changes that required reaiming in non-

human primate BCI experiments [25]. It may be that showing the same arm from different views allowed 

the participants to embody the movements in a way that non-human primates couldn’t when completing 

cursor control tasks. Future work can explore the differences in robustness of tuning to attempted arm 

control compared to cursor control. 

Decoder generalizability 

Beyond testing whether the participants could achieve comparable control in both environments, we 

wanted to test whether a decoder trained in one environment generalized to the other. Generalizability of 

decoders will be an important feature for clinical BCIs that will need to be usable in all the various 

conditions that occur in a user’s life to maximize utility. Previously we found that decoders trained using 

movements in a VR environment on a 3D TV worked well for a physical robotic arm, but had been unable 

to make a precise comparison because of differences in how tasks were performed in the real world and 

the VR environment [6,12]. Here we found that for a user who usually trained in VR, decoders trained in 

VR always generalized to the TV condition, but the decoders trained in the TV condition at the start of a 

session failed to maintain performance in either environment once a VR decoder was trained. This result 

implies that there are behavioral or strategic factors during training that can influence generalizability. To 

better understand this phenomenon, further study with more subjects and a wider variety of 

environments will be required.  

Taken together, all of these results provide a picture of BCI performance which is not critically dependent 

on the environment in which it occurs. There are small changes based on environment, likely related to 

the participants' level of experience in each environment. Decoders trained in one environment can readily 

generalize to the other environment under certain circumstances. We expect that this relative lack of 

dependence on environment will lead to innovative ways of providing training that enable broadly 

beneficial BCI assistive devices for patients with a variety of needs. 
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SUPPLEMENTARY INFORMATION 

Supplemental Figure 1 

  

 

Supplemental Figure 1. Normalized path length by dimension of translation.  Normalized path length for individual dimensions 

of translation for participants C1 and P4 during control in either the VR or TV condition for both the a) reach and b) transport 

phases. X is front/back, Y is up/down, Z is left/right. Black lines indicate median values. *p<0.05, **p<0.01, *** p<0.001, 

Wilcoxon rank-sum test. 
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Supplemental Figure 2 

 

Supplemental Figure 2. Depth of modulation for each active channel. Depth of modulation for each active channel for a)  

participant C1 and b) participant P4 calculated during observation trials. Data plotted on a log-log scale. 
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