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Introduction
Ovarian cancer (OC) ranks fifth in the mortality 
rate among female malignant tumors, which seri-
ously endangers women’s lives and health.1 In 
2020, the worldwide prevalence of OC in females 
was 3.4% and the mortality rate was 4.7%.2 
According to the International Federation of 
Obstetrics and Gynecology, approximately 75% of 
OC patients are diagnosed in stage III or IV with 
extensive abdominal metastases.3 The main obsta-
cle to improving the diagnosis of OC is the lack of 
effective screening methods for early detection.4 
Although the survival rate of OC patients has 
improved in the past few decades, the 5-year sur-
vival rate for women with stage I epithelial ovarian 
cancer (EOC) is 92%, while the women diagnosed 
with the advanced stage OC are still less than 
30%.5,6 The median progression-free survival 
(PFS) for OC ranges from 16 to 21 months, and 
75% of patients with the advanced disease undergo 
recurrence within 18–24 months.7–9

The blood cancer antigen 125 (CA-125) test is the 
most sensitive and specific early detection marker 
for OC available.10,11 However, this diagnostic 
method is still sub-optimal, due to the low sensi-
tivity in the early stage of the disease, and its pre-
dictive value for screening is limited. Several new 
studies have demonstrated the promise of improv-
ing OC diagnosis. It was reported that the Risk of 
Ovarian Cancer Algorithm (ROCA) was used to 
evaluate continuous CA-125 measurements and 
showed the improved sensitivity for OC early 
diagnosis.12,13 In addition, the ROCA followed by 
transvaginal ultrasound indicated excellent speci-
ficity and positive predictive value in the American 
female population at an average risk of OC.14 
However, useful biomarkers are urgently needed 
for OC early diagnosis and predicting prognosis.

The basic treatment approach for OC is cytore-
ductive surgery combined with platinum-based 
chemotherapy, and the early-stage patients often 
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have better curative effects.15 With the several 
lines of medications, OC patients gradually 
develop chemoresistance, which seriously affects 
patients’ prognosis.16 In recurrent OC disease, 
chemotherapy, antiangiogenic agents, and poly 
(ADP-ribose) polymerase inhibitors (PARPis) are 
commonly used in combination. At present, bev-
acizumab and three PARPis (olaparib, niraparib, 
rucaparib) have been approved by the Food and 
Drug Administration as the maintenance treat-
ment after the recurrence of specific patients with 
platinum-sensitive diseases.17–19 Immunotherapy 
is a very promising treatment option.20 However, 
it needs more preclinical and clinical investiga-
tions to further confirm its therapeutic effects.

The recent advances in transcriptomics analysis 
have demonstrated that molecular non-coding 
RNAs (ncRNAs) play important roles in various 
aspects of OC. ncRNAs are functional RNA mol-
ecules that are not being translated into proteins 
but are involved in various physiological and 
pathological processes.21 It was found that the 
dysregulation of certain ncRNAs is related to 
tumorigenesis, neurological, cardiovascular 
development, and other diseases.22 In recent dec-
ades, a large number of studies have reported the 
key role of ncRNAs in cancer progression, metas-
tasis, and drug resistance.23 And gene expression 
is regulated under physiological conditions both 
positively and negatively by various subtypes of 
ncRNAs.24 At the same time, some small ncRNA 
molecules are stable in the bloodstream, which 
can be used as novel biomarkers for the diagnosis 
and prognosis of OC in clinic.25,26 In addition, 
ncRNAs are becoming important therapeutic tar-
gets for the treatment of OC by delivering RNA 
interference (RNAi) or oligonucleotide targeting 
messenger RNA (mRNA).27–29

In this review, we searched the literature from 
‘Pubmed’, ‘web of science’, and other websites 
closely related with the content of this paper from 
year 1990 to year 2022. Papers selected are pivotal 
studies in OC and ncRNA area demonstrating the 
critical evidence presented in the manuscript. This 
article briefly introduces the ncRNAs as biomark-
ers for OC prognosis and focuses on the recent 
progress of ncRNAs in OC therapeutics, especially 
for novel targeted therapy development.

Functional characterization of ncRNAs in OC
With the revolution of the high-throughput 
genome sequencing and array-based technology, 

approximately 90% of the human genome is tran-
scribed.30 Although the transcribed genome 
encodes about 20,000 proteins, this accounts for 
only 2% of the entire genome. In other words, not 
all RNAs are translated into functional proteins, 
which are called ncRNAs, including long-chain 
non-coding RNAs (lncRNAs), microRNAs (miR-
NAs), circular RNAs (circRNAs), and other 
RNAs.30,31 lncRNA molecule consists of more 
than 200 bases in length, transcribed by RNA 
polymerase II, capped, and polyadenylated at the 
5′ and 3′ ends.32 miRNA is a small RNA molecule 
with a sequence of 17–22 nucleotides and has 
been characterized as ‘molecular rheostat’ or 
‘fine-tuner’ of gene expression in different tissues 
and cell types.33–35 The circRNA varies greatly in 
length from hundreds to thousands of nucleotides 
and has been ubiquitously discovered in many 
species in recent years.36,37 In addition, ncRNAs 
are usually expressed in a specific manner under a 
certain cell type, tissue, and developmental 
stage.38–43

miRNAs are usually combined with a short com-
plementary sequence usually located in the three 
prime untranslated region (3′-UTR) region of 
mRNA to regulate the expression of target 
mRNA, prevent the expression of the correspond-
ing mRNA, or make it degrade.44 While lncRNAs 
and circRNAs exhibit gene regulatory mecha-
nisms at the transcriptional and post-transcrip-
tional levels, which regulate gene expression by 
sponging miRNAs, weakening the interactions 
between miRNAs and mRNAs through a com-
petitive mechanism.45–49 The corresponding bio-
logical functions of these ncRNAs are not only 
realized by a single RNA regulation but also by 
interacting with each other.23,45

Research in recent years has demonstrated the 
important function of ncRNAs in cellular activi-
ties associated with OC progression, including 
cell proliferation, apoptosis, invasion, migration, 
chemoresistance, angiogenesis, and reprogram 
energy metabolism.50–53 Studying ncRNAs as 
prognostic biomarkers could help develop preci-
sion medicine for OC patients. Understanding 
the mechanisms of ncRNAs in the regulation of 
OC metastasis and chemoresistance holds prom-
ise for developing novel therapies to improve the 
patent’s prognosis.

In addition, OC has high variability in histological 
subtypes. It contains two categories: EOC which 
takes 90% of all OC and the rest 10% is 
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non-epithelial OC.54 EOC is also divided into the 
most common high-grade serous OC (HGSOC, 
about 52%), endometrioid ovarian cancer (10%), 
ovarian clear cell carcinoma (6%), mucinous 
ovarian cancer (MOC, 6%), and low-grade serous 
ovarian.54,55 In non-epithelial OC, germ cell 
tumors and sex cord stromal tumors account for 
only 3% and 2% of all OC, respectively.55 Current 
studies on ncRNAs mainly fall into the EOC. A 
comprehensive miRNA expression profile can 
help refine the subtype classification in EOC, 
opening up new opportunities for identifying clin-
ically applicable markers to improve stratification 
and diagnosis of OC.56 It was reported that some 
ncRNAs showed differential expression levels in 
subtypes of OC. For example, miR-483-5p was 
found to be differently expressed in serous EOC 
and non-serous EOC, with an apparent upregula-
tion in serous EOC.56 Similarly, the expression of 
exosomal miR-1290 in HGSOC was reported 
higher compared to other subtypes of OCs,57 
indicating the different expression of profiles in 
miRNAs may be associated with different histo-
logical types of OC and could have the potential 
to develop personalized medicine for individual 
diagnosis and treatment. More deep studies are 
warranted in the area in future investigation.

NcRNAs as prognostic biomarkers for 
developing OC personalized treatment
Accurate prediction of the prognosis of OC 
patients is helpful to guide treatment decisions, 
which may greatly improve the relapse/relapse-
free survival of patients.58 So far, several methods 
are used in the prognosis of OC in clinics. First, 
various molecular markers related to the progno-
sis of OC can be detected by laboratory experi-
ments and bioinformatics analysis. It was reported 
that high-level expression of phosphoserine ami-
notransferase 1 in OC tissue samples was associ-
ated with a poor prognosis of patients.59 The 
machine learning system also provides the diag-
nosis and prognosis predictions for EOC patients 
before the initial intervention.60 In the past dec-
ade, several studies have demonstrated the poten-
tial application of liquid biopsy in cancer detection 
and progression monitoring. Liquid biopsy 
including circulating tumor cells, circulating 
tumor DNA, and extracellular vesicles (EVs) 
holds promising as a new tool for improving OC 
diagnosis and/or prognosis.61,62 However, the cur-
rent methods and protein molecules used for OC 
prognosis still encounter certain limitations. Since 
most of the findings for biomarker studies are 

based on The Cancer Genome Atlas (TCGA) 
database, which lacks valid clinical validation 
studies for following up and does not have a 
enough large sample size; thus, they are unable to 
define the specific molecular mechanisms in 
OC.63 Due to the high stability and expression 
pattern in clinical samples, ncRNAs have shown 
great potential as prognostic biomarkers for OC.

Based on genome-wide copy number variation, 
lncRNAs including LOC101927151, 
LINC00861, and LEMD1-AS1 have been iden-
tified as new prognostic markers to predict the 
survival of OC patients. It was found that the 
lower the expression of LOC101927151 and the 
higher the expression of LINC00861 and 
LEMD1-AS1, the worse the prognosis of the OC 
patients.64 In addition, the increase in exosomal 
lncRNA metastasis-associated lung adenocarci-
noma transcript 1 (MALAT1) was found to be 
highly correlated with the advanced and meta-
static phenotype of OC as an independent predic-
tor of the overall survival (OS) of OC patients.65

Various miRNAs were also reported to be associ-
ated with OC prognosis. The miRNA 200 family 
members provide useful information about prog-
nosis and response to the treatment of HGSOC. 
Compared with the control, the expression of cir-
culating blood miR-200a, miR-200b, and miR-
200c was found to be upregulated in OC patients, 
which was related to disease stage and reflected 
tissue expression.66 It was also reported that using 
univariate analysis, the higher the concentration 
of miR-200b in exosomes, the lower the OS in the 
EOC.67 Wei et al.68 showed that OC patients with 
high expression of miR-199b-3p had longer OS 
and disease-free survival (DFS). Research by Xie 
et  al.69 demonstrated that the low miR-1231 
expression in tissue indicated a poor prognosis for 
patients with OC, while upregulation of miR-
1231 expression in four human OC cell lines 
(SKOV3, OVCA433, OV2008, and A2780) 
inhibited cells growth. A study based on gene 
expression synthesis (GEO) and bioinformatics 
analysis found that the prospective pathway sig-
nals of miRNA-182 were highly expressed in OC 
tissues and associated with a poor prognosis.70 
miR-150-5p was reported to be significantly 
upregulated in recurrent OC tissue specimens 
compared with primary tissue samples, and its 
expression was related to the early recurrence and 
poor survival rate of OC patients.71 High levels of 
miR-424 (322) in tumors were found positively to 
be associated with PFS in patients with OC.72 A 
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recent clinical study showed that high expression 
of miR-181a was closely related to the poor prog-
nosis in OC.73 miR-203 was found to be upregu-
lated and associated with significantly shorter OS 
and higher risk for OC progression.74 Furthermore, 
highly expressed miR-206 was associated with 
shorter OS in EOC patients who received plati-
num-based chemotherapy and used to predict 
chemoresistance to platinum treatment.75 Some 
miRNAs are downregulated in OC. For example, 
the expression level of miR-484 in exosomes was 
significantly reduced, accompanied with a poor 
prognosis in OC.76 Circulating miRNAs were 
also useful as predictive biomarkers in patients 
with HGSOC. For example, higher levels of miR-
187-5p and miR-6870-5p were associated with 
both poorer PFS and OS, while miR-1908-5p 
and miR-6727-5p only acted as prognostic indi-
cators of PFS.77

Multivariate Cox analysis showed that high 
expression of circRNA itchy E3 ubiquitin-protein 
ligase (circ-ITCH) was an independent predictor 
for the good OS in EOC patients, and high 
expression of circRNA ABCB10 (circ-ABCB10) 
was found to be a potential marker for a poor 
prognosis of OC.78,79 The rates of DFS and OS in 
patients with low expression of circRNA_LARP4 
(circ LARP4) were significantly worse. Therefore, 

circ LARP4 might be a potential biomarker for 
the prognosis of OC.80 The exosomal circular 
forkhead box protein P1 (circFoxp1) was highly 
expressed in serum of EOC patients, and through 
survival analysis, it was found that EOC patients 
with high exosome circFoxp1 expression had 
lower OS and DFS, suggesting circFoxp1 was a 
worse prognostic biomarker.81

The above-mentioned studies have shown that 
both tissular and circulating exosome ncRNAs 
play important roles in the prognosis of OC. 
Circulating exosome ncRNAs have the potential 
to be used as biomarkers for predicting the prog-
nosis of OC patients in clinics in a non-invasive 
manner. With an in-depth understanding of 
patients’ molecular characteristics using ncRNAs 
as prognostic markers, the tailored therapies can 
be developed and applied to those who are 
expected to benefit the most while limiting inef-
fective or harmful interventions.82 And many new 
therapies that regulate RNAs are being studied 
extensively, especially miRNAs.83 Therefore, reg-
ulating the expression of certain ncRNAs to 
change the prognosis of OC might provide the 
promise for developing the individualized treat-
ment of OC patients and improving their quality 
of life. The ncRNA biomarkers used for OC 
prognosis are summarized in Table 1.

Table 1. The summary of ncRNA biomarkers used for OC prognosis.

ncRNA Sample type Expression pattern Prognosis References

LOC101927151 TCGA Genomic Data Downregulated The lower the expression of LOC101927151, the 
worse the prognosis of the OC patients

Zheng et al.64

LINC00861 TCGA Genomic Data Upregulated The higher the expression of LINC00861, the 
worse the prognosis of the OC patients

Zheng et al.64

LEMD1-AS1 TCGA Genomic Data Upregulated The higher the expression of LEMD1-AS1, the 
worse the prognosis of the OC patients

Zheng et al.64

MALAT1 Serum (exosome) Upregulated Serum exosomal MALAT1 was overexpressed 
and can predict poor prognosis in EOC

Qiu et al.65

miR-200a Serum Upregulated The higher miR-200a had the poor prognosis Kan et al.66

miR-200b Serum Upregulated The higher miR-200b had the poor prognosis Kan et al.66

miR-200b Serum (exosome) Upregulated The higher the concentration of exosomal miR-
200b, the lower the OS rate

Pan et al.67

miR-200c Serum Upregulated The higher miR-200c had the poor prognosis Kan et al.66

miR-199b-3p Tissues Downregulated Patients with high-expressing miRNA-199b-3p 
had longer OS and DFS

Wei et al.68

(Continued)
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ncRNA Sample type Expression pattern Prognosis References

miR-1231 Tissues Downregulated The low expression of miR-1231 predicted poor 
prognosis in OC patients

Xie et al.69

miRNA-182 GEO database 
(Tissues)

Upregulated The high expression of miR-1231 predicted poor 
prognosis in OC patients

Li and Li70

miR-150-5p Tissues Upregulated The high expression of miR-150-5p was related 
to the early recurrence and poor survival rate of 
OC patients

Tung et al.71

miR-424 (322) Tissues Downregulated High level of miR-424 (322) in tumors was 
positively associated with PFS in patients with OC

Xu et al.72

miR-181a Tissues Upregulated miR-181a overexpression was unveiled as 
powerful and independent molecular predictor 
of patients’ poor survival and higher risk for 
disease progression following debulking surgery 
and platinum-based chemotherapy

Panoutsopoulou 
et al.73

miR-203 Tissues Upregulated Increased miR-203 level in OC patients 
was correlated with unfavorable prognosis 
and higher risk for disease progression, 
independently of FIGO stage, tumor grade, 
residual tumor after surgery, chemotherapy 
response, and age

Panoutsopoulou 
et al.74

miR-206 Tissues Upregulated High expression of miR-206 predicted platinum 
resistance and poor prognosis in patients with 
EOC

Yu et al.75

miR-484 Serum (exosome) Downregulated Low serum exosomal miR-484 expression can 
predict poor prognosis of OC

Zhang et al.76

miR-187-5p Serum Upregulated Higher level of miR-187-5p was associated with 
both poorer PFS and OS

Yoshida et al.77

miR-6870-5p Serum Upregulated Higher level of miR-6870-5p was associated with 
both poorer PFS and OS

Yoshida et al.77

miR-1908-5p Serum Upregulated miR-1908-5p was poor prognostic indicators of 
PFS

Yoshida et al.77

miR-6727-5p Serum Upregulated miR-6727-5p was poor prognostic indicators of 
PFS

Yoshida et al.77

circ-ITCH Tissues Downregulated The high expression of circ-ITCH was an 
independent predictor of good OS in EOC 
patients

Luo et al.78

circ-ABCB10 Tissues Upregulated The high expression of circ-ABCB10 was a 
potential marker for poor prognosis of OC

Chen et al.79

circ-LARP4 Tissues Downregulated Lower circ LARP4 expression was associated 
with poor prognosis of OC patients

Zou et al.80

circFoxp1 Serum (exosome) Upregulated High circFoxp1 expression had lower OS and 
lower DFS

Luo et al.81

circ-ABCB10, circular RNA ABCB10; circFoxp1, circular forkhead box protein P1; circ-ITCH, circRNA itchy E3 ubiquitin-protein ligase; circ-
LARP4, circular RNA_LARP4; DFS, disease-free survival; EOC, epithelial ovarian cancer; FIGO, Federation of Obstetrics and Gynecology; GEO, 
gene expression synthesis; MALAT1, metastasis-associated lung adenocarcinoma transcript 1; OC, ovarian cancer; OS, overall survival; PFS, 
progression-free survival; TCGA, The Cancer Genome Atlas.

Table 1. (Continued)
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Figure 1. ncRNAs as potential therapeutic targets for OC therapy. This diagram illustrates several 
associated mechanisms by which ncRNAs (lncRNAs, miRNAs, and circRNAs) regulate OC metastasis and 
chemoresistance, immune escape, and metabolism. Mechanistic studies have shown some ncRNAs that can 
be used as OC therapeutic targets by inhibiting these potential mechanisms. Treatment of OC by upregulating 
or downregulating the expression of ncRNAs is a promising way to control OC spread.
CSC, cancer stem cell; circ-CSPP1, circ-centrosome/spindle pole-associated protein; circ-ITCH, circRNA itchy E3 ubiquitin-
protein ligase; circRHOBTB3, circular RNA RHOBTB3; DANCR, differentiation antagonizing non-protein coding RNA; 
EMT, epithelial-to-mesenchymal transition; ESRP1, epithelial splicing regulatory protein-1; FEN1, flap structure-specific 
endonuclease 1; FOXR2, forkhead box 2; GAS5, growth arrest-specific transcript 5; HOTTIP, lncRNA HOXA transcript at 
the distal tip; IL-6, interleukin 6; MALAT1, metastasis-associated lung adenocarcinoma transcript 1; MICA/B, MHC class I 
chain-related molecules A/B; MMP: matrix metalloproteinases; ncRNA, non-coding RNA; NRCP, lncRNA ceruloplasmin; 
OC, ovarian cancer; PARP1, poly (ADP-ribose) polymerase 1; PD-L1, programmed death-1 ligand 1; PFKFB2, fructose-2,6-
biphosphatase 2; PTAR, lncRNA pro-transition-associated RNA; SCAI, suppressor of cancer cell invasion; TP73-AS1, lncRNA 
P73 antisense RNA 1T; UCA1, urothelial carcinoma associated 1; VEGF, vascular endothelial growth factor; VEGFA, vascular 
endothelial growth factor A; ZEB1, zinc finger E-box binding homeobox 1.

NcRNAs as therapeutic targets for OC 
treatment
Most patients diagnosed with OC undergo sur-
gery first, followed by platinum-based chemo-
therapy.84,85 However, the majority of women 
with advanced EOC, fallopian tube cancer, or 
primary peritoneal cancer relapse and require 
additional treatment.86 According to the 
American Society of Clinical Oncology guide-
lines, PARPis are also used in the management 
of OC.87 It was reported that ncRNAs are 
involved in the regulation of many aspects of OC 
progression,24,50,88 so they can be used as poten-
tial therapeutic targets for OC treatment with 
certain advantages. For example, the specificity 

of lncRNA has been used to selectively kill 
tumors without affecting normal tissues.89 The 
emerging importance of circRNAs in the initia-
tion and progression of OC also makes them an 
attractive therapeutic option.90 For tumor sup-
pressor circRNA, due to its stability and long 
half-life, it might induce expression in specific 
cancer cells and produce great anticancer 
effects.91 In the following sections, we will focus 
on the potential of ncRNAs as therapeutic tar-
gets for OC treatment from the aspects of metas-
tasis, chemoresistance, immune escape, and 
metabolic regulation. The ncRNAs as potential 
therapeutic targets for OC therapy are shown in 
Figure 1 and Table 2.
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Table 2. ncRNAs as therapeutic targets for OC cell migration, invasion, metastasis, chemoresistance, immune escape, and 
metabolism reprogramming.

ncRNA Sample type Expression 
pattern

Target gene Participation References

PTAR Tissues Upregulated miR-101-3p-ZEB1 Invasion, metastasis Liang et al.92

WDFY3-AS2 Cells lines Upregulated miR-139-5p-SDC4 Migration, invasion, 
chemoresistance

Wu et al.93

DANCR Tissues and cell 
lines

Upregulated miR-145-VEGF Angiogenesis, invasion, 
metastasis

Lin et al.94

TP73-AS1 Tissues and cell 
lines

Upregulated MMP-2, MMP-9 Metastasis Wang et al.95

UCA1 Cell lines Upregulated miR-129-ABCB1 Migration, invasion, 
chemoresistance

Wang et al.96

MALAT1 Tissues and cell 
lines

Upregulated Notch1 Invasion, metastasis, 
apoptosis, chemoresistance

Bai et al.97

GAS5 Tissues and cell 
lines

Downregulated E2F4-PARP1-MAPK Chemoresistance, apoptosis Long et al.98

HOTTIP Tissues Upregulated IL-6 Immune escape, 
chemoresistance

Shang et al.99

NRCP Tissues Upregulated STAT1 Metastasis, glycolysis Rupaimoole et al.100

lncRNA LINC00092 Cell lines Upregulated PFKFB2 Metabolism Zhao et al.101

miR-424(322) Cell lines PD-L1 Immune escape, 
chemoresistance

Xu et al.72

miR-205 Tissues and 
serum (exosomes)

Upregulated PTEN Invasion, migration, 
chemoresistance

He et al.102

miR-134-3p Cell lines Downregulated FEN1 Invasion, migration Zhao et al.103

miR-495 Cell lines ABCB1 Chemoresistance Zou et al.104

let-7e Cell lines PARP1 Chemoresistance Xiao et al.105

miR-9 Cell lines Downregulated BRCA1 Migration, invasion, 
chemoresistance

Sun et al.106

miR-509-3 Tissues HMGA2/RAD51 Migration, invasion, 
chemoresistance

Sun et al.107

miR-21 Tissues and cell 
lines

Chemoresistance An and Yang108

miR-20a Tissues and 
serum

Upregulated MICA/B Invasion, chemoresistance, 
immune escape

Xie et al.109

miR-29b Cell lines Downregulated AKT2/AKT3 Chemoresistance, migration, 
invasion, glucose metabolism

Teng et al.110

miR-450a Cell lines Downregulated TIMMDC1, MT-ND2, 
ACO2, ATP5B

Metabolism (glycolysis, 
glutaminolysis)

Muys et al.111

miR-145 Tissues and cell 
lines

Downregulated c-myc Metabolism (glycolysis, 
glutaminolysis), migration, 
invasion

Li et al.112

circ-ITCH Tissues and cell 
lines

Downregulated miR-106a-CDH1 Invasion, glycolysis, apoptosis Luo et al.78, Lin et al.113

(Continued)
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ncRNA Sample type Expression 
pattern

Target gene Participation References

circ-CSPP1 Tissues and cell 
lines

Upregulated miR-1236-3p-ZEB1 
(MMP-2/VEGFA)

Invasion, migration Li et al.114

circ_0026123 Tissues and cell 
lines

Upregulated miR-124-3p-EZH2 Metastasis Yang et al.115

circASH2L Tissues and cell 
lines

Upregulated miR-665-VEGFA Angiogenesis, invasion Chen et al.116

circATRNL1 Tissues and cell 
lines

Downregulated miR-378-Smad4 Metastasis Wang et al.117

cicr-Cdr1as Tissues and cell 
lines

Downregulated miR-1270-SCAI Chemoresistance, invasion, 
migration

Zhao et al.118

circCELSR1 Tissues and cell 
lines

Upregulated miR-1252-FOXR2 Chemoresistance, invasion, 
metastasis

Zhang et al.119

circ_0005585 Cell lines miR-
15a/15b/16/23a/23b-
ESRP1

Immune, suppression Deng et al.120

circRHOBTB3 Cell lines Upregulated Metastasis, 
metabolism(glycolysis)

Yalan et al.121

circ-CSPP1, circ-centrosome/spindle pole-associated protein; circ-ITCH, circRNA itchy E3 ubiquitin-protein ligase; circRHOBTB3, circular RNA 
RHOBTB3; DANCR, differentiation antagonizing non-protein coding RNA; ESRP1, epithelial splicing regulatory protein-1; FEN1, flap structure-
specific endonuclease 1; FOXR2, forkhead box 2; GAS5, growth arrest-specific transcript 5; HOTTIP, lncRNA HOXA transcript at the distal tip; IL-6, 
interleukin 6; MALAT1, metastasis-associated lung adenocarcinoma transcript 1; MICA/B, MHC class I chain-related molecules A/B; MMP, matrix 
metalloproteinases; ncRNA, non-coding RNA; NRCP, lncRNA ceruloplasmin; PARP1, poly (ADP-ribose) polymerase 1; PD-L1, programmed death-1 
ligand 1; PFKFB2, fructose-2,6-biphosphatase 2; PTAR, lncRNA pro-transition associated RNA; SCAI, suppressor of cancer cell invasion; SDC, 
Syndecan; TP73-AS1, lncRNA P73 antisense RNA 1T; UCA1, urothelial carcinoma associated 1; VEGF, vascular endothelial growth factor; VEGFA, 
vascular endothelial growth factor A; ZEB1, zinc finger E-box binding homeobox 1.

Table 2. (Continued)

NcRNAs as therapeutic targets for OC via 
regulating metastasis
Metastasis accounts for the most lethal reason for 
the high recurrence and poor prognosis of OC 
patients.122,123 Therefore, inhibiting tumor metas-
tasis can prevent the recurrence of OC, which is 
also an important part of OC treatment. Since 
there is no barrier between the primary tumor and 
the abdominal cavity, aggregating cells with stem 
cell characteristics can leave the primary tumor 
and are implanted in the peritoneum in OC 
metastasis.124 It was found that epithelial-to-mes-
enchymal transition (EMT), cell stemness, angio-
genesis, matrix metalloproteinases (MMPs), and 
changes in cell adhesion molecules promote OC 
metastasis,122,125–128 which is related to the dys-
regulation of ncRNAs.

miRNAs are directly regulated by lncRNAs/circR-
NAs to affect the EMT pathway and related mol-
ecules, promoting or inhibiting the metastasis of 
OC. Liang et al. reported that lncRNA pro-transi-
tion-associated RNA (PTAR) was significantly 

upregulated in the mesenchymal subtype samples, 
which regulates zinc finger E-box binding home-
obox 1 (ZEB1) expression by competitively bind-
ing miR-101-3p to promote EMT, leading to 
increased metastasis of serous OC. Thus, PTAR 
might be an effective target for OC antimetastatic 
therapy.92 It was shown that circ-centrosome/
spindle pole-associated protein (circ-CSPP1) 
sponged miR-1236-3p, to impair its inhibitory 
effect on ZEB1, and regulated EMT to promote 
distant metastasis of OC.114 Overexpression of 
miR-200b/c was also reported to target ZEB1, 
which inhibited OC metastatic transmission, and 
miR-200b/c was related to disease stages.129,130

Several lines of evidence indicate that cancer stem 
cells (CSCs) are involved in tumor invasion and 
metastasis.131,132 The lncRNA WDFY3-AS2 
sponged miR-139-5p to induce traits in CSCs, 
which regulates migration and invasion of the 
chemoresistant OC cell line A2780-DDP.93 In 
vitro study showed that inhibition of miR-328 
held promise for the development of efficient 
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strategies for eliminating CSCs to prevent OC 
metastasis and recurrence.133 In vitro and in vivo 
experiments had shown that silencing has-
circ-0026123 inhibited OC cell proliferation and 
migration as well as inhibited the expression of 
CSC differentiation-related markers.115

It was reported that the formation of a large num-
ber of microvessels is the basis for OC growth and 
metastasis.126,127 The angiogenesis-related ncR-
NAs regulate the expression of certain molecules 
that modulate OC angiogenesis, which further 
promotes OC metastasis. The differentiation 
antagonizing non-protein coding RNA was 
reported to regulate the miR-145/vascular 
endothelial growth factor (VEGF) axis to pro-
mote OC angiogenesis, facilitating OC metasta-
sis.94 miR-205 was a metastasis-associated 
miRNA in OC and its upregulation was found to 
positively correlate with microvessel density in 
OC tissues.102 circASH2L was highly expressed 
in OC tissues and cell lines (A2780, TOV112D, 
OVCAR-3, and SKOV-3) and played a key role 
in regulating tumorigenesis, angiogenesis, and 
lymphangiogenesis of OC through the miR-665/
VEGFA axis,116 suggesting it might be a useful 
target for OC therapy. In addition, circATRNL1 
was shown to sponge miR-378 and subsequently 
activate the Smad4 signaling pathway, which 
inhibits OC angiogenesis and metastasis.117

MMPs are a family of secreted or transmembrane 
enzymes that collectively digest almost all extra-
cellular matrix (ECM) and basement membrane 
components.134,135 More importantly, MMP-2 
and MMP-9 degrade collagen IV, a major ECM 
component of the basement membrane, and have 
been implicated as key factors for the invasive and 
metastatic potential of OC.124 The study by Wang 
et al.95 showed that lncRNA P73 antisense RNA 
1T (TP73-AS1) promoted OC cell proliferation 
and metastasis via the modulation of MMP-2 and 
MMP-9. miR-134-3p mimic transfection inhib-
ited migration and invasion of SKOV-3 and 
OVCAR-3 cells and decreased the protein expres-
sion levels of cyclooxygenase-2, MMP-2, and 
MMP-9.103 In addition, knockdown of circ-
CSPP1 also caused a decrease in MMP-2 expres-
sion to inhibit OC metastasis, while overexpression 
of circ-CSPP1 had opposite effects.114

Inhibition of tumor metastasis by regulating the 
expression of ncRNAs is an important aspect of 

OC therapy and might provide a new possible 
avenue for OC treatment.

NcRNAs as therapeutic targets for OC via 
decreasing chemoresistance
Nearly 75% of OC patients are highly sensitive to 
initial anticancer therapy; however, most patients 
encounter tumor relapse within 2 years, and are 
unable to respond to available chemotherapeutic 
compounds due to acquired resistance.136,137 
Tumor cells develop several mechanisms to 
reduce the anticancer effects of cisplatin (CIS)/
paclitaxel (PTX) through reducing drug uptake, 
increasing drug efflux, and inducing drug detoxi-
fication by covalently binding to glutathione or 
metalloprotein.138 Besides, alterations in DNA 
damage repair, reactivation of homologous 
recombination (HR) mechanism, the occurrence 
of CSCs and EMT, methylation, histone acetyla-
tion, and other phenotypic changes, immune cell 
infiltration, angiogenesis, modification of drug 
targets, and defect sand hypoxia resistance are all 
possible reasons for OC chemoresistance.139–145 
Extensive studies suggest that ncRNAs are 
involved in regulating the above-mentioned 
mechanisms and affecting OC chemoresistance. 
Therefore, altering the expression of ncRNAs to 
inhibit OC chemoresistance is also an important 
strategy for the treatment of OC.

The ATP-binding cassette (ABC) transporter 
protein family is an energy-dependent transport 
system for substrate-binding proteins.146 
Multidrug resistance protein 1 (MDR1), multid-
rug resistance-associated protein 1 (MRP1) and 
breast cancer resistance protein are the most 
important ABC transporter protein family 
involved in drug efflux in tumor chemoresistance 
mechanisms.147–149 There are many reports on 
ncRNA-associated regulation of ABC family gene 
expression, which promotes drug efflux and ulti-
mately leads to the onset of chemoresistance. 
Wang et  al.96 reported that lncRNA urothelial 
carcinoma associated 1 was highly expressed in 
PTX-resistant OC cells, sponging miR-129, reg-
ulating the high expression of ABCB1, and accel-
erating PTX drug efflux. lncRNA MALAT1 was 
highly expressed in CDDP-OC cells, and induced 
the expression of MRP1 to accelerate CDDP 
drug efflux.97,150 miR-495 was reported to inhibit 
MDR1 expression and reduce drug efflux to 
reverse MDR in OC.104
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Most chemotherapy drugs, such as platinum-
based drugs, directly or indirectly induce DNA 
damage by activating various signaling pathways, 
ultimately leading to cell death. Enhanced activity 
of DNA damage repair was found in CIS-resistant 
OC cells.151 PARP is a nuclease that plays a key 
role in the repair of single-stranded DNA dam-
age.152 Let-7e is expressed in the low level in OC 
chemoresistant cells, but PARP1 was highly 
expressed. The high expression of let-7e was used 
to target PARP1 and thus inhibited DNA damage 
repair, which improves the chemoresistance in 
OC cells.105 BRCA1 is a key component of the 
error-free HR double-strand DNA repair path-
way.153 One study reported that miR-9 targeted 
BRCA1, to improve the chemosensitivity of 
OC.106 Another study showed that miR-509-3 in 
OC enhanced the synthetic lethality of PARPi by 
regulating HR repair in the HGSOC patient-
derived-xenograft model.107

Accumulating studies show that ncRNAs affects 
apoptosis as well as the cell cycle that affect the 
chemotherapy sensitivity.154–157 The lncRNA 
growth arrest-specific transcript 5 was found to 
affect the MAPK activity, pro-apoptosis, and 
cycle arrest, thereby improving chemotherapy 
sensitivity.98 It was reported that the high expres-
sion of miR-21 decreased PTEN expression, pro-
moted the PI3K/Akt activity, and inhibited OC 
cell apoptosis.158 The high expression of miR-21 
was also shown to regulate M2 macrophage 
polarization, inhibit apoptosis, and promote 
chemoresistance.108 In OC, the overexpression of 
circ-Cdr1as was found to enhance DDP-induced 
apoptosis by regulating the suppressor of cancer 
cell invasion and miR-1270.118 circCELSR1 was 
also highly expressed in PTX-resistant OC cell 
lines (SKOV-3/PTX and HeyA-8/PTX), and 
circCELSR1 silencing enhanced PTX-induced 
OC cytotoxicity by increasing G0/G1 blockade 
and apoptosis in OC cells.119

Although advances in understanding ncRNAs in 
OC chemoresistance have been made in the last 
decade, the mechanism of action of ncRNA in 
OC chemoresistance is still not well understood 
and further studies are urgently needed. This 
research area is very critical to address the unmet 
clinical challenge of OC chemoresistance, as well 
as develop novel treatments to control the recur-
rence of OC patients. Clarifying these mecha-
nisms of action is also important for laying a solid 
foundation for the clinical translation of ncRNAs 
in OC therapy. The putative mechanism of ncR-

NAs in regulating OC metastasis and chemore-
sistance is shown in Figure 2.

NcRNAs as therapeutic targets for OC 
immunotherapy
Cancer immunotherapy has emerged as a promis-
ing therapeutic approach in oncology, character-
ized by the activation of the immune system and 
induction of tumor immune surveillance or rever-
sal of tumor immune escape.159 Marth et  al.160 
highlighted the therapeutic benefits of immuno-
therapy and challenges in OC treatment. Figuring 
out the specific mechanism of immune escape of 
ncRNAs in OC is an important option for treat-
ing OC.

lncRNA HOXA transcript at the distal tip 
(HOTTIP) was highly expressed in OC tissues, 
resulting in increasing interleukin 6 expression by 
binding to c-jun, and promoting programmed 
death-1 ligand 1 (PD-L1) expression to inhibit 
T-cell proliferation. Therefore, HOTTIP might 
be involved in a potential therapeutic strategy by 
targeting HOTTIP in OC.99 Another study 
shown that miR-424(322) inhibited PD-L1 and 
CD80 expression, promoted the proliferation and 
survival of CD8+ cytotoxic T lymphocytes and 
improved the OC immune response.72 Besides, 
miR-20a was reported to bind directly to the 
3′UTR of MHC class I chain-related molecules 
A/B (MICA/B) mRNA, leading to its degradation 
and reducing MICA/B proteins at the plasma 
membrane.109 The membrane-bound MICA/B 
protein was a ligand for the natural killer (NK) 
group 2 member D receptor and was found on 
NK cells, γδ+ T cells, and CD8+ T cells, where its 
reduction enabled tumor cells to evade immune-
mediated killing.109 circ-0005585 was also found 
to regulate the overexpression of epithelial splic-
ing regulatory protein-1 (ESRP1) by sponging 
miR-23a/b and miR-15a/15b/16, and the high 
expression of ESRP1 was related to immunosup-
pression in OC,120 suggesting that ESRP1 was a 
potential therapeutic target for OC immunother-
apy. One example of potential effects of ncRNAs 
as therapeutic targets in OC immunotherapy is 
shown in Figure 3.

Immunotherapy is currently a more advanced 
treatment option for several cancers such as lung 
cancer, melanoma, and breast cancer. However, 
very limited reports are present in OC immuno-
therapy. ncRNAs can regulate immune escape 
and surveillance, but the specific immune 
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Figure 2. The putative mechanism of ncRNAs regulates OC metastasis and chemoresistance via target 
genes and the related pathways. Altered expression of RNAs affects EMT, CSCs, neoangiogenesis, apoptosis 
pathway, cell cycle, drug efflux, and other biological functions of OC cells, leading to chemoresistance and 
metastasis.
CSC, cancer stem cell; EMT, epithelial-to-mesenchymal transition; ncRNA, non-coding RNA; OC, ovarian cancer.

regulatory mechanisms in OC need to be further 
investigated. ncRNAs’ regulation of immune 
escape and immune suppression might be used in 
combination with immunotherapy for better clin-
ical treatment of OC in the future.

NcRNAs as therapeutic targets for OC via 
regulating metabolism
Reprogramming of energy metabolism is a hall-
mark of tumors due to genomic instability.161 
Warburg effect in cancer cells is related to aerobic 
glycolysis in that glucose is metabolized to lactic 
acid under aerobic conditions.162

Previous studies demonstrated that lncRNA reg-
ulated glycolysis in cancer cells by directly bind-
ing to key glycolytic enzymes or by enhancing the 
transcription of glycolytic enzyme genes activated 
by lncRNA binding to RNA polymerase 
II.100,161,163 Mechanistic studies shown that 
lncRNA LINC00092 binds to a glycolytic 

enzyme, fructose-2,6-biphosphatase 2, thereby 
promoting OC metastasis by altering glycolysis 
and maintaining the local support function of 
cancer-associated fibroblasts.101 lncRNA cerulo-
plasmin was highly expressed in OC tissues, and 
at the same time, it acted as an intermediate bind-
ing partner between STAT1 and RNA polymer-
ase II, leading to increased expression of 
downstream target genes (such as glucose 6-phos-
phate isomerase) and regulating glycolysis.100

miRNAs are also involved in various aspects of 
tumor metabolism including glucose, lipid, and 
amino acid metabolism.164 Overexpression of miR-
29b was reported to negatively regulate OC glu-
cose metabolism in vivo.110 miR-450a was found 
to reduce amino acid production in OC by regulat-
ing targets related to glutamine catabolism.111 
Besides, miR-145 inhibited glutamine metabolism 
by targeting c-myc.112 As part of the ncRNA regu-
latory network, circRNAs were also reported to 
regulate the metabolism of carbohydrates, lipids, 
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and amino acids by targeting miRNAs or pro-
teins.165 In OC, high expression of circ-ITCH in 
A2780 and OVCAR-3 cell lines inhibited glucose 
consumption and decreased both lactate and ATP 
content, indicating that circ-ITCH inhibited glyc-
olysis.113 Furthermore, circRNA RHOBTB3 (cir-
cRHOBTB3) overexpression significantly 
inhibited OC cell glycolysis.121 So far, research on 
ncRNAs in metabolic regulation that contributes 
to OC progression is still very limited. The poten-
tial mechanisms of ncRNAs in OC metabolism 
need to be further explored, and investigating the 
role of ncRNAs in OC metabolism is a very impor-
tant and promising area for developing novel OC 
therapy.

New strategies for ncRNAs-targeted OC 
therapy
ncRNAs participate in the regulation of multiple 
molecules in cellular signaling pathways to cause 
specific reactions.166 However, many challenges 
in ncRNA research still exist. In vivo stability, in 
vivo cell permeability, tissue-specific targeting, 
and potential off-target effects are the obstacles to 
the successful conversion of ncRNAs-based com-
pounds from the laboratory to clinic.167 Given the 
above reasons, targeted therapy strategies 

explored in recent years have become hot spots. 
On the one hand, they can solve the instability of 
ncRNAs, on the other hand, they hold the poten-
tial to aim specific therapeutic targets.

Current research has focused on the development 
of miRNA nano-formulations to enhance cell 
uptake, bioavailability, and tumor site accumula-
tion.168,169 The use of nanoparticles (NPs) coupled 
with antibodies and/or polypeptides can effectively 
target and sustain the release of miRNAs/anti-miR-
NAs, which reduces the required therapeutic dose 
while minimizing systemic and cytotoxicity.169 
Studies have shown that in vivo nanoliposome 
delivery of miR-15a and miR-16 reduced tumor 
growth in a preclinical chemoresistant OC ortho-
topic mouse model to support combination ther-
apy.170 Another in vivo study using xenograft 
models has shown that NP-mediated miR-124 
reduced OC growth and induced cells sensitive to 
etoposide.171 Since the overexpression of miR-21 
was related to OC chemoresistance,169 AS1411 
anti-nucleolin aptamer-decorated PEGylated 
poly(lactic-co-glycolic acid) NPs containing CIS 
(Ap-CIS-NPs) were used to infect A2780 chem-
oresistant cells through nucleolar protein-mediated 
endocytosis and inhibited endogenous miR-21.172 
The targeted delivery of CIS using Ap-CIS-NPs 

Figure 3. ncRNAs as therapeutic targets for OC immunotherapy. LncRNA HOTTIP is highly expressed in OC, 
which increases the expression of IL-6 by binding to c-jun and promotes PD-L1 expression in neutrophils to 
inhibit T-cell proliferation. Therefore, OC can be treated by targeting HOTTIP to increase T-cell proliferation 
and kill cancer cells.
IL-6, interleukin 6; lncRNAs, long-chain non-coding RNAs; ncRNA, non-coding RNA; OC, ovarian cancer; PD-1, programmed 
cell death protein 1; PD-L1, programmed death-1 ligand 1.
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into the miR-21-inhibited cells caused enhanced 
cell death.172 The tumor-associated antigen, folate 
receptor alpha is a GPI membrane protein that is 
overexpressed in OC.173 Covalently bound octahe-
dral DNA nanocapsules were functionalized with 
folate molecules and used as scaffolds to engineer 
four chelating units with miR-21 complementary 
sequences to obtain biocompatible Fol-miR-
21-NC non-toxic nanostructures, enabling the 
selective recognition of folate receptor alpha over-
expressing cancer cells and sequestration of onco-
genic miR-21.174 Co-administration of doxorubicin 
and anti-miR-21 exhibited an additive cytotoxicity 
on tumor cells, laying the foundation for its use as a 
selective nucleic acid drug.174 miR-155 was 
reported to be downregulated in OC-associated 
dendritic cells (DC) and is essential for DC optimal 
antigen presentation and T-cell activation.175 
Therefore, the use of polyethylenimine-based nano 
complexes to deliver miR-155 to tumor-associated 
DCs increased the expression of miR-155 in vitro 
and led to enhanced antitumor immunity, thereby 
increasing the survival rate of mice.175 A novel 
nano-targeted co-delivery system modified with 
hyaluronic acid (HA) was prepared by coating 
functionalized mesoporous silica NPs (HA-PTX/
Let-7a-GNR@MSN) with gold nanorods.176 This 
drug delivery system was used in combination 
with hydrophobic chemotherapeutic drugs PTX 
and Let-7a and bound to the CD44 receptor, 
which is highly expressed on the surface of the 
SKOV3/SKOV3TR cells membrane to overcome 
MDR in OC.176 However, as synthesized parti-
cles, these NPs might have obvious disadvantages 
after administration, such as toxicity, loss of tar-
geting ability, and/or rapid clearance from blood 
circulation.177–179

Exosomes are a subtype of EVs (40–150 nm in 
diameter), which are considered to be a new gen-
eration of nano-scale drug delivery system. 
Exosomes secreted by different types of cells carry 
different signal molecules (such as RNAs and pro-
teins), so they have great potential in targeted drug 
delivery and therapy.180,181 ncRNAs are selectively 
enriched and stable in exosomes.182 Exosome ncR-
NAs play an important role in cell-cell communi-
cations, affecting key processes of tumor 
development such as tumorigenesis, metastasis, 
angiogenesis, immune regulation, and drug resist-
ance in OC.65,183 Given the important biological 
functions of exosomal ncRNAs in OC, a strategy 
specifically targeting exosomes or their cargo might 
be a promising option for OC treatment.184 
Exosomal miR-21 was demonstrated to transfer 

from adjacent stromal cells to OC cells, conferring 
chemoresistance and aggressive phenotype to OC 
cells, which indicates that preventing exosomal 
miR-21 transfer from stromal cells was a new way 
to inhibit the growth of OC.185 Exosomal miR-
146a derived from human umbilical cord mesen-
chymal stem cells was reported to increase the 
sensitivity of OC cells to docetaxel and taxane.186

Although the clinical application of exosomal 
ncRNAs has a long way to go, new research can 
help to find cost and time-saving nanotechnology 
to achieve large-scale production of exosomes.187 
Studies have shown that exosomes engineered by 
overexpressing miR-92b-3p had the stronger abil-
ities of antiangiogenesis and antitumor than 
parental OC-derived exosomes, providing a new 
approach for antiangiogenic therapy of OC.188 In 
addition, targeted delivery of miR-484 via RGD-
modified exosomes induced normalization of 
tumor blood vessels in OC, increased tumor sen-
sitivity to chemotherapy, and prolonged survival 
time after chemotherapy in tumor-bearing 
mice.189 The potential of ncRNAs combined with 
exogenous NPs and endogenous exosomes for 
OC targeted therapy are shown in Figure 4. The 
new strategies for ncRNAs-targeted OC therapy 
are summarized in Table 3.

Both nanomaterials and exosomes provide a good 
chance for the application of ncRNAs in OC 
treatment. As above mentioned, some studies 
have been conducted on ncRNAs in OC, com-
bined with exosomes/nanomaterials to achieve 
targeted transport. However, there are still many 
challenges for overcoming, including the toxicity 
of NPs, the evasion of the phagocytic system, the 
inhibition of physiological barriers, and the 
immune response to the body.190 In addition, off-
target exosomes and nanomaterials that deliver 
ncRNAs might also exist. However, due to the 
species specificity of ncRNAs, the results of ani-
mal experiments are still facing a huge test before 
being used in clinical application, and more in-
depth exploration is needed.191,192 The current 
research on ncRNAs targeted therapy mainly 
focuses on miRNAs, and there are few reports on 
other types of ncRNAs. More broad research in 
ncRNAs is an urgent need in the future.

Conclusions and future perspectives
This review mainly focuses on the role of ncRNAs 
in the prognosis and treatment of OC. We inves-
tigate pivotal studies to bring new insights into 
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the clinical application of ncRNAs in OC for 
future research. The network in which ncRNAs 
function affects multiple molecular targets that 
control the biological fate of cells and their 
responses to oncogenic effects. ncRNAs affect all 
aspects of OC cells, including proliferation, 
metastasis, chemoresistance, immune escape, 
and metabolism, which are in a good position to 
be used in clinics.193

It is known that a network effect involves the 
complex regulatory mechanisms in ncRNAs’ 
functions. lncRNAs, circRNAs, and miRNAs are 
competing endogenous RNAs. lncRNAs/cicrR-
NAs compete with miRNAs to bind to mRNAs 

and regulate the expression of the corresponding 
molecules. The interactions among these mole-
cules require further investigations to elucidate 
the related mechanisms in OC.

And it is important to understand the mecha-
nisms performed by ncRNAs in OC metastasis, 
chemoresistance, immune escape, and metabo-
lism for developing therapeutic targets. Since the 
combination of advanced technologies (next-gen-
eration sequencing) and new materials (exosome 
and nanomaterial) has great potential in the 
application of OC patients. The use of ncRNAs 
with these advanced technologies enables dual 
targeting of specific cells and specific genes.

Figure 4. The potential of ncRNAs combined with exogenous nanomaterials and endogenous exosomes for OC 
targeted therapy. miR-155 is downregulated in DCs and is essential for DC optimal antigen presentation and 
T-cell activation. Therefore, the use of PEI-based nano complexes to deliver miR-155 to tumor-associated DCs 
increases the expression of miR-155 in vitro and leads to enhanced antitumor immunity. Exosomal miR-146a 
derived from hUCMSCs increases the sensitivity of OC cells to docetaxel and taxane. Both nanomaterials and 
exosomes containing ncRNAs combined with chemotherapy drugs greatly induce OC cell death.
DCs, dendritic cells; hUCMSCs, human umbilical cord mesenchymal stem cells; ncRNA, non-coding RNA; NP, nanoparticle; 
OC, ovarian cancer; PEI, polyethylenimine.
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Some nanoscale drug delivery systems, including 
NPs, liposomes, and nanocapsules, can be used 
to overcome the shortcomings of traditional drug 
delivery, preferentially target OC cells and amplify 
the therapeutic potential.194 A large number of 
studies have shown that ncRNAs in exosomes are 
differentially expressed in serum, plasma, and 
ascites samples between OC patients and normal 
controls, and these ncRNAs hold great potential 
as biomarkers to improve the efficiency of diagno-
sis, prognosis, and treatment, such as the low 
expression of miR-484 in OC serum 
exosomes.76,195 However, there are few studies on 
targeted therapies combined with ncRNAs in OC 
treatment, which are worthy of further study.

Transfer RNA-derived fragments (tRFs) are 
another novel class of small ncRNAs produced 
through enzymatic cleavage of tRNAs and have 
been shown to play key regulatory roles similar  
to miRNAs.196,197 Accumulating evidence has 
shown that tRFs regulate gene expression at 

transcriptional and post-transcriptional levels.196 
It was also found that tRFs are expressed in 
HGSOC and normal ovarian tissues with signifi-
cant differences, which might provide potential 
biomarkers for the diagnosis and treatment of 
HGSOC.198 Although there have been many stud-
ies on tRF in other tumor types,196 it has rarely 
been reported in OC research. Plant-derived 
tRFs-T11 was found to interact with AGO2 to 
suppress TRPA1 via a RNAi pathway in the 
A2780 cell, which, in turn, suppresses OC prolif-
eration.199 Silico analyses and expression profiling 
were performed using the TCGA-OC database, 
the GEO dataset, and two institutionally inde-
pendent cohorts. This analysis highlighted a tRNA 
GlyGCC-derived internal fragment as a novel 
molecular predictor of EOC prognosis and sup-
ported tRNA may have bright future in the preci-
sion medicine decisions in EOC treatment. Like 
other ncRNAs, tRFs also play important roles in 
OC progression200 and need great efforts to deeply 
investigate their functions and mechanism.

Table 3. New strategies for ncRNAs-targeted OC therapy.

New strategy ncRNA Material/source References

NPs miR-15a Neutral liposome DOPC Dwivedi et al.170

miR-16 Neutral liposome DOPC Dwivedi et al.170

miR-124 DOPC Seviour et al.171

miR-21 Ap-CIS-NPs Vandghanooni et al.172

miR-21 Covalently bound octahedral DNA 
nanocages were functionalized 
with folate molecules and utilized 
as scaffolds to engineer four 
sequestering units with a miR-21 
complementary sequence for obtaining 
biocompatible Fol-miR-21-NC non-toxic 
nanostructures

Xing et al.173

miR-155 PEI-based nano complexes Cubillos-Ruiz et al.175

Let-7a HA-PTX/Let-7a-GNR@MSN Wang et al.176

exosome miR-21 Adjacent stromal cells Au Yeung et al.185

miR-146a hUCMSCs Qiu et al.186

miR-92b-3p IOSE-80, SKOV-3, and A2780 Wang et al.188

miR-484 HEK293T Zhao et al.189

Ap-CIS-NPs, AS1411 anti-nucleolin aptamer-decorated PEGylated poly (lactic-co-glycolic acid) nanoparticles containing 
CIS; CIS, cisplatin; DOPC, 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine; HA-PTX/Let-7a-GNR@MSN, hyaluronic acid 
(HA) was developed employing GNRs coated with functionalized MSNs (GNR@MSN); hUCMSCs, human umbilical cord 
mesenchymal stem cells; ncRNA, non-coding RNA; NP, nanoparticle; PEI, polyethylenimine.
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Besides, some small ncRNAs are so stable that 
they can survive in blood and form the basis for 
accurate and sensitive screening of major human 
cancers in a few drops of blood.25,26,201 In addi-
tion, the development of diagnostic biomarkers 
envisaged to be found in urine or blood is ideal to 
spare patients from the non-invasive procedures 
usually associated with tissue collection. It is 
important to find appropriate and effective ncR-
NAs to improve early diagnosis of OC as well as 
to serve as prognostic markers, and also as target 
molecules for therapy.
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